1. Prove: If G is Abelian, then every subgroup of G is normal.

Solution: We noted this in class today.

Proof. If H is a subgroup of the Abelian group G and $g \in G$, $h \in H$, then $ghg^{-1} = hgg^{-1} = he = h \in H$.

2. Prove: If H is a subgroup of G, then for any g in G, gHg^{-1} is also a subgroup of G.

Solution: Note that $gHg^{-1} = \{ ghg^{-1} : h \in H \}$

Clearly the identity is $e = geg^{-1} \in gHg^{-1}$.

If x and y belong to gHg^{-1}, then $x = gh_{1}g^{-1}$, $y = gh_{2}g^{-1}$ for some elements $h_{1}, h_{2} \in H$. Thus, $xy = gh_{1}g^{-1}gh_{2}g^{-1} = gh_{1}h_{2}g^{-1} \in gHg^{-1}$. So gHg^{-1} is closed.

Finally if $x = ghg^{-1} \in H$, then $x^{-1} = (ghg^{-1})^{-1} = gh^{-1}g^{-1} \in H$ (since $h^{-1} \in H$).

3. Prove the theorem below.

Theorem. Let G be a group and H a subgroup of G. Then the following are equivalent:

(i). $H \triangleleft G$.

(ii). For every g in G, $gH = Hg$.

(iii). For every g in G, $gHg^{-1} = H$.

Solution: (i) \Rightarrow (ii). Suppose that $H \triangleleft G$ and let x be any element of gH.

Then $x = gh$ for some h in H. Thus, $h_{1} = ghg^{-1} \in H$. And so,

$x = gh = ghg^{-1}g = h_{1}g \in Hg$. Thus we have shown that $gH \subseteq Hg$, Essentially the same argument shows that $Hg \subseteq gH$ and hence $gH = Hg$.

Now show (ii) implies (iii) and (iii) implies (i).

4. (a). If H is a subgroup of the group G and $[G : H] = 2$, then $H \triangleleft G$.

Hint: Consider problem 3(ii).

Solution: Suppose that g is any element of G. If g is in H, then $gH = H = Hg$.

If g does not belong to H, then gH is the left coset that is different from H and Hg is the right coset that is different from H and so $gH = Hg$.

(b). Show that $A_{4} \triangleleft S_{4}$.
5. A_4 has exactly one subgroup of order 4, namely
$K = \{i, \ (1, 2)(3, 4), \ (1, 3)(2, 4), \ (1, 4)(1, 3)\}$.
Show that K is a normal subgroup of A_4.

Hint: Refer to problems 2 & 3.

Solution: Since K is the only subgroup of order 4 and since gKg^{-1} is a subgroup of order 4, then $gKg^{-1} = K$ and so K is normal by problem 3.

6. Recall that $SL(2, R) = \{A \in GL(2, R) : \det(A) = 1\}$. Show that $SL(2, R) \triangleleft GL(2, R)$.

Hint: If A and B are both $n \times n$ matrices, then $\det(AB) = \det(A)\det(B)$.