Method of Variation of Parameters MATH 242 E01 March 27, 2017

Consider an open interval I and the following nonhomogeneous linear differential equation

(NH)
$$y^{(n)}(x) + p_{n-1}(x)y^{(n-1)}(x) + \dots p_1(x)y' + p_0(x)y = f(x),$$

where f(x) and each $y_i(x)$ are continuous on I.

We outline below how to use the Method of Variation of Parameters to find a particular solution $y_p(x)$ on I to (NH), for the case n = 3. For the other cases in which $n \ge 2$, similar steps also work, and for the case in which n = 2, the steps can be simplified, as noted below. If the functions $p_i(x)$ are not all constants, or if f(x) is not of one of the types required by the Method of Undetermined Coefficients, then the Method of Variation of Parameters (but <u>not</u> the Method of Undetermined Coefficients) may be used to solve (NH).

The case n = 3:

Step 1: Find linearly independent solutions $y_1(x)$, $y_2(x)$, and $y_3(x)$ on I to the associated homogeneous equation (AH) of (NH), and let $W = W(y_1, y_2, y_3)$ be their Wronskian. For each i, i = 1, 2, 3, let W_i be the determinant of the 3×3 -matrix obtained by replacing the i^{th} column of the matrix in W by the column

 $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Evaluate W, W_1, W_2 , and W_3 .

Step 2: For each i, i = 1, 2, 3, use integration to find a formula for a function $u_i(x)$ such that for all $x \in I, u'_i(x) = \frac{W_i \cdot f(x)}{W}$.

Step 3: According to the Method of Variation of Parameters (verified in our text for the case n = 2 by using Cramer's Rule), $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x) + u_3(x)y_3(x)$ is a particular solution on I to (NH). Find a formula for y_p . Then by the methods studied previously, it follows that a general solution on I to (NH) is $y(x) = y_c(x) + y_p(x)$.

The case n = 2:

Step 1: Find linearly independent solutions $y_1(x)$ and $y_2(x)$ on I to the associated homogeneous equation (AH) of (NH), and let $W = W(y_1, y_2)$ be their Wronskian. For each i, i = 1, 2, let W_i be the determinant of the 2 × 2-matrix obtained by replacing the i^{th} column of the matrix in W by the column

 $\begin{bmatrix} 0\\1 \end{bmatrix}$. Evaluate W, W_1 , and W_2 .

Step 2: For each i, i = 1, 2, use integration to find a formula for a function $u_i(x)$ such that for all $x \in I, u'_i(x) = \frac{W_i \cdot f(x)}{W}$, i.e., so that $u'_1(x) = \frac{-y_2(x) \cdot f(x)}{W}$, and $u'_2(x) = \frac{y_1(x) \cdot f(x)}{W}$. The latter two formulas are easily committed to memory, and one may prefer to learn them rather than the ones in which W_1 and W_2 appear.

Step 3: Find a formula for a particular solution $y_p(x)$ on I to (NH) by evaluating the expression $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$. Then a general solution on I to (NH) is $y(x) = y_c(x) + y_p(x)$.

Exercises: Solve $y'' + y = \csc x$, and solve $y''' + y' = \csc x$ on $I = (0, \pi)$.