Defn. Suppose that \(K \subseteq \mathbb{R} \). A collection \(G \) of open subsets such that
\[
K \subseteq \bigcup_{O \in G} O.
\]
is called an *open cover* of \(K \). \(K \) has a *finite subcover* from \(G \) if there exist \(O_1, O_2, \ldots, O_n \) in \(G \) for which
\[
K \subseteq \bigcup_{j=1}^{n} O_j.
\]

Defn. \(K \) is called *compact*, if each open cover \(G \) of \(K \) has a finite subcover.

Theorem. The continuous image of a compact set is compact.

Proof. Suppose \(f : K \to \mathbb{R} \) is continuous and \(K \) is compact. Each open cover \(C \) of \(f[K] \) can be drawn back to an open cover \(\tilde{C} \) of \(K \), by considering the sets
\[
\tilde{O} := f^{-1}(O), \ O \in C.
\]

\(K \) compact implies that we may draw a finite subcover from \(\tilde{C} \). Each of these members is the inverse image (under \(f \)) from a member of \(C \). These form the desired subcover of \(f[K] \). \(\square \)

Theorem. (Heine-Borel) Suppose that \(a \leq b \), then the interval \([a,b]\) is compact.

Proof. Let \(C \) be an open cover for \([a,b]\) and consider the set
\[
A := \{x | [a,x] \text{ has an open cover from } C\}.
\]
Note that \(A \neq \emptyset \) since \(a \in A \). Let \(\gamma := \text{lub}(A) \). It is enough to show that \(\gamma > b \), since if \(x_1 \in A \) and \(a \leq x \leq x_1 \), then \(x \in A \). Suppose instead that \(\gamma \leq b \), then there must be some \(O_0 \in C \) such that \(\gamma \in O_0 \). But \(O_0 \) is open, so there exists \(\delta > 0 \) so that \(N_{\delta}(\gamma) \subseteq O_0 \). Since \(\gamma \) is the least upper bound for \(A \), then there is an \(x \in A \) such that \(\gamma - \delta < x \leq \gamma \). But \(x \in A \) implies there are members \(O_1, \ldots, O_n \) of \(C \) whose union covers \([a,x]\). The collection \(O_0, O_1, \ldots, O_n \) covers \([a, \gamma + \delta/2]\). Contradiction, since \(\gamma \) is the least upper bound for the set \(A \). \(\square \)

Theorem. Each closed subset \(C \) of a compact set \(K \) is compact.

Proof. Let \(\tilde{G} \) be an open cover for \(C \). Let \(O_0 \) be the complement of \(C \), then \(O_0 \) is open and \(G := \tilde{G} \cup \{O_0\} \) is an open cover for \(K \). There is a finite subcover of \(G \) which covers \(K \) and hence \(C \). This subcover (dropping \(O_0 \) if it appears) is the desired finite subcover for \(C \). \(\square \)
Defn. Suppose \(\{a_n\} \) is a sequence. A sequence \(\{b_k\} \) is called a subsequence of \(\{a_n\} \) if there exists a strictly increasing sequence of natural numbers \(n_1 < n_2 < \ldots < n_k < \ldots \) such that \(b_k = a_{n_k}, \ k = 1, 2, \ldots \)

Theorem. Suppose that \(K \subseteq \mathbb{R} \), then TFAE:

a.) \(K \) is compact,

b.) \(K \) is closed and bounded,

c.) each sequence in \(K \) has a subsequence which converges to a member of \(K \),

d.) (Bolzano-Weierstrass) each infinite subset of \(K \) has a limit point in \(K \).

Proof. (a) \(\Rightarrow \) (b) : To show that \(K \) is bounded, consider the open cover of \(K \) consisting of the collection of nested open intervals \(\mathcal{O}_n := (-n, n), \ n \in \mathbb{N} \). To show that \(K \) is closed, let \(x_0 \) be a limit point of \(K \). Assume to the contrary that \(x_0 \notin K \). Consider the open cover of \(K \) consisting of the collection of nested open sets \(\mathcal{O}_n := \{x \in \mathbb{R}| |x - x_0| > 1/n\}, \ n \in \mathbb{N} \). Any finite subcollection which would cover \(K \) would have union whose complement would be a neighborhood of \(x_0 \) not intersecting \(K \). This shows that \(x_0 \) could not be a limit point of \(K \).

