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Definition: If A is a set and x is an element of A, one writes “x ∈ A.”

Definition: By a complex number is meant an ordered pair (a, b) of real numbers. Fur-
thermore, the complex number (a, b) is identified with, and sometimes referred to as, the
point in the plane, R× R, whose cartesian coordinates are (a, b).

Definition: By the field C of complex numbers is meant the system (R × R,⊕,⊙) where
addition ⊕ and multiplication ⊙ are defined by the following formulas. For all (a, b), (c, d) ∈
C, (a, b)⊕ (c, d) = (a+ c, b+ d), and (a, b)⊙ (c, d) = (ac− bd, ad+ bc).

For simplicity, it is customary to modify the notation for a complex number (a, b) ∈ R×R

and the binary operations ⊕ and ⊙ in the following way: since (a, b) can be uniquely
represented in the form a(1, 0) ⊕ b(0, 1), where r(u, v) is defined to mean (ru, rv), we
reserve the letter “i” to denote the complex number (0, 1), and we abbreviate the notation
for (1, 0) to simply the number “1” (since (a, b) ⊙ (1, 0) = (a, b) = (1, 0) ⊙ (a, b) for all
(a, b) ∈ R × R). This permits the following notationally simplified definition of C, which
is the one we shall use from now on.

Definition: By the field C of complex numbers is meant the set of all expressions having
the form a+bi, where a, b ∈ R, endowed with the following operations of addition and mul-
tiplication (which are denoted with the same symbols used for addition and multiplication
of real numbers): for all a, b, c, d ∈ R,

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i, and (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.

With these operations on C, 0 + 0i, denoted 0, is its additive identity, and the additive
inverse of a+ bi is −a+ (−b)i, denoted −a− bi.

Its multiplicative identity is 1 + 0i, denoted 1, and for 0 6= a + bi ∈ C, the multiplicative

inverse of a+ bi, denoted
1

a+ bi
, is easily shown to be

a

a2 + b2
− b

a2 + b2
· i.

Notice that using the above formula for multiplication, one obtains (0 + i) · (0 + i) =
(0 − 1) + (0 + 0)i, and hence i2 = −1, i3 = −i, i4 = 1, i5 = i, and so on. Some
authors write the suggestive notation i =

√
−1, although the symbol “

√
−1” is considered

meaningless or undefined when one is talking solely about R.

Definition: For a complex number z = a+ bi, where a, b ∈ R, a is called the real part of

z, b is called the imaginary part of z, and the number
√
a2 + b2 is called the modulus of z

(or absolute value of z) and is denoted |z|.
Geometrically, we can think of the complex number z = a + bi, where a, b ∈ R, as being
represented by the point (a, b) in the xy-plane. Then the modulus of z provides the distance
between the point z and the origin. In this context, the x-axis is called the real axis, the
y-axis is the imaginary axis, and the xy-plane is the complex plane.
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Definition: If a, b ∈ R and 0 6= z = a + bi is a nonzero complex number, then we can

also write z = |z|
(

a√
a2 + b2

+
b√

a2 + b2
· i
)

, and since the point

(

a√
a2 + b2

,
b√

a2 + b2

)

is obviously on the unit circle in the plane, then there exists a real number θ such that

cos θ =
a√

a2 + b2
and sin θ =

b√
a2 + b2

. Thus we may write z = r(cos θ + i sin θ), where

r = |z|. The latter is called the polar form of z, and θ is called an argument of z. Hence, the
rectangular coordinates of the point z in the plane are (a, b), and a set of polar coordinates
for z are (r, θ). As is the case for polar coordinates of any point, note that the argument
θ of z is not uniquely determined, since in the preceding representation for z, θ may be
replaced by any real number having the form θ+2nπ, where n is an integer. So, θ denotes
the signed radian measure of any angle whose initial side is the positive x-axis and whose
terminal side is the line segment from 0 to z.

We shall use the following straightforward consequence of the formula for multiplication in
C and the formulas cos(A+B) = cosA cosB − sinA sinB and sin(A+B) = sinA cosB +
cosA sinB.

Lemma: If z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2) are complex numbers,
then z1z2 = r1r2(cos(θ1 + θ2) + i(sin(θ1 + θ2)).

Thus, to multiply two complex numbers together, we multiply their absolute values and
add their angles. To add two complex numbers z1, z2, we view each complex number
as being the tip of a position vector emanating from the origin, and then, geometrically,
z1 + z2 is the tip of the vector sum z1 + z2.

In particular, one obtains the next result.

DeMoivre’s Theorem: If z = r(cos θ + i sin θ) is a complex number and n is a positive
integer, then zn = rn(cos(nθ) + i sin(nθ)).

