
ANALYSIS II
Introduction to Series 

Defn. Let X be a complete normed linear space. Suppose {xn}n = 1
∞ belongs to X, then the

infinite series ∑∑∑∑k = 1
∞∞∞∞ xk is said to converge if the sequence of partial sums sn : = ∑k = 1

n xk

converges. In this case, ∑k = 1
∞ xk : = limn→∞ sn. In particular, this definition applies to the real

and complex scalar fields. 

Examples:  

1. Let X = IR, then ∑n = 1
∞ 1/(k2 + k) = 1.

Details:  Set ak = 1/(k2 + k) and notice that ak = 1/k - 1/(k+1). Observe that the sum telescopes, sn = ∑k =
1n 1/k - 1/(k+1) = 1 - 1/(n+1) → 1 as n→ ∞. 

2. Let X be the complex numbers, then ∑n = 1
∞ a zn converges to s = a/(1-z) if |z| < 1, and

diverges otherwise. 
Details:  As we have seen before, |sn-s| = |a zn/(1-z)| ≤ C rn for some constant (C = |a|/(1-r)) and r = |z|.
We see by the theorem that follows (n-th term test) that the series diverges if 1 ≤ |z|. 

3. Let X = C[0,1/2] and let fn(x) = xn, then ∑n = 1
∞ xn converges in X to the function f(x) =

x/(1-x). 

Proposition. Suppose that ∑k = 1
∞ xk and ∑k = 1

∞ yk converges in X and c is a scalar, then 

1. ∑k = 1
∞ c xk = c  ∑k = 1

∞ xk 

2. ∑k = 1
∞ (xk + yk) = ∑k = 1

∞ xk + ∑k = 1
∞ yk 

Proof. The proof follows immediately from the corresponding properties for sequences applied to the
sequences of partial sums.   [¯] 

Theorem. (Cauchy Test) In a complete normed linear space X, a series ∑k = 1
∞ xk

converges if and only if for each ε > 0, there is a natural number N such that for m > n ≥ N || ∑k
= n+1m xk ||X < ε. 

Proof.  ∑k = 1
∞ xk converges if and only if the sequence of partial sums {sn} is Cauchy. The theorem

follows since sm-sn = ∑k = n+1
m xk if m > n.   [¯] 
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Corollary. (n-th Term Test) Suppose that ∑k = 1
∞ xk converges in X, then limn→∞ xn = 0 in

X. 

Proof. Let n = m-1 in the Cauchy test.   [¯] 

Corollary. (Weierstrass M-Test) Suppose {fn} is a sequence of continuous functions on

[a,b] which satisfies ||fn||∞ ≤ Mn where ∑n = 1
∞ Mn < ∞, then the series ∑n = 1

∞ fn converges in

C([a,b]) to some f; that is, there exists a continuous function f on [a,b] such that ∑k = 1
n fk

converges uniformly to f as n→∞. 

Proof. We apply the Cauchy test to Sn, the n-th partial sum for the series ∑n = 1
∞ fn. Note that ||Sm - Sn|| =

|| ∑k = n+1
m fk || ≤ ∑k = n+1

m Mk by the triangle inequality. Applying the Cauchy criterion to the right hand

side of this inequality, since ∑k = 1
∞ Mk converges, then completes the proof.   [¯] 

Note. In the previous theorem, the same proof gives a corresponding theorem for the space of
continuous functions (with `sup norm') on Ω, where Ω is a compact metric space. 

Theorem. (Positive Term Test) Suppose each an is nonnegative, then the series ∑n = 1
∞ an

converges if and only if the sequence of partial sums is bounded. We then can write ∑n = 1
∞ an =

supn sn in the extended sense. 

Proof. The sequence of partial sums with nonnegative terms is a monotone nondecreasing sequence
which will converge to its least upper bound.   [¯] 

Defn.  A statement p(n) is said to be eventually true if there exists a natural number N such
that p(n) is true for every n ≥ N. A statement p(n) is said to be true infinitely often if for each
natural number N, there exists n ≥ N such that p(n) is true. 

Corollary.  Suppose that eventually the terms of the series are nonnegative, then the series

∑n = 1
∞ an converges if and only if the sequence of partial sums is bounded. 

Proof.  Eventually the sequence of partial sums are nondecreasing.   [¯] 
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