ANALYSIS II Metric Spaces: Connectedness

<u>**Defn.</u>** A *disconnection* of a set A in a metric space (X,d) consists of two nonempty sets A_1, A_2 whose disjoint union is A and each is open relative to A. A set is said to be *connected* if it does not have any disconnections.</u>

Example. The set $(0,1/2) \cup (1/2,1)$ is disconnected in the real number system.

Theorem. Each interval (open, closed, half-open) I in the real number system is a connected set.

<u>Pf.</u> Let A_1, A_2 be a disconnection for I. Let $a_j \in A_j$, j = 1, 2. We may assume WLOG that $a_1 < a_2$, otherwise relabel A_1 and A_2 . Consider $E_1 := \{x \in A_1 \mid x \le a_2\}$, then E_1 is nonempty and bounded from above. Let $a := \sup E_1$. But $a_1 \le a \le a_2$ implies $a \in I$ since I is an interval. First note that by the lemma to the least upper bound property either $a \in A_1$ or a is a limit point of A_1 . In either case, $a \in A_1$ since A_1 is closed relative to I. Since A_1 is also open relative to the interval I, then there is an $\varepsilon > 0$ so that $N_{\varepsilon}(a) \in A_1$. But then $a+\varepsilon/2 \in A_1$ and is less than a_2 , which contradicts that a is the sup of E_1 .

Theorem. If A is a connected subset of real numbers (with the standard metric), then A is an interval.

<u>Pf.</u> Otherwise, there would be $a_1 < a < a_2$, with $a_j \in A$ and a does not belong to A. But then $O_1 := (-\infty, a) \cap A$ and $O_2 := (a, \infty) \cap A$ form a disconnection of A.

<u>Note.</u> Each open subset of IR is the countable disjoint union of open intervals. This is seen by looking at open *components* (maximal connected sets) and recalling that each open interval contains a rational. Relatively (with respect to $A \subseteq IR$) open sets are just restrictions of these.

Theorem. The continuous image of a connected set is connected.

<u>Pf.</u> If C is a connected set in a metric space X and there is a disconnection of the image f(C), then it can be `drawn back' to form a disconnection of C : if { O_1, O_2 } forms a disconnection for f(C), then { $f^{-1}(O_1), f^{-1}(O_2)$ } forms a disconnection for C.

Corollary. (Intermediate Value Theorem) Suppose f is a real-valued function which is continuous on an interval I. If $a_1, a_2 \in I$ and y is a number between $f(a_1)$ and $f(a_2)$, then there exists a between a_1 and a_2 such that f(a) = y.

<u>Pf.</u> We may assume WLOG that $I = [a_1, a_2]$. We know that f(I) is a closed interval, say I_1 . Any number y between $f(a_1)$ and $f(a_2)$, belongs to I_1 and so there is an $a \in [a_1, a_2]$ such that f(a) = y.

<u>Corollary</u>. The continuous image of a closed and bounded interval [a,b] is an interval [c,d] where

$$c = \min_{a \le x \le b} f(x)$$
$$d = \max_{a \le x \le b} f(x).$$

<u>Corollary.</u> (Fixed Point Theorem) Suppose that $f:[a,b] \rightarrow [a,b]$ is continuous, then f has a fixed point, i.e. there is an $\alpha \in [a,b]$ such that $f(\alpha) = \alpha$.

<u>Pf.</u> Consider the function g(x) := x - f(x), then $g(a) \le 0 \le g(b)$. g is continuous on [a,b], so by the Intermediate Value Theorem, there is an $\alpha \in [a,b]$ such that $g(\alpha) = 0$. This implies that $f(\alpha) = \alpha$.

Robert Sharpley Feb 21 1998