Math 547–Review Problems–Exam 1
Note that problem 8 had the word ‘commutative’ inserted to make it a little nicer.

Be able to do problems such as those below and the problems assigned on problem sets or the following problems from your textbook.

Textbook Problems:
Page 110–111: 1, 2, 3, 4, 7, 9, 13 14(c), 15, 18, 20.
Solutions:
#4: The order of (2,3) is \(\text{lcm}(3, 5) = 15\).

#14: \(\text{lcm}(3, 4) = 12\).

#18: No. When written as a direct product of prime-power cyclic groups the two representations are not identical.

#20: Yes – both are isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_9\).

Page 174–176: 1, 5, 8, 11, 13, 14, 15, 29, 30, 47, 50, 55.
Solutions:
#8: Not a ring (this set consists of just the positive integers and it is not a group under addition.)

#14: Just 1 and \(-1\).

#30: *A unit* in a ring \(R\) with identity is an element \(x\) for which there is a multiplicative inverse \(y\); i.e., there exists a \(y\) such that \(xy = yx = 1\).

#50: Just show it is closed under subtraction and multiplication.

Page 182–184: 1, 2, 5, 9, 11, 14, 15, 16, 29.
Solutions:
#2: \(x = 3\).

#14: \[
\begin{bmatrix}
1 & 2 \\
2 & 4
\end{bmatrix}
\begin{bmatrix}
-2 & -2 \\
1 & 1
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]

#16: \(n\) must be the *smallest* such positive integer.

Page 326–327: 1, 2, 3, 5, 7, 9, 13.
Solution: #2: 27

1. The *center* of a ring \(R\) is the set \(Z(R) = \{a : ar = ra \text{ for all } r \text{ in } R\}\).
 Show that the center of a ring is a subring of the ring.
 Solution: Just show that \(Z(R)\) is closed under subtraction and multiplication.
2. What are the units of the polynomial ring \(R[x] \) where \(R \) is the set of real numbers?
Solution: The units are \(p(x) = k, \; k \neq 0 \).

3. Find an example of a ring and two elements \(a \) and \(b \) such that \(ab = 0 \) but \(ba \neq 0 \).
Solution: \(A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \; B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \in M_2(\mathbb{Z}) \) works since \(AB = 0 \) but \(BA \neq 0 \).

4. Suppose that \(R \) is a ring with identity and \(a \) is an element of \(R \) such that \(a^2 = a \). Is \(S = \{ara : r \in R \} \) a subring of \(R \)?
Solution: Yes.

5. Is \(S = \left\{ \begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix} : a, b \in \mathbb{Z} \right\} \) a subring of \(M_2(\mathbb{Z}) \)?
Solution: No. It is not closed under multiplication.
For example, \(\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 12 & 11 \\ 9 & 13 \end{bmatrix} \notin S \).

6. Is \(S = \left\{ \begin{bmatrix} a & a^2 \\ b & b \end{bmatrix} : a, b \in \mathbb{Z} \right\} \) a subring of \(M_2(\mathbb{Z}) \)?
Solution: Yes.

7. Show that if \(A \) and \(B \) are ideals of a ring \(R \), then \(A + B = \{a + b : a \in A, \; b \in B \} \) is an ideal of \(R \).
Solution: Let \(x, y \in A + B \). Then \(x = a_1 + b_1, \; y = a_2 + b_2 \) for some \(a_1, a_2 \in A, \; b_1, b_2 \in B \).
Now, \(x - y = (a_1 + b_1) - (a_2 - b_2) = (a_1 - a_2) + (b_1 - b_2) \in A + B \) and so \(A + B \) is closed under subtraction. Also for any element \(r \) in \(R \), \(rx = r(a_1 + b_1) = ra_1 + rb_1 \in A + B \) since \(ra_1 \in A, \; rb_1 \in B \) because \(A \) and \(B \) are ideals. Similarly \(xr \in A + B \) and so \(A + B \) absorbs multiplication.

8. Suppose that an ideal \(A \) of a ring \(R \) contains a unit, then show that \(A = R \).
Solution: Suppose that \(u \) is a unit in \(A \) (note that \(R \) must be a ring with identity if we can talk about units). Then since \(u \) is a unit, there exists a \(w \) in \(R \) such that \(uw = 1 \). Hence \(1 = uw \in A \) since \(A \) absorbs multiplication. Now, let \(r \) be any element of \(R \), then \(r = r \cdot 1 \in A \) since \(A \) absorbs multiplication.
9. What are the possible ideals of a field?
 Solution: Just the field itself and \{0\}. This is a consequence of exercise 4.

10. Show that every group of order 35 is cyclic.
 Solution: The number of 5-Sylow subgroups divides 35 and is of the form 5n+1. The only such number is 1. Similarly, the number of 7-Sylow subgroups is 1. Thus G has exactly one subgroup of order 5 and exactly one subgroup of order 7. Those groups can only account for \(5 + 7 - 1 - 11\) elements of G. Hence any other element of G must have order 35.

11. What are the units of \(\mathbb{Z}_{24}\)?
 Solution: The units of \(\mathbb{Z}_{24}\) are 1, 5, 7, 11, 13, 19, 23 the elements of \(\mathbb{Z}_{24}\) that are relatively prime to 24.

12. (a). If \(R\) is a commutative ring of characteristic 3, then simplify the expansion of \((a+b)^3\).
 Solution: \((a+b)^3 = a^3 + b^3\).

 (b). If \(R\) is a commutative ring of characteristic 4, then simplify the expansion of \((a+b)^5\).
 Solution: \((a+b)^5 = a^5 + ab^4 + 2a^2b^3 + 2a^3b^2 + a^4b + b^5\).