Math 544
Review Problems for Exam 2

1. Let \(W \) be the set of all those polynomials \(p(t) \) in \(P_3 \) with \(p(3) = 0 \).
 Is \(W \) a subspace of \(P_3 \)?
 Hint: Check the three required properties and look at problem 3.
 Answer: Yes it is.
 Solution: Clearly 0 (which in this context means the polynomial that is the constant function 0) is in \(W \). If \(p(t) \) and \(q(t) \) are polynomials in \(W \), then
 \[[p + q](3) = p(3) + q(3) = 0 + 0 = 0, \]
 and so \(p(t) + q(t) \) is in \(W \). Thus \(W \) is closed under the addition of vectors.
 Finally, if \(p(t) \) is in \(W \) and \(r \) is any real number, then \(rp(3) = r \times 0 = 0 \), so \(rp(t) \) is in \(W \) and hence \(W \) is closed under scalar products.

2. Let \(W \) be the set of all those polynomials \(p(t) \) in \(P_3 \) with \(p(0) = 3 \).
 Is \(W \) a subspace of \(P_3 \)?
 Hint: Consider the three required properties to be a subspace.
 Answer: No it is not.
 Solution: No, \(W \) does not contain the 0 vector.

3. Let \(W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : c = ab \right\} \subseteq R^3 \). Is \(W \) a subspace of \(R^3 \)?

 Justify your answer.
 Solution: No. \(W \) contains the zero vector, but is not closed under scalar multiplication.

 As an example to verify this consider \(\begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix} \in W \), but \(2 \begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 12 \end{bmatrix} \notin W \).

4. Recall that a function \(f \) is even if \(f(x) = f(-x) \). Let \(W = \left\{ p(t) \in P_3 : p(t) \text{ is even} \right\} \subseteq P_3 \).
 Is \(W \) a subspace? If so, find a basis for \(W \).
 Solution: Yes, \(W \) is a subspace. The constant function 0 is in \(W \).
 If \(p(t) \) and \(q(t) \) are elements of \(P_3 \), then
 \[(p + q)(-t) = p(-t) + q(-t) = p(t) + q(t) = (p + q)(t) \]
 and so \(W \) is closed under vector addition. Similarly, if \(r \) is any real number and \(p \) is an element of \(W \), then
 \[(rp)(-t) = r(p(-t)) = r(p(t)) = (rp)(t) \]
 and so \(W \) is closed under scalar multiplication.
5. Let \(W = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a + b - 2c + d = 0, \) and \(a - b = c - d \) \(\subseteq \mathbb{R}^4. \)

Is \(W \) is a subspace of \(\mathbb{R}^4? \) Justify your answer.

Solution: Yes. Of course it is possible to verify that \(W \) is a subspace by checking the usual three basic properties that a subspace must possess, but here we can save a lot of time and effort by simply noting that \(W \) is the null space of the matrix \(A = \begin{bmatrix} 1 & 1 & -2 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}. \) This is because the defining conditions of \(W \) can be written as \(a + b - 2c + d = 0 \) and \(a - b - c + d = 0. \)

Alternatively, we could reduce the defining conditions of \(W \) to \(a = 3b - d, \) \(c = 2b \) and so we would see that \(W \) is the span of \(\begin{bmatrix} 3 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \) \(\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}. \)

6. (a) Let \(V \) be a subspace of \(\mathbb{R}^n, \) and let \(V^\perp = \{ \mathbf{u} : \mathbf{u} \cdot \mathbf{v} = 0 \text{ for all } \mathbf{v} \text{ in } V \}. \)

Show that \(V^\perp \) is a subspace of \(\mathbb{R}^n. \)

\(V^\perp \) is called the **orthogonal complement** of \(V. \)

Solution: Clearly \(\mathbf{0} \cdot \mathbf{u} = 0 \) and so \(\mathbf{0} \) belongs to \(V^\perp. \) If \(\mathbf{u} \) and \(\mathbf{w} \) belong to \(V^\perp \) then for any \(\mathbf{v} \) in \(V, \) \((\mathbf{u} + \mathbf{w}) \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{v} = 0 + 0 = 0 \) and hence \(V^\perp \) is closed under vector addition. Similarly, you can show that \(V^\perp \) is closed under scalar multiplication.

