Using MATLAB to Enhance Productivity

Apr 12th, 2018

In this event, we had an engineer, Bonita Vormawor from Mathworks who talked about the interactive programming capabilities and development tools available in MATLAB. She also discussed about career prospects at Mathworks. We had attendees from various departments at USC, such as engineering, CS, geology and finance.

Math Internship Panel

Nov 9th, 2017

In this event, we had a panel containing four of our current graduate students who have interned in reputed organizations in the past. Here they have shared their internship experiences and also gave helpful advices to students aspiring future internships.

SIAM Student Chapter Certificate of Recognition

Congratulations Sameed Ahmed and Erik Palmer!

April 25th, 2017

This certificate recognizes students' outstanding service and contributions to SIAM Student Chapters.

Our thanks to our faculty adviser Xiaofeng Yang for his support!

Xueping Zhao

An Unconditionally Energy Stable Numerical Scheme for a Phase Field Model of Compressible Complex Fluid Flow

April 20th, 2017

Incompressible fluid flow models have been well studied in recent years. Correspondingly, there are many works studying the numerical schemes used for solving those models. However, there is little scholarship on compressible fluid flow models in the application of modeling aerodynamics and biology. Recently, the energy quadratization method was developed to solve incompressible and quasi-incompressible fluid flow models. Now a new approach using the energy quadratization method, linear and unconditionally energy stable semi-discrete schemes, which not only reduce compute complexity, but also preserve the energy dissipation property of the system, can be developed. In this talk, we will derive an unconditionally energy stable scheme to solve the compressible fluid flow model using the energy quadratization method. To the best of our knowledge, this is the first attempt to design this kind of scheme to solve the compressible fluid flow model. Several numerical simulations will be given to show the efficiency and stability.

Dr. Alissa B. Kriss

Research and Development Scientist, Syngenta

March 23rd, 2017

Alissa B. Kriss received a B.S. in Mathematics and Secondary Math Education from Indiana State University and a M.S. and Ph.D. in Plant Pathology with a focus on Epidemiology of Plant Pathogens from The Ohio State University (2011). After working as a post-doctoral researcher for the USDA-ARS Subtropical Plant Pathology Unit at the U.S. Horticultural Research Laboratory in Fort Pierce, Florida, she took her current position with Syngenta. Syngenta is an agricultural crop protection and seed company which focuses on bringing innovative crop solutions to millions of growers. Dr. Kriss’s current assignment is within a unique team in the company coined ‘Biological Data Analytics’.

Dr. Kriss will share aspects of her past research and how that prepared her for her current role. Additionally she will discuss some unique projects which are currently being pursued in Syngenta, with particular focus on how mathematics and statistics is combined with science to drive innovation in R&D within Syngenta.

Sameed Ahmed

Mathematical Modeling of HER2 Signalling Patheway: Implications of Breast Cancer Therapy

January 19, 2017

The cancer stem cell hypothesis states that there is a small subset of tumor cells, called cancer stem cells (CSCs), that are responsible for the proliferation and resistance to therapy of tumors. CSCs have the ability to self-renew and differentiate to form the nontumorigenic cells found in tumors. Over-expression of human epidermal growth factor receptor 2 (HER2) plays a role in regulation of CSC population in breast cancer. Current cancer therapy includes drugs that block HER2, however, patients can develop anti-HER2 drug resistance. Downstream of HER2 is nuclear factor κB (NFκB). The aberrant regulation of NFκB leads to cancer growth, which makes it a promising target for cancer therapy, especially for those who have developed resistance to anti-HER2 treatment. Our collaborator's lab has discovered that interleukin-1 (IL1), which is downstream of HER2, is responsible for NFκB activation, thus making it a potential target for cancer treatment. We have developed a mathematical model to represent the dynamics of this signaling pathway. Simulations of the model match experimental results, confirming the new pathway. We will use the mathematical model to make predictions for different scenarios, and it will be updated and expanded based upon new experiments.

Mac Hyman, Ph.D.

Your Career Starts Now!

January 12, 2017

The choices that scientists make early in their careers will impact them for a lifetime. I will use the experiences of scientists who have had great careers to identify universal distinguishing traits of good career choices that can guild decisions in education, choice of profession, and job opportunities to increase your chances of having a great career with long-term sustained accomplishments.

I ran a student internship program at Los Alamos National Laboratory for over 20 years. Recently, I have been tracking the careers past students and realized that the scientists with great careers weren't necessarily the top students, and that some of the most brilliant students now had some of the most oh-hum careers.

I will describe how the choices made by the scientists with great careers were based on following their passion, building their talents into a strength supporting their profession, and how they identified a supportive engaging work environment. I will describe some simple guidelines that can help guide your choices, in school and in picking the right job that can lead to a rewarding career and more meaningful life.

The topic is important because, so far as I can tell, life is not a trial run - we have one shot to get it right. The choices you are making right now to planning your career will impact your for a lifetime.

Dr. Zineb Saghi

Basic Principals of Tomography and Application to the Nanoscale World

August 25, 2016

In our first meeting of the year, Dr. Zineb Saghi will speak on the basic principals of tomography and its application to the nanoscale world. Tomography is a noninvasive technique that consists of acquiring a set of images at different project angles, and using dedicated mathematical tools to retrieve the 3D object. Tomography is well-established in the medical field, and has recently been transferred to Materials Science fo the 3D characterization of nanoscale structures using trasmission electron microscopes. In this talk, we will present the basics of the technique and show how it is used in practice to explore the Nanoworld in 3D.

Dr. Zineb Saghi defended her PhD dissertation on novel electron tomography approaches to nanoscale structures at the University of Sheffield (UK) in 2009. She was a postdoc at the Electron Microscopy Group of the University of Cambridge from 2010 to 2015. In September 2015 she accpeted a permanent position as a Research Scientist at CEA-LETI (France).

Older Events

Our chapter dates back all the way back to 2004. For information on older events and photos, please see the old website by following the link below.

Old SIAM Student Chapter Website