Math 546
Problem Set 7

1. Suppose that \(f: \mathbb{Z}^+ \to (0,1) \) and that
\[
\begin{align*}
 f(1) &= 0.841137..., \\
 f(2) &= 0.275434..., \\
 f(3) &= 0.216779..., \\
 f(4) &= 0.211490..., \\
 f(5) &= 0.122832..., \\
 f(6) &= 0.201508...
\end{align*}
\]
Let \(x \) denote the number constructed in the proof that no function from \(\mathbb{Z}^+ \) to \((0,1)\) can be onto. Determine the value of \(x \) to 6 decimal places.

Solution:
\(x = 0.987549... \)

2. Prove: If \(f:S \to T \) is an isomorphism of the binary structure \((S,\ast)\) onto the binary structure \((T,\#)\), then \(f^{-1}:T \to S \) is an isomorphism of the binary structure \((T,\#)\) onto the binary structure \((S,\ast)\). You may assume as already known that \(f^{-1} \) is a bijection. Note that by definition, \(f^{-1}(x) = a \iff f(a) = x \).

Solution: : Here’s how you might phrase your argument.
Proof. Let \(x \) and \(y \) be any elements of \(T \). Then we must show that
\[
f^{-1}(x \# y) = f^{-1}(x) \# f^{-1}(y).
\]
However, since \(f \) is onto we know that there exist \(a \) and \(b \) in \(S \) such that \(f(a) = x \), \(f(b) = y \). Hence, \(f^{-1}(x) = a \), \(f^{-1}(y) = b \), and so
\[
f^{-1}(x \# y) = f^{-1}(f(a) \# f(b)) = f^{-1}(f(a \ast b)) = a \ast b = f^{-1}(x) \# f^{-1}(y).
\]
Which was what we wanted.

3. Suppose that \(f: R \to R \) defined by \(f(x) = 2x + 1 \) is an isomorphism from the binary structure \((R,\ast)\) to \((R,\times)\) (where the \(\times \) refers to ordinary multiplication). Determine the operation \(\ast \).
Solution: Because \(f \) is an isomorphism, \(f(a \ast b) = f(a) \times f(b) \).
Hence, \(2(a \ast b) + 1 = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 \), and solving this for \(a \ast b \) gives, \(a \ast b = a + b + 2ab \).