We shall use a corollary of DeMoivre’s Theorem to find roots of nonzero complex numbers.

Definition: If n is a positive integer and z, t are complex numbers such that tn = z, then
t is said to be an nth root of z.

Corollary: If z = r(cos θ + i sin θ), where z 6= 0 and n is a positive integer, then for
each nonnegative integer k, zk = r1/n

(

cos
(

θ+2kπ
n

)

+ i sin
(

θ+2kπ
n

))

is an nth root of z.
Furthermore, z has exactly n distinct roots in C, namely, {z0, z1, z2, . . . , zn−1}.
Exercise: Let n be a positive integer. Let k be a nonnegative integer and define zk by
zk = cos( 2πkn ) + i sin( 2πkn ). Show that zk is an nth root of 1.

Examples we have already seen: −1 and 1 are the square roots of 1, −i and i are the
square roots of −1, and −i, i, −1 and 1 are the fourth roots of 1.

Exercise: Use the Corollary and the two equations 1 = 1 · (cos(0) + i sin(0)) and −1 =
1 · (cos(π) + i sin(π)) to generate the above square roots of −1 and 1, and the fourth roots
of 1.
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Exercise: Find formulas for all 3rd roots of 1 and all 6th roots of 1. Hint: use the above
appropriate definitions of zk, as well as trigonometry formulas such as cos(π/3) = 1/2 =
sin(π/6) and sin(π/3) =

√
3/2 = cos(π/6), and similar formulas for cos θ and sin θ, where

θ denotes various integer multiples of π/6.

Exercise: Find formulas for all 4th roots of −1. Hint: use −1 = cosπ = 1 · (cosπ+ i sinπ)
and the above appropriate definitions of zk, as well as trigonometry formulas such as
cos(π/4) =

√
2/2 = sin(π/4) and similar formulas for cos θ and sin θ, where θ denotes

various integer multiples of π/4.

Exercise: Find formulas for all 4th roots of −16. Hint: −16 = 24(−1).

Using the above results about C to help find solutions to homogeneous linear

differential equations with constant coefficients:

Definition: The complex valued exponential function, denoted ez, is defined in a way
that its value at any real number agrees with the value given in courses on calculus and
real numbers, and so that it has nice algebraic properties such as er+s = er · es. As a
result, one can derive, or take as a definition, the Euler formula, eiθ = cos θ + i sin θ, so
that every nonzero complex number z = r(cos θ + i sin θ) can be expressed as z = reiθ or
as z = eln r+iθ, where r > 0 and θ are real numbers.

Previously, we have shown that for a real number r, erx is a solution to a second order
homogeneous differential equation with real constant coefficients (∗) ay′′ + by′ + cy = 0
iff r is a root to the characteristic equation (∗∗) ar2 + br + c = 0 of (∗), and we have
shown that if b2 − 4ac > 0, then two linearly independent solutions to (∗) are er1x and
er2x, where r1 and r2 are the two distinct (real) roots to (∗∗). We also learned that if
b2 − 4ac < 0 (referred to as Case III), then two linearly independent solutions to (∗) are
the functions eαx cosβx and eαx sinβx, where α = −b/2a and β =

√
4ac− b2/2a. Using

the previous definition, one can obtain the following.

Theorem: Let (∗) and (∗∗) be as above, where b2 − 4ac < 0. Then, in C, for any real
numbers α and β, r1 = α+iβ and r2 = α−iβ are roots of (∗∗) if and only if er1x = e(α+iβ)x

and er2x = e(α−iβ)x are solutions to (∗).
Since cos(−B) = cosB and sin(−B) = − sinB, and hence e(α±iβ)x are the functions
eαx(cosβx + i sinβx) and eαx(cosβx − i sinβx), then the above theorem also leads us
to the (real) linearly independent solutions to (∗) that we obtained in our class, namely,
eαx cosβx and eαx sinβx, where α = −b/2a and β =

√
4ac− b2/2a. One can see this by

noting that linear combinations of the functions in the preceding theorem produce the real
valued solutions given in class, since 1/2 of e(α+iβ)x + e(α−iβ)x produces eαx cosβx, and
1/2i times e(α+iβ)x − e(α−iβ)x produces eαx sinβx.

Exercise: Find four linearly independent, real valued solutions to the homogeneous linear
differential equation (∗) y(4) + 16y = 0. Hint: The characteristic equation of (∗) is
(∗∗) r4 +16 = 0. For two of the 4th roots α+ iβ and −α+ iβ of (∗∗), i.e., of the number
−16, form the functions eαx cosβx, eαx sinβx, e−αx cosβx, and e−αx sinβx. (There is no
need to use the other roots of (∗∗) since cos (−βx) = cosβx and sin(−βx) = − sinβx.)
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