(b) Let \(\mathbf{u} = \begin{bmatrix} 2 \\ -4 \\ 6 \\ -8 \end{bmatrix} \) and let \(V^\perp = \{ \mathbf{v} \in \mathbb{R}^4 : \mathbf{v} \cdot \mathbf{u} = 0 \}. \) Find a basis for \(V^\perp. \)

Solution: Suppose that \(\mathbf{v} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \) belongs to \(V^\perp. \) Then, from \(\mathbf{v} \cdot \mathbf{u} = 0, \) we get \(2a - 4b + 6c - 8d = 0 \Rightarrow a = 2b - 3c + 4d. \)
So, $v = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2b - 3c + 4d \\ b \\ c \\ d \end{bmatrix} = b \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} - c \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ so, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \text{ spans } V^\perp.

Checking that these vectors are independent* shows that they form a basis for V^\perp.
*You could use the approach in problem 8 below or arguing

directly, $a \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + c \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2a + 3b + 4c \\ 0 \\ 0 \end{bmatrix}$ \Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow a = 0, b = 0, c = 0.

7. Let W be spanned by $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 8 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$. Find a basis for W.

Solution: If these three vectors formed an independent set, then they would also form a basis for W. However, forming the matrix A, using the given vectors as columns, we get that $A = \begin{bmatrix} 1 & 2 & 1 \\ 9 & 8 & 5 \\ 3 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, and so these columns are not independent*, but the first two columns of A (the pivot columns) are independent and form a basis for W.
*Note, in fact, that $a_2 = 3a_1 + 2a_3$ (where a_i denotes the i^{th} column of A).

8. Let $W = \{ A \in M_3 : AB = BA \}$. Where $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Find a basis for W.

\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}

Solution: A basis is $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.
9. Let W be the subspace of all those polynomials $p(t)$ in P_3 with $p(3) = 0$. Determine a basis for W.

Solution: $p(t)$ belongs to W precisely when 3 is a root of $p(t)$, which is equivalent to $t - 3$ being a factor of $p(t)$. So the elements of W are of the form $(t - 3)q(t)$ where $q(t)$ has degree at most 2. Hence, a typical element of W looks like $(t - 3)(ct^2 + bt + a) = ct(t - 3) + bt(t - 3) + a(t - 3)$ for some a, b and c.

Hence W is spanned by $\{t - 3, t(t - 3), t^2(t - 3)\}$.

These vectors are also independent and hence form a basis for W.

10. Suppose that $T : P_3 \to P_4$ is a linear transformation and that $T(1) = t^2 + 3t + 1$, $T(2t + 1) = t^3$, $T(1 + t^2) = 4t - 3$.

What is the value of $T(3t^2 + 8t + 12)$?

Answer: $4t^3 + 5t^2 + 27t - 4$.

Hint: Express $3t^2 + 8t + 12$ as a linear combination of $1, 2t + 1, 1 + t^2$.

Solution: $3t^2 + 8t + 12 = 3(1 + t^2) + 4(2t + 1) + 5$.

So,

$T(3t^2 + 8t + 12) = T[3(1 + t^2) + 4(2t + 1) + 5] = 3T(1 + t^2) + 4T(2t + 1) + 5T(1) = 3(4t - 3) + 4(t^3) + 5(t^2 + 3t + 1) = 4t^3 + 5t^2 + 27t - 4$.

11. Find bases for the null space, the column space, and the row space of $A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix}$.

Solution: $A = \begin{bmatrix} 1 & 2 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

So, a basis for $\text{Col}(A)$ is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. A basis for $\text{Nul}(A)$ is $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}$.

