1. How many generators of the cyclic group \(\mathbb{Z}_n \) are there?

 Is this the same as the number of generators of any other cyclic group of order \(n \)?

 Solution: A number in \(\mathbb{Z}_n \) generates \(\mathbb{Z}_n \) if and only if it is relatively prime to \(n \).

 Hence, since there are \(\phi(n) \) integers in \(\mathbb{Z}_n \) that are relatively prime to \(n \), there are \(\phi(n) \) generators for \(\mathbb{Z}_n \).

2. Suppose that \(a \) is an element of the group \(G \) of order \(n \). Suppose that \(a^k = e \) and that \(k < n \). Is it necessarily true that \(k \) divides \(n \)?

 Solution: No. Suppose that \(a \) is an element of order 5 in a group of order 20 (for example, the number 4 in \(\mathbb{Z}_{20} \)). Then \(a^{15} = e \) and 15 < 20, but 15 does not divide 20.

3. Show that if \(H \) and \(K \) are subgroups of a group \(G \), then \(H \cap K \) is a subgroup as well.

 Solution: We need to show that \(H \cap K \) contains the identity, is closed under the group operation and that each element in \(H \cap K \) has its inverse also in \(H \cap K \).

 Suppose that \(x, y \in H \cap K \). Then both \(x \) and \(y \) belong to \(H \) and both belong to \(K \) as well. Since they are both in \(H \) and \(H \) is closed, \(xy \) is in \(H \), and similarly since they are both in \(K \), \(xy \) is in \(K \). Thus \(xy \in H \cap K \) and so \(H \cap K \) is closed.

 Now suppose that \(x \) is any element of \(H \cap K \). Then since \(x \) is in \(H \) and \(H \) is a subgroup, \(x^{-1} \in H \). Similarly, \(x^{-1} \in K \) and so \(x^{-1} \in H \cap K \).

4. Show that every cyclic group is Abelian.

 Solution: Suppose that \(G \) is a cyclic group that is generated by the element \(g \).

 Let \(x \) and \(y \) be arbitrary elements of \(G \). we must show that \(xy = yx \).

 Since \(G \) is generated by \(g \), there must exist integers \(r \) and \(s \) such that \(x = g^r \), \(y = g^s \). But then \(xy = g^r g^s = g^{r+s} = g^s g^r = yx \).

5. Note that \(\phi(5) = \phi(8) = \phi(10) = \phi(12) = 4 \). Are the groups \(U(5), U(8), U(10), U(12) \) isomorphic to one another?

 Solution: No. \(U(8) \) and \(U(12) \) are both isomorphic to the Klein 4-group (and hence to each other), while \(U(5) \) and \(U(10) \) are both cyclic.

6. Let \(G \) be a group and \(Z = \{a \in G : ag = ga \text{ for all } g \in G \} \). Show that \(Z \) is a subgroup of \(G \).

 Solution: We need to show that \(Z \) contains the identity, is closed under the group operation and that each element in \(Z \) has its inverse also in \(Z \).
Since $ex = xe = x$ for any x in G, e satisfies the condition to belong to Z. If a and b belong to Z, then $(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)$ for any x in G and so ab satisfies the condition to belong to Z. Finally if a is in Z, then $a^{-1}x = (x^{-1}a)^{-1} = (ax^{-1})^{-1} = xa^{-1}$ and so a^{-1} satisfies the condition to belong to Z. Note that we used the property $(xy)^{-1} = y^{-1}x^{-1}$ here as well as the fact that $(x^{-1})^{-1} = x$.

Note: The group Z is called the Center of G.

7. If every proper subgroup of a group G is cyclic, then must G itself be cyclic?
Solution: No, the Kline 4-group is a counter-example.

8. Let G be a group of order n and let k be relatively prime to n.
Show that the function $\gamma : G \to G$ defined by $\gamma(x) = x^k$ is a bijection.
Solution: There is a quarter riding on this one.