ANALYSIS II Introduction to Series

Defn. Let X be a complete normed linear space. Suppose $\{x_n\}_{n=1}^{\infty}$ belongs to X, then the *infinite series* $\sum_{k=1}^{\infty} x_k$ is said to *converge* if the sequence of partial sums $s_n := \sum_{k=1}^{n} x_k$ converges. In this case, $\sum_{k=1}^{\infty} x_k := \lim_{n \to \infty} s_n$. In particular, this definition applies to the real and complex scalar fields.

Examples:

- 1. Let X = IR, then $\sum_{n=1}^{\infty} 1/(k^2 + k) = 1$. <u>Details</u>: Set $a_k = 1/(k^2 + k)$ and notice that $a_k = 1/k - 1/(k+1)$. Observe that the sum telescopes, $s_n = \sum_{k=1}^{n} 1/(k+1) = 1 - 1/(n+1) \rightarrow 1$ as $n \rightarrow \infty$.
- Let X be the complex numbers, then ∑_{n = 1}[∞] a zⁿ converges to s = a/(1-z) if |z| < 1, and diverges otherwise.
 <u>Details</u>: As we have seen before, |s_n-s| = |a zⁿ/(1-z)| ≤ C rⁿ for some constant (C = |a|/(1-r)) and r = |z|. We see by the theorem that follows (*n-th term test*) that the series diverges if 1 ≤ |z|.
- 3. Let X = C[0,1/2] and let $f_n(x) = x^n$, then $\sum_{n=1}^{\infty} x^n$ converges in X to the function f(x) = x/(1-x).

<u>Proposition</u>. Suppose that $\sum_{k=1}^{\infty} x_k$ and $\sum_{k=1}^{\infty} y_k$ converges in X and c is a scalar, then

1.
$$\sum_{k=1}^{\infty} c x_{k} = c \sum_{k=1}^{\infty} x_{k}$$

2. $\sum_{k=1}^{\infty} (x_{k} + y_{k}) = \sum_{k=1}^{\infty} x_{k} + \sum_{k=1}^{\infty} y_{k}$

Proof. The proof follows immediately from the corresponding properties for sequences applied to the sequences of partial sums.

Theorem. (Cauchy Test) In a complete normed linear space X, a series $\sum_{k=1}^{\infty} x_k$ converges if and only if for each $\varepsilon > 0$, there is a natural number N such that for $m > n \ge N \parallel \sum_k e^{-n+1m} x_k \parallel_X < \varepsilon$.

Proof. $\sum_{k=1}^{\infty} x_k$ converges if and only if the sequence of partial sums $\{s_n\}$ is Cauchy. The theorem follows since $s_m - s_n = \sum_{k=n+1}^{m} x_k$ if m > n. [-]

<u>Corollary</u>. (n-th Term Test) Suppose that $\sum_{k=1}^{\infty} x_k$ converges in X, then $\lim_{n\to\infty} x_n = 0$ in X.

<u>Proof</u>. Let n = m-1 in the Cauchy test. \square

<u>Corollary</u>. (Weierstrass M-Test) Suppose $\{f_n\}$ is a sequence of continuous functions on [a,b] which satisfies $\|f_n\|_{\infty} \leq M_n$ where $\sum_{n=1}^{\infty} M_n < \infty$, then the series $\sum_{n=1}^{\infty} f_n$ converges in C([a,b]) to some f; that is, there exists a continuous function f on [a,b] such that $\sum_{k=1}^{n} f_k$ converges uniformly to f as $n \rightarrow \infty$.

Proof. We apply the Cauchy test to S_n , the n-th partial sum for the series $\sum_{n=1}^{\infty} f_n$. Note that $||S_m - S_n|| = ||\sum_{k=n+1}^{m} f_k|| \le \sum_{k=n+1}^{m} M_k$ by the triangle inequality. Applying the Cauchy criterion to the right hand side of this inequality, since $\sum_{k=1}^{\infty} M_k$ converges, then completes the proof. \Box

Note. In the previous theorem, the same proof gives a corresponding theorem for the space of continuous functions (with `sup norm') on Ω , where Ω is a compact metric space.

Theorem. (Positive Term Test) Suppose each a_n is nonnegative, then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence of partial sums is bounded. We then can write $\sum_{n=1}^{\infty} a_n = \sup_n s_n$ in the extended sense.

<u>**Proof**</u>. The sequence of partial sums with nonnegative terms is a monotone nondecreasing sequence which will converge to its least upper bound. [-]

Defn. A statement p(n) is said to be *eventually* true if there exists a natural number N such that p(n) is true for every $n \ge N$. A statement p(n) is said to be true *infinitely often* if for each natural number N, there exists $n \ge N$ such that p(n) is true.

<u>Corollary</u>. Suppose that eventually the terms of the series are nonnegative, then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence of partial sums is bounded.

<u>Proof</u>. Eventually the sequence of partial sums are nondecreasing.

Robert Sharpley March 23 1998