A basis for $\text{Row}(A)$ is $\{[1, 2, 0, 0], [0,0,1,2]\}$.
12. Find a basis for the vector space \(V = \left\{ a + 2b + 3c + d : a, b, c, d \text{ are real numbers} \right\} \).

\[
\begin{bmatrix}
a + 2b + 3c \\
b + c \\
a + d \\
a + 3b + 4c
\end{bmatrix}
= \begin{bmatrix}
a + 2b + 3c \\
b + c \\
a + d \\
a + 3b + 4c
\end{bmatrix}
= \begin{bmatrix}
a \\
b \\
a \\
a + 3b + 4c
\end{bmatrix}
= \begin{bmatrix}
1 \\
0 \\
1 \\
1
\end{bmatrix}
+ \begin{bmatrix}
2 \\
1 \\
0 \\
3
\end{bmatrix}
+ \begin{bmatrix}
3 \\
1 \\
1 \\
0
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
.
\]

Thus \(V \) is the same as the column space of \(A = \begin{bmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 3 & 4 & 0
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \).

Thus the first three columns of \(A \) (the pivot columns) form a basis for \(V \).

13. Show that \(v = \begin{bmatrix} 7 \\ 18 \\ 12 \end{bmatrix} \) is in the span of \(S = \begin{bmatrix} 1 \\ 6 \\ 0 \\ 3 \end{bmatrix} \) by writing \(v \) as an explicit linear combination.

\[
\begin{bmatrix} 7 \\ 18 \\ 12 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}.
\]

14. Suppose that the columns of the \(n \times n \) matrix \(A \) are linearly independent. Explain why the system \(Ax = b \) must have exactly one solution for each vector \(b \).

Solution: Since the columns are all independent, there are \(n \) pivot positions and hence all rows of \(A \) are pivot rows and so the columns of \(A \) must span \(\mathbb{R}^n \). Thus every vector \(b \) is a linear combination of the columns of \(A \) and every linear combination of the columns of \(A \) has the form \(Ax \) for some vector \(x \).

15. Suppose that \(A \) is a \(3 \times 5 \) matrix. Explain why it is not possible for the nullity of \(A \) to be 1.

Solution: Since the nullity(\(A \)) + rank(\(A \)) = 5, if nullity(\(A \)) = 1, then rank(\(A \)) = 4. However, 4 = rank(\(A \)) = dim(\(\text{Row}(A) \)) \leq 3 since there are only three rows. This is clearly impossible.
16. Let $T : P_3 \to M_2$ be defined by $T \left(p(t) \right) = \begin{bmatrix} p(0) & p(1) \\ p(2) & p(3) \end{bmatrix}$. Show that T is 1-1.

Hint: A non-zero polynomial of degree 3 can have at most 3 different roots.

Solution: If $p(t)$ is in the kernel of T, then $p(0) = 0$, $p(1) = 0$, $p(2) = 0$, $p(3) = 0$.
But every non-zero polynomial of degree at most three can have at most three roots.
Hence $p(t) = 0$. Thus $\ker(T) = \{0\}$, and so T is 1-1.

17. Let A be an $m \times n$ matrix. Explain why \mathbf{b} belongs to $\text{Col}(A)$ precisely when the system $A\mathbf{x} = \mathbf{b}$ is consistent.

Solution: $A\mathbf{x} = \mathbf{b}$ is consistent means that \mathbf{b} is a linear combination of the columns of A which is the same as saying that \mathbf{b} belongs to $\text{Col}(A)$.

18. Show that the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = \begin{bmatrix} a \\ a \\ b \end{bmatrix}$ is not onto.

Solution: $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is not a functional value since $T \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

19. Let $T : M_2 \to \mathbb{R}^2$ be such that $T \left(\mathbf{v}_1 \right) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $T \left(\mathbf{v}_2 \right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $T \left(\mathbf{v}_3 \right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $T \left(\mathbf{v}_4 \right) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, where

$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$.

Determine a basis for $\ker(T)$.

Solution: First we note that $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 + (d - c)\mathbf{v}_4$.

So that $T \left(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \right) = aT \left(\mathbf{v}_1 \right) + bT \left(\mathbf{v}_2 \right) + cT \left(\mathbf{v}_3 \right) + (d - c)T \left(\mathbf{v}_4 \right) = \begin{bmatrix} a + c + 2d - 2c \\ 2a + b - c + d \end{bmatrix}$.

