I. (1) For each of two of the equations given in the following, name the surface in 3-space defined by that equation.

A. \(x^2 + y^2 - 3z^2 = 1 \) \hspace{5em} \text{hyperboloid of one sheet}

B. \(4x^2 + y^2 = 9z^2 \) \hspace{5em} \text{elliptic cone}

C. \(2x^2 + 4y^2 = 3z \) \hspace{5em} \text{elliptic paraboloid}

D. \(x^2 - 3y^2 = z \) \hspace{5em} \text{hyperbolic paraboloid}

II. Let \(L \) be the line defined by \(x = 1 - 2t, y = 5 + 4t, z = 8 + 6t \), and let \(P \) be the plane defined by \(6x + 4y + z = 29 \).

A. (1) There are infinitely many planes which pass through the point \(Q = (1, 2, 3) \) and are either (i) perpendicular to \(L \) or (ii) parallel to \(L \). Give an equation of a specific example \(M \) of one such plane, and state which of (i) and (ii) is satisfied by your example.

\[
\text{A direction vector for } L \text{ is } \vec{v} = <-2, 4, 6> \text{. If } \vec{n} \text{ is a normal for } M, \text{ then: } \vec{v} \perp \vec{n} \text{ iff (i) holds; and } \vec{v} \parallel \vec{n} \text{ iff (ii) holds. One plane passes through } Q \text{ and satisfies (i):} \quad -2(x-1) + 4(y-2) + 6(z-3) = 0 \quad \text{or} \quad x-2y-3z = -12
\]

Examples passing through \(Q \) and satisfying (i):

\[
\begin{align*}
3(x-1) + (y-3) &= 0; \\
-x-1 + (y-2) - (z-3) &= 0; \\
2(x-1) + (y-2) &= 0; \quad \text{or}...
\end{align*}
\]

B. (3) Determine whether the line \(L \) and plane \(P \) intersect; if so, find the coordinates of the intersection.

Trying to solve
\[
29 = 6(1-2t) + 4(5+4t) + (8+6t)
\]
\[
= 6-12t + 20 + 16t + 8 + 6t
\]
\[
= 34 + 10t \quad \text{or}
\]
\[
-5 = 10t, \text{ we obtain}
\]
\[
t = -\frac{1}{2}
\]

Thus, the point \((1-2(-\frac{1}{2}), 5+4(-\frac{1}{2}), 8+6(-\frac{1}{2})) = (2, 3, 5) \) is on the line \(L \) and plane \(P \), and it is the only point on \(L \) and \(P \).

\[
\text{*since } \vec{v} \cdot <3,0,1> = 0 = \vec{v} \cdot <-1,1,-1> = 0 = \vec{v} \cdot <2,1,0>...
\]
III. (5) Let $R(2, 0, 1)$, $S(4, 2, 2)$, and $T(6, 1, 0)$ be points. Do one of A. and B.

A. Find an equation of the plane that passes through the points R, S, and T. Then use your equation to check and show that your plane does contain each of those points.

B. Let L be the line which passes through the points R and S. Find the distance between the point T and the line L.

A. $\vec{RS} = <2, 2, 1>$ and $\vec{RT} = <4, 1, -1>$. As $<2, 2, 1> \times <4, 1, -1> = <-3, 6, -6>$ we may take as a normal for the plane sought $<-3, 6, -6>$ or, say, $<1, -2, 2>$. An equation for the plane is $x - 6 - 2(y - 1) + 2z = 0$ or $x - 2y + 2z = 4$.

Check:

R: $2 - 2 \cdot 0 + 2 \cdot 1 = 4$
S: $4 - 2 \cdot 2 + 2 \cdot 2 = 4$
T: $6 - 2 \cdot 1 + 2 \cdot 0 = 4$

B. $\frac{|\vec{RS} \times \vec{RT}|}{|\vec{RS}|} = \frac{|<-3, 6, -6>|}{|<2, 2, 1>|} = \frac{\sqrt{9 + 36 + 36}}{\sqrt{4 + 4 + 1}} = \frac{9}{\sqrt{9}} = 3$

Memory aid for B:

$$\frac{d}{|\vec{RT}|} = \sin \theta = \frac{|\vec{RS} \times \vec{RT}|}{|\vec{RS}| \cdot |\vec{RT}|} \Rightarrow$$

$$d = \frac{|\vec{RS} \times \vec{RT}|}{|\vec{RS}|}$$