The $k$ - shift graph of order $n$ is the graph whose vertices are the $k$-element subsets of $[n]=\{1,2, \cdots, n\}$ and with two $k$-sets $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ and $B=\left\{b_{1}, b_{2}, \cdots, b_{k}\right\}$ adjacent iff $a_{1}<a_{2}=b_{1}<a_{3}=b_{2}<\cdots<$ $a_{k}=b_{k-1}<b_{k}$. Erdős and Hajnal determined the chromatic number of such graphs to be $(1+o(1)) \log _{(k-1)} n$, where $\log _{(t)} n$ is the $t$-fold iterated binary logarithm. A generalized shift graph has vertex set $\binom{[n]}{k}$, and a pair $A, B \in\binom{[n]}{k}$ are adjacent if and only if the elements of $A$ and $B$ occur in some prespecified pattern $\tau$. Denote such a graph $G(n, \tau)$. In this talk, we show that $\chi(G(n, \tau))=\Theta\left(\log _{(B(\tau)-2)} n\right)$, where $B$ is a function depending only on the pattern $\tau$. Joint work with C.Avart, T. Łuczak, V.Rödl.

