1. Give an example of each of the following and (very) briefly justify your answer:

(a) A bounded set of real numbers that is not compact.

\[(0,1] \text{ is bounded but not closed} \implies \text{ not compact.}\]

(b) A connected set of real numbers that is not compact.

\[(0,1] \text{ is an interval} \implies \text{ connected, but again not compact.}\]

(c) A real-valued continuous function that does not satisfy the Extreme Value Theorem.

\[f(x) = \begin{cases} x, & 0 < x \\ -x, & 0 \leq x < 1 \end{cases}\]

\[\text{or} \quad f(x) = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}\]

(d) A real-valued continuous function that does not satisfy the Intermediate Value Theorem.

\[f(x) = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}\]

\[\text{then} \quad f \text{ is continuous on its domain but not bounded.}\]

2. a. State the Bolzano-Weierstrass property for a subset of real numbers. \(K\).

Each infinite subset \(A\) of \(K\) has a limit point which belongs to \(K\).

b. State the sequential compactness property for a subset of real numbers. \(K\).

Each sequence in \(K\) has a subsequence which converges to a member of \(K\).
3. a) Define open cover for a set.

A cover \(C \) is an open cover for a set \(K \) if \(C \) is a collection of open sets and \(K = \bigcup C \).

b) Define what it means for a set to be compact.

A set \(K \) is compact if each open cover of \(K \) has a finite subcover which covers \(K \).

c) Suppose \(K \) is compact and \(f: K \rightarrow \mathbb{R} \) is continuous. Prove that \(f[K] \) is compact.

Let \(C \) be an open cover of \(f[K] \). Define \(C' := \{ f^{-1}(U) | U \in C \} \).

Each \(U \in C \) is open since \(\exists \, V \) open \(\Rightarrow \exists \, f(V) \) open (by \(f \) is continuous).

Since \(C \) is a cover for \(C' \), then \(C' \) is a cover for \(K \). \(K \) is compact, \(C' \) is an open cover for \(K \), so has a finite subcover \(\{ O_1, O_2, \ldots, O_n \} \).

But then \(O_1 \supseteq O_i = f^{-1}(O_i) \) for \(1 \leq i \leq n \) forms a finite subcover of \(C \) which covers \(f[K] \). \(\therefore f[K] \) is compact.

4. State and sketch a proof of the Heine-Borel theorem.

Either use the proof in the course notes or if you prefer to use a proof indicated in the reference text, then you must fill in some details as follows:

Thus if \(a < b \), then the interval \([a, b]\) is compact.

The proof given in class is replicated in the notes posted on the web.

The proof below is one (with completed details) that a good portion of the class wrote.

A = \[a, x \] \(\subseteq \mathbb{R} \) has a finite subcover from \(C \). Since \(a \leq A \), then \(A \) is nonempty. If \(A \) is not bounded, then \([a, b]\) has a finite subcover from \(C \) since \(A \) is an interval \(\setminus \) in this case \(A = [a, \infty) \).

If \(A \) is bounded, then let \(\gamma := \sup A \). If \(\gamma > b \), then done since \(b \notin A \).

If \(\gamma \leq b \), then \(C \) an open cover for \([a, b]\) \Rightarrow \exists \, O_0 \supseteq \gamma \in C \). If \(O_0 \) open \(\Rightarrow \exists \, \varepsilon > 0 \) \(\Rightarrow N_{\varepsilon}(\gamma) \subseteq O_0 \). Since \(\gamma \) is the least upper bound of \(A \), \(\exists \, \varepsilon > 0 \) \(\exists \, x \in A \) such that \(\gamma - \varepsilon < x \leq \gamma \).

Since \(x \in A \), \(\exists \, \text{ a finite subcover } O_1, \ldots, O_n \in C \) covering \([a, x]\).

But \(\bigcup_{j=0}^{n} O_j = [a, \gamma + \varepsilon] \Rightarrow \gamma + \varepsilon / 2 \in A \ast \gamma = \sup A \). Therefore \(\gamma \leq b \) is impossible.
5. Prove that each closed and bounded subset of real numbers is a compact set.

Suppose \(C \) is closed and bounded. Since \(C \) is bounded \(\exists M \in \mathbb{R} \) \(\exists \ |x| \leq M, \forall x \in C \). Hence \(C \subseteq [-M, M] =: K \). By the Heine-Borel theorem \(K \) is compact. But closed subsets of compact sets are also compact, so \(C \) is compact.

6. a. Define “disconnection” for a set \(A \).

A disconnection \((A_1, A_2)\) for a set \(A \) satisfies

\[
A = A_1 \cup A_2 \quad \text{and} \quad A_1 \cap A_2 = \emptyset
\]

with \(A_1, A_2 \) open relative to \(A \).

b. Define what it means for a set \(A \) to be a connected subset of real numbers.

\(A \) is connected means \(A \) has no disconnections.

c. Show that a subset \(A \) of real numbers is connected implies that \(A \) is an interval.

If \(A \) is connected, but not an interval, then \(\exists a_1, a_2 \in A \) and \(a \notin A \) with \(a_1 < a < a_2 \). Define

\[
A_1 = (-\infty, a) \cap A, \\
A_2 = (a, \infty) \cap A,
\]

then \(a_1 \in A_1, a_2 \in A_2 \), \(A_1 \cap A_2 = \emptyset \), \(A = A_1 \cup A_2 \).

Hence \(A \) is not connected. ※
7. State and prove the Intermediate Value Theorem

Theorem Suppose \(f: [a, b] \to \mathbb{R} \) is continuous and that \(x_1, x_2 \in [a, b] \). If \(\eta \) is between \(f(x_1) \) and \(f(x_2) \), then \(\exists \xi \) between \(x_1 \) and \(x_2 \) so that \(\eta = f(\xi) \).

Proof WLOG \(x_1 \leq x_2 \) and set \(I = [x_1, x_2] \). Since \(I \) is connected \(f \) is continuous, then the image \(f[I] \) is connected. But \(f[I] \subseteq \mathbb{R} \) so \(f[I] \) is an interval \(J \). By hypothesis, \(\eta \) is between \(f(x_1) \) and \(f(x_2) \), both of which belong to the interval \(J \). Hence \(\eta \in f[I] \). This just means \(\exists \xi \in I \ni f(\xi) = \eta \). \(\blacksquare \)