1. Problems on Cesaro means:
 (a) Turn in (after all) the earlier assigned problem on Cesaro means of sequences: Convergence implies Cesaro summability.
 (b) Suppose that both \(\{a_n\}_n \) and \(\{b_n\}_n \) are Cesaro summable, then show that the sequence \(c_n := \alpha a_n + \beta b_n \) is also.
 (c) Determine the Cesaro means of the sequence \(\{(-1)^n - \frac{1}{n}\} \).

2. How can you tell if a norm actually arises from an inner product? Use a ‘bullet’ to show that the inner product in an inner product space over the real scalars can be computed from the norm by the formula:

\[
< f, g > = \frac{1}{2} \left(\|f\|^2 + \|g\|^2 - \|f - g\|^2 \right)
\]

Extra Credit: Derive a similar formula when the scalar field is \(\mathbb{C} \).

3. Consider the collection \(\phi_n(t) = \cos(nt) \) in \(L^2(-\pi, \pi) \). Show that this collection is orthogonal where the inner product is given by \(\int_{-\pi}^{\pi} f(t)g(t)dt \). What is the norm of \(\phi_n \)? (Hint: use the trig identity \(\cos(a + b) + \cos(a - b) = 2 \cos(a) \cos(b) \).)

4. A metric space is called separable if it has a countable dense subset. Let \(H \) be a Hilbert space with the natural metric (i.e. \(d(f, g) := \|f - g\|_H \)) and let \(\Phi := \{\phi_\alpha\}_\alpha \) be any orthonormal collection from \(H \).
 (a) Compute the distance between any two distinct members of \(\Phi \).
 (b) Prove that \(\Phi \) must be countable if \(H \) is separable.
 (c) Sketch the proof that if \(\Phi \) is countable and maximal in the partial ordering of set inclusion (existence by Zorn’s lemma), then \(H \) is separable.

5. Let \(X \) be a Banach space (i.e. a complete normed linear space). Prove that if \(M_n := \|f_n\|_X \) and the sequence \(\{\sum_{n=1}^{N} M_n\}_N \) is bounded in \(\mathcal{R} \), then the series \(\sum_{n=1}^{\infty} f_n \) converges in \(X \). (Recall that for the series converge, we just mean that the sequence of partial sums convergence as a sequence in \(X \).)