(b) \(\Rightarrow \) (d) : We use the ‘divide and conquer’ method, better known as the ‘bisection’ method. Let \(A \) be an infinite subset of \(K \). Since \(K \) is bounded, there is an interval \([a, b]\) such that \(K \subseteq [a, b] \). Inductively define the closed subintervals as follows. Let \([a_0, b_0] := [a, b] \). Either the left or right half of \([a_0, b_0]\) contains an infinite number of members of \(K \). In the case that it is the right half, set \([a_1, b_1] := [(b_0 + a_0)/2, b_0] \). Set \([a_1, b_1]\) equal to the left half of \([a_0, b_0]\) otherwise. Inductively, let \([a_{n+1}, b_{n+1}]\) be the half of \([a_n, b_n]\) which contains an infinite number of members of \(A \). Notice that the length of this interval is \((b - a)/2^{n+1}\), that the \(a_n \)'s satisfy \(a_n \leq a_{n+1} \leq \ldots < b \) and so must converge to some real number \(a \leq x_0 \leq b \). Each neighborhood of \(x_0 \) will contain one of the intervals \([a_n, b_n]\) and hence will contain an infinite number of members of \(A \), i.e. \(x_0 \) is a limit point of \(A \). This also shows that \(x_0 \) is a limit point of the closed set \(K \) and must therefore belong to \(K \).

(d) \(\Rightarrow \) (c) : Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence in \(K \). If the sequence’s image is finite, then we may construct a constant subsequence which has the value which we may choose as any of the values of \(\{x_n\}_{n=1}^{\infty} \) which is repeated infinitely often. Otherwise, let \(A \) be the range of the sequence. Then \(A \) is an infinite subset of \(K \). By the Bolzano-Weierstrass property, \(A \) must have a limit point (\(x_0 \) say) which belongs to \(K \). For each \(k \in \mathbb{N} \), we may find an integer \(n_k \) larger than those previously picked (i.e., \(n_1, \ldots, n_{k-1} \)), so that \(|x_{n_k} - x_0| < 1/k \). This is the desired subsequence.
(c) ⇒ (b): If K were not bounded, then there would exist a sequence $x_n \in K$ such that $|x_n| > n$. If this sequence had a subsequence which converged, then it would have to be bounded. But each subsequence of $\{x_n\}$ is clearly unbounded. To show that K is closed, we let x_0 be a limit point of K which is not in K. We can then find a sequence $\{x_n\}$ from K which converges to x_0. By condition (c), this has to have a subsequence which converges to a member of K. Contradiction. Each subsequence of a convergent sequence converges to the same limit, in this case x_0, which does not belong to K. □

Corollary. Each continuous function f on a compact set K is bounded.
Proof. The set $f(K)$ is compact and is therefore bounded. □

Corollary. (Extreme Value Theorem) Each continuous function on a compact set attains its maximum (resp. minimum).
*Proof. The set $f(K)$ is compact and is therefore bounded and closed. Hence the least upper bound γ for $f(K)$ must belong to $f(K)$. Therefore, there is an $x_0 \in K$ such that $\gamma = f(x_0)$ and so

$$f(x) \leq f(x_0), \text{ for all } x \in K.$$

Similary, the greatest lower bound of $f(K)$ is attained by some member of K. □

Defn. A function f is called **uniformly continuous** if for each $\epsilon > 0$, $\exists \delta > 0$ such that whenever $x_1, x_2 \in \text{dom}(f)$ and $|x_1 - x_2| < \delta$, then $|f(x_1) - f(x_2)| < \epsilon$.

Corollary. Each continuous function on $[a,b]$ is uniformly continuous.
*Proof. Suppose not, then negating the definition implies that there exist an $\epsilon_0 > 0$ such that for each $n \in \mathbb{N}$ we can find $x_n, y_n \in K$ with $|x_n - y_n| < 1/n$ but $|f(x_n) - f(y_n)| \geq \epsilon_0$. K is compact so we can find a subsequence $\{x_{n_k}\}^\infty_{k=1}$ of $\{x_n\}^\infty_{n=1}$ which converges to some x_0 belonging to K. Notice that $\{y_{n_k}\}^\infty_{k=1}$ also converges to x_0 (use an $\epsilon/2$ proof). But f is continuous at x_0, so

$$\epsilon_0 \leq |f(x_{n_k}) - f(y_{n_k})| \leq |f(x_{n_k}) - f(x_0)| + |f(x_0) - f(y_{n_k})| \rightarrow 0 \text{ as } k \rightarrow \infty$$

which is a contradiction. □