Math 547 – Practice Exam #3

1. (a). Explicitly describe the elements of the field \(\mathbb{Q}(\pi) \).
(b). Explicitly describe the elements of the field \(\mathbb{Q}(\sqrt{2}) \).
(c). Give a basis for the field \(\mathbb{Q}(\sqrt{3}, \sqrt{2}, i) \) over \(\mathbb{Q} \).
(d). Define algebraic extension.

2. Prove: If \(F \subseteq K \subseteq E \) are fields and \(K \) is a finite extension of \(F \) and \(E \) is a finite extension of \(K \), then \([E:F] = [E:K][K:F] \).

3. Suppose that \(\gamma \) is a zero of \(p(x) = x^2 + 2x + 3 \in \mathbb{Z}_5[x] \) in some extension field \(E \).
 Note: \(p(x) = x^2 + 2x + 3 \) is irreducible in \(\mathbb{Z}_5[x] \); you need not verify this.
 (a). How many elements are there in \(\mathbb{Z}_5(\gamma) \)? Explain.
 (b). Express the product \((1 + 2\gamma)(3 + \gamma) \) in the form \(a + b\gamma, a, b \in \mathbb{Z}_5 \).
 (c). Find an expression (in terms of \(\gamma \)) for the other zero of \(p(x) = x^2 + 2x + 3 \) in \(E \).

4. Let \(D \) be an integral domain with \(F \subseteq D \subseteq E \) where \(F \) and \(E \) are fields and \(E \) is a finite extension of \(F \). Show that \(D \) is a field.

5. Show directly that \(\alpha = \sqrt{i + \sqrt{3}} \) is an algebraic number and determine its degree. Fully justify your answer.
 Hint: You may take as given that \(\sqrt{i + \sqrt{3}} \notin \mathbb{Q}(i, \sqrt{3}) \).

6. Given that \(\pi \) is transcendental, show that \(\sqrt{\pi} \) cannot be algebraic of degree at most 2.

7. Suppose that \(p(x) \in F[x] \) is irreducible of degree \(n \) and that \(\alpha \) is a zero of \(p(x) \) in some extension field \(E \). Thus \(p(x) \) is the minimal polynomial for \(\alpha \).
 Let \(S = \{1, \alpha, \alpha^2, \ldots, \alpha^n\} \). Show that \(S \) is linearly independent in \(F(\alpha) \).
 Note: Argue directly, you may not use the fact that \(S \) is a basis for \(F(\alpha) \).

8. Let \(\alpha \) be algebraic in \(E \) over \(F \) and suppose that \(p(x) \) is its minimal polynomial.
 Then show that if \(f(x) \in F[x] \) with \(f(\alpha) = 0 \), then \(p(x) \) divides \(f(x) \).