Hence, a matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) belongs to \(\ker(T) \)
when
\[
\begin{bmatrix}
a - c + 2d \\
2a + b - c + d
\end{bmatrix}
= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff a = c - 2d, \quad b = -c + 3d.
\]

So a typical element of \(\ker(T) \) has the form
\[
\begin{bmatrix}
c - 2d & -c + 3d \\
c & d
\end{bmatrix}
= c \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} -2 & 3 \\ 0 & 1 \end{bmatrix}.
\]

So a basis for \(\ker(T) \) is \(\left\{ \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -2 & 3 \\ 0 & 1 \end{bmatrix} \right\} \), since these vectors are independent and span.

20. Suppose that \(V \) and \(U \) are vector spaces with \(\dim V = \dim U = n \).
Note that \(V \cong U \) means that \(V \) and \(U \) are isomorphic vector spaces.
(a). Show that \(V \cong U \).

Solution:
Let \(\{v_1, v_2, \ldots, v_n\} \) be a basis for \(V \) and let \(\{u_1, u_2, \ldots, u_n\} \) be a basis for \(U \).
Then it is straightforward to show that the linear transformation \(T : V \to U \) defined by \(T(v_i) = u_i \) is 1-1 and onto and hence an isomorphism.

(b). Show that \(M_2 \cong P_3 \cong R^4 \).

Solution:
Use part (a) after noting that all three of these vector spaces have dimension 4.

21. When is the scalar 0 an eigenvalue of an \(n \times n \) matrix \(A \)?

Solution: Whenever \(A \) is not invertible.

22. If \(B \) is row equivalent to \(A \) must \(A \) and \(B \) have the same eigenvalues?

Solution: No. Row operations can change determinants. Counter-examples are plentiful.

23. \(v \) is in the eigenspace of the eigenvalue \(\lambda \) if \(v \) belongs to the null space of \(A - \lambda I_n \).

Solution: The null space of \(A - \lambda I_n \).
24. The characteristic polynomial, for the matrix below is \(p(\lambda) = (\lambda - 1)^3(\lambda - 2) \).

So \(\lambda = 1 \) is an eigenvalue of multiplicity 3.

\[
A = \begin{bmatrix}
-4 & 1 & 1 & 1 \\
-16 & 3 & 4 & 4 \\
-7 & 2 & 2 & 1 \\
-11 & 1 & 3 & 4
\end{bmatrix}
\]

Also, \(A - I \sim \begin{bmatrix}
-5 & 1 & 1 & 1 \\
0 & 3 & -2 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \).

Determine a basis for the eigenspace of the eigenvalue \(\lambda = 1 \).

Solution: A basis is \(S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix} \right\} \).

Problems Previously Assigned in the Text:
Section 4.1 #1, 2, 3, 5, 6, 7, 9, 11-18, 20, 21.
Section 4.2 #1, 2, 3, 5, 6, 7, 9, 11, 24, 28, 31, 32.
Section 4.3 #4, 10, 13, 15, 19, 25, 26.
Section 4.5 #1, 3, 5, 6, 13, 15, 17, 21.
Section 4.6 #1, 3, 5, 7, 9, 13, 15, 19, 21, 23, 27, 28, 29.
Section 3.1 #1, 9.
section 3.2 #3.2 #15 – 20.
Section 5.1 #1, 2, 3, 5, 7, 9, 11, 13, 19, 21, 22, 23–27, 29, 30.
Section 5.2 #1, 3, 7, 9, 15.

Very Important Terms

<table>
<thead>
<tr>
<th>1-1</th>
<th>basis</th>
<th>column space</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimension</td>
<td>isomorphism</td>
<td>kernel</td>
</tr>
<tr>
<td>linear</td>
<td>linear</td>
<td>linearly</td>
</tr>
<tr>
<td>combination</td>
<td>transformation</td>
<td>independent</td>
</tr>
<tr>
<td>null space</td>
<td>onto</td>
<td>row space</td>
</tr>
<tr>
<td>spanning set</td>
<td>subspace</td>
<td>Eigenvalue</td>
</tr>
<tr>
<td>Eigenspace</td>
<td>Rank</td>
<td>Nullity</td>
</tr>
<tr>
<td>Determinant</td>
<td>trace</td>
<td>Characteristic polynomial</td>
</tr>
</tbody>
</table>