Show all work, and if your solution involves several steps, place a box around your final answer. Question III. is on the back of this page.

I. (2) Let \(R \) be the region in the plane that is enclosed by the lines \(x = 2 \) and \(y = 0 \) and curve \(x = y^{1/3} \) \((= \sqrt[3]{y})\). Let \(f(x, y) \) be a real valued function of two variables which is continuous on \(R \). In each equation below, fill in the four missing limits of integration in the iterated integral shown after the equality symbol in that equation.

\[
\int_0^2 \int_{y^{1/3}}^2 f(x, y) \, dx \, dy
\]

II. (4) Let \(R \) be the region described in I. above. Evaluate the double integral \(\iint_R e^{-x^4} \, dA \). Hint: do not choose the order of integration carefully.

we \(\int_0^2 \int_0^{x^3} e^{-x^4} \, dy \, dx \), since \(\int e^{-x^4} \, dx \) has no closed form solution.

Sohn. #1:

\[
\int_0^{x^3} e^{-x^4} \, dy = ye^{-x^4}\bigg|_0^{x^3} = xe^{-x^4} - 0 = xe^{-x^4}
\]

\[
\int_0^2 xe^{-x^4} \, dx = -xe^{-x^4}\bigg|_0^2 = -e^{-16} + 1 = \frac{1}{4} \left(1 - \frac{1}{e^{16}}\right)
\]

\[
\int_0^{x^3} e^{-x^4} \, dx = \int e^{u(-\frac{1}{4})} \, du = -\frac{1}{4}e^u + C = -\frac{1}{4}e^{-x^4} + C
\]

\[
\begin{align*}
\text{let } \, du &= -x^4 \\
\text{let } \, du &= -\frac{4}{3}x \, dx \\
\text{let } \, du &= \frac{3}{4} \, dx
\end{align*}
\]

Sohn. #2

\[
-\frac{1}{4} \int_0^{-16} e^u \, du = -\frac{1}{4} e^u\bigg|_0^{-16} = -\frac{1}{4} \left(e^{-16} - 1\right)
\]
III. (4) In one of A. and B., evaluate the given double or iterated integral by converting to polar coordinates.

A. \(\int \int_{R} \sin(\pi(x^2 + y^2)) \, dA \), where \(R \) is the region in the first two quadrants that is bounded by the \(x \)-axis and the upper half of the circle \(x^2 + y^2 = 1 \).

B. \(\int_{0}^{\sqrt{8}} \int_{\sqrt{16 - y^2}}^{\sqrt{16}} 6\sqrt{9 + x^2 + y^2} \, dx \, dy \).

\[
A. \quad \int_{0}^{\pi/2} \int_{0}^{1} \sin(\pi r^2) \, r \, dr \, d\theta = \\
\int_{0}^{\pi/2} \left[-\frac{\cos(\pi r^2)}{2\pi} \right]_{0}^{1} \, d\theta = \int_{0}^{\pi/2} \left(-\frac{\cos(\pi + 0)}{2\pi} \right) \, d\theta = \frac{\pi}{2} \, d\theta = \frac{\pi}{2} \]

\[
\frac{\pi}{2} \bigg|_{\theta = 0}^{\pi/2} = \frac{\pi}{2}.
\]

\[
B. \quad \int_{0}^{\pi/4} \int_{0}^{4} 6\sqrt{9 + r^2} \, dr \, d\theta = \\
\int_{0}^{\pi/4} \left(2 \left(9 + r^2 \right)^{3/2} \right)_{0}^{4} \, d\theta = \\
\int_{0}^{\pi/4} 2 \left(125 - 27 \right) \, d\theta = \int_{0}^{\pi/4} 196 \, d\theta = 196 \theta \bigg|_{0}^{\pi/4} = \frac{196 \pi}{4} = 49 \pi
\]

Remark: In each of II. and III., each integrand \(f(x,y) \) satisfies \(f(x,y) > 0 \) for all \((x,y) \in \mathbb{R} \), so each answer provides the volume of the solid \(T = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in R \text{ and } 0 \leq z \leq f(x,y) \} \), which can also be found by evaluating

\[
\iiint_{T} 1 \, dV = \iiint_{R} \left[\int_{0}^{f(x,y)} 1 \, dz \right] \, dA. \quad \text{E.g., in II.} \quad \iiint_{R} x^3 e^{-x^4} \, dx \, dy \, dz.
\]