ANALYSIS II Metric Spaces: Limits and Continuity

<u>Defn</u> Suppose (X,d) is a metric space and A is a subset of X.

- 1. A point x is called an *interior point* of A if there is a neighborhood of x contained in A.
- 2. A set N is called a *neighborhood (nbhd) of x* if x is an interior point of N.
- 3. A point x is called a *boundary point* of A if it is a limit point of both A and its complement.
- 4. A point x is called a *limit point* of the set A if each neighborhood of x contains points of A distinct from x.
 (This is equivalent to saying that each neighborhood of x has an infinite number of members of A. Recall that a neighborhood for a point x, is a set containing an open ε-nbhd of x.)
- 5. A point x is called an *isolated point* of A if x belongs to A but is not a limit point of A.

<u>Proposition</u> A set O in a metric space is open if and only if each of its points are interior points.

<u>Proposition</u> A set C in a metric space is closed if and only if it contains all its limit points.

<u>Defn</u> Suppose (X,d) is a metric space and A is a subset of X. The *closure of A* is the smallest closed subset of X which contains A. The *derived set A'* of A is the set of all limit points of A.

<u>**Proposition</u>** The closure of A may be determined by either</u>

• the intersection of all closed sets which contain A,

or

• the union of A with its derived set.

Sequential Convergence

Defn A sequence $\{x_n\}$ in a metric space (X,d) is said to *converge*, to a point x_0 say, if for each neighborhood of x_0 there exists a natural number N so that x_n belongs to the neighborhood if n is greater or equal to N; that is, eventually the sequence is contained in the neighborhood. In this case, we say that x_0 is the *limit of the sequence* and write

$$\lim_{n\to\infty} x_n := x_0.$$

<u>Proposition</u> In a metric space, sequential limits are unique.

<u>**Proposition</u>** That a sequence $\{x_n\}$ converges in a metric space (X,d) to a point x_0 is equivalent to the condition that for each $\epsilon > 0$ there is a natural number N such that $N \le n$ implies $d(x_n, x_0) < \epsilon$.</u>

Examples

- 1. In either the reals or complexes if $|\mathbf{r}| < 1$, then $\mathbf{r}^n \rightarrow 0$.
- 2. Consider the space of continuous functions on [0,1/2], C[0,1/2]. Let $f_n(x) = x^n$, then $f_n \to 0$.
- 3. The sequence $f_n(x) = x^n$ belongs to C[0,1] but does not converge.

Defn A *function f* defined on $X \setminus \{x_0\}$, with values in a metric space $\{Y, d_2\}$ *is said to have a limit L at x_0* if x_0 is a limit point of X and for each neighborhood O_2 of L, there is a neighborhood O_1 of x_0 such that f maps each element of the deleted neighborhood $O_1 \setminus \{x_0\}$ into O_2 . This is denoted

$$\lim_{x \to x_0} f(x) := L$$

<u>Homework</u> This is equivalent to the condition: for each $\epsilon > 0$ there is a $\delta > 0$ such that if $0 < d_1(x,x_0) < \delta$, then $d_2(f(x),L) < \epsilon$.

<u>Proposition</u> A necessary and sufficient condition for a function f to have a limit L at x_0 is that for each sequence $\{x_n\}$ which converges to x_0 (no point of which is equal to x_0), then $\{f(x_n)\}$ converges to L. Consequently, if a function has a limit at a point x_0 , then it is unique.

<u>Defn</u> A function f is called continuous at a point x_0 if either

- 1. x_0 is an isolated point of X or
- 2. x_0 is a limit point of X and the limit of f as x approaches x_0 is $f(x_0)$.

<u>Homework</u> A necessary and sufficient condition for a function f to be continuous at x_0 is that for each $\epsilon > 0$ there is a $\delta > 0$ such that if $d_1(x,x_0) < \delta$, then $d_2(f(x),f(x_0)) < \epsilon$.

Continuity

<u>Defn</u> Suppose $f: X \to Y$ where (X,d_1) and (Y,d_2) are metric spaces. f is called *continuous* if the inverse image of each open set in Y is open in X.

<u>**Proposition**</u> A function $f: X \to Y$ is continuous if and only if the inverse image of each closed set in Y is closed in X.

<u>Theorem</u> A function $f: X \to Y$ is continuous if and only if f is continuous at each point of X.

<u>Theorem</u> Suppose that f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ are continuous functions, then $g_0 f$ is a continuous function from X to Z.

<u>Theorem</u> Suppose that (X,d_X) and (Y,d_Y) are both metric spaces, then X x Y is a metric space if the metric d is defined for $z_i = (x_i, y_i)$, i=1,2, by

$$d(z_1, z_2) := d_X(x_1, x_2) + d_Y(y_1, y_2).$$

Examples:

- 1. For a metric space (X,d), the metric d is a continuous function from X^2 to R.
- 2. Suppose that (X,||.||) is a normed linear space, then both the vector space operations are jointly continuous:
 - 1. if $a_n \to a$ in R and $x_n \to x$ in X, then $||a_n x_n||_X \to ||a x||_X$ in R.
 - 2. if $x_n \to x$ and $y_n \to y$ in X, then $x_n + y_n \to x + y$ in X.

Robert Sharpley Jan 25 1998