ANALYSIS II Metric Spaces: Completeness

Defn Suppose (X,d) is a metric space. A sequence $\{x_n\}$ is said to a be *Cauchy sequence* in (X,d) if, for each $\epsilon > 0$, there is a natural number N such that $d(x_n, x_m) < \epsilon$ if $N \le n,m$.

Proposition Convergent sequences are Cauchy.

Lemma Cauchy sequences are bounded, but not necessarily convergent.

<u>Pf</u>: Consider X as the interval (0,1] with the absolute value as norm. The sequence $\{x_n\}$ with $x_n = 1/n$ is Cauchy but not convergent in X. To show that each Cauchy sequence is bounded, apply the definition with $\epsilon := 1$ to obtain an N such that $d(x_n, x_m) < 1$ if $N \le n,m$.

Let R := max {1, $d(x_N, x_1)$, $d(x_N, x_2)$, ..., $d(x_N, x_{N-1})$ }, then { x_n } is contained in B_{2R}(x_N).

<u>Defn</u> If (X,d) is a metric space for which each Cauchy sequence converges, then (X,d) is said to be a *complete metric space*.

Lemma If a subsequence of a Cauchy sequence converges, then the sequence is itself convergent to the same limit.

<u>Proposition</u> If C is a closed subset of a complete metric space (X,d), then C is a complete metric space with the restricted metric.

Examples $\mathbf{R}, \mathbf{C}, \mathbf{R}^{\mathbf{k}}, \mathbf{C}^{\mathbf{k}}$ are all complete metric spaces.

Pf: Use the fact that convergence of a sequence in each of the spaces C, R^k , C^k is equivalent to convergence in each coordinate.of the sequence. This follows since the sup norm is equivalent to the Euclidean norm.

<u>Theorem</u> Let C[a,b] denote the normed linear space of continuous functions on the interval [a,b] equipped (as before) with the sup-norm, then C[a,b] is complete.

Pf: Let $\{f_n\}$ be a Cauchy sequence in C[a,b]. <u>Step 1</u> Establish a pointwise limit for $\{f_n\}$ and call this function f. <u>Step 2</u>: Prove that $||f_n - f||_{\bigcirc} \to 0$. <u>Step 3</u>: Next show that the function f is continuous on [a,b]. (Hint: Use an $\mathcal{E}/3$ argument.)

Robert Sharpley Feb 1 1998