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Defn 1. Suppose that K ⊆ IR. A collection G of open subsets such that

K ⊆
⋃

O∈G

O.

is called an open cover of K. K has a finite subcover from G if there exist

O1,O2, . . . ,On in G for which

K ⊆
n⋃

j=1

Oj.

Defn 2. K is called compact, if each open cover G of K has a finite subcover.

Theorem 1. The continuous image of a compact set is compact.
Proof. Suppose f : K → IR is continuous and K is compact. Each open cover C of
f [K] can be drawn back to an open cover C̃ of K, by considering the sets

Õ := f−1(O), O ∈ C.

K compact implies that we may draw a finite subcover from C̃. Each of these

members is the inverse image (under f) from a member of C. These form the
desired subcover of f [K]. 2

Theorem 2. (Heine-Borel) Suppose that a ≤ b, then the interval [a, b] is compact.
Proof. Let C be an open cover for [a, b] and consider the set

A := {a ≤ x ≤ b + 1 | [a, x] has a finite open cover from C} .

Note that A is bounded and nonemtpy (since a ∈ A). Let γ := lub(A). It is enough

to show that γ > b, since if x1 ∈ A and a ≤ x ≤ x1, then x ∈ A. Suppose instead
that γ ≤ b, then there must be some O0 ∈ C such that γ ∈ O0. But O0 is open,

so there exists δ > 0 so that Bδ(γ) ⊆ O0. Since γ is the least upper bound for A,
then there is an x ∈ A such that γ − δ < x ≤ γ. But x ∈ A implies there are
members O1, . . . ,On of C whose union covers [a, x]. The collection O0,O1, . . . ,On

covers [a, γ + δ/2]. Contradiction, since γ is the least upper bound for the set A.
2

Theorem 3. Each closed subset C of a compact set K is compact.
Proof. Let G̃ be an open cover for C. Let O0 be the complement of C, then O0

is open and G := G̃ ∪ {O0} is an open cover for K. There is a finite subcover of



G which covers K and hence C. This subcover (dropping O0 if it appears) is the
desired finite subcover for C. 2

Defn 3. Suppose {an} is a sequence. A sequence {bk} is called a subsequence of
{an} if there exists a strictly increasing sequence of natural numbers

n1 < n2 < . . . < nk < . . .

such that bk = ank
, k = 1, 2, . . .

Theorem 4. Suppose that K ⊆ IR, then TFAE:

a.) K is compact,

b.) K is closed and bounded,

c.) each sequence in K has a subsequence which converges to a member of K,

d.) (Bolzanno-Weierstrass) each infinite subset of K has a limit point in K.

Proof. (a) ⇒ (b) : To show that K is bounded, consider the open cover of K con-
sisting of the collection of nested open intervals On := (−n, n), n ∈ IN . To show

that K is closed, let x0 be a limit point of K. Assume to the contrary that
x0 6∈ K. Consider the open cover of K consisting of the collection of nested open

sets On := {x ∈ IR||x − x0| > 1/n}, n ∈ IN . Any finite subcollection which would
cover K would have union whose complement would be a neighborhood of x0 not

intersecting K. This shows that x0 could not be a limit point of K.
(b) ⇒ (d) : We use the ‘divide and conquer’ method, better known as the ‘bisection’

method. Let A be an infinite subset of K. Since K is bounded, there is an interval
[a, b] such that K ⊆ [a, b]. Inductively define the closed subintervals as follows. Let
[a0, b0] := [a, b]. Either the left or right half of [a0, b0] contains an infinite number

of members of K. In the case that it is the right half, set [a1, b1] := [(b0 +a0)/2, b0].
Set [a1, b1] equal to the left half of [a0, b0] otherwise. Inductively, let [an+1, bn+1] be

the half of [an, bn] which contains an infinite number of members of A. Notice that
the length of this interval is (b− a)/2n+1, that the an’s satisfy an ≤ an+1 ≤ . . . < b

and so must converge to some real number a ≤ x0 ≤ b. Each neigborhood of x0

will contain one of the intervals [an, bn] and hence will contain an infinite number
of members of A, i.e. x0 is a limit point of A. This also shows that x0 is a limit

point of the closed set K and must therefore belong to K.
(d) ⇒ (c) : Let {xn}

∞
n=1 be a sequence in K. If the sequence’s image is finite, then

we may construct a constant subsequence which has the value which we may choose
as any of the values of {xn}

∞
n=1 which is repeated infinitely often. Otherwise, let A



be the range of the sequence. Then A is an infinite subset of K. By the Bolzanno-
Weierstrass property, A must have a limit point (x0 say) which belongs to K. For

each k ∈ IN , we may find an integer nk larger than those previously picked (i.e.,
n1, . . . , nk−1), so that |xnk

− x0| < 1/k. This is the desired subsequence.

(c) ⇒ (b) : If K were not bounded, then there would exist a sequence xn ∈ K such
that |xn| > n. If this sequence had a subsequence which converged, then it would
have to be bounded. But each subsequence of {xn} is clearly unbounded. To show

that K is closed, we let x0 be a limit point of K which is not in K. We can then
find a sequence {xn} from K which converges to x0. By condition (c), this has

to have a subsequence which converges to a member of K. Contradiction. Each
subsequence of a convergent sequence converges to the same limit, in this case x0,

which does not belong to K. 2

Corollary 1. Each continuous function f on a compact set K is bounded.
Proof. The set f(K) is compact and is therefore bounded. 2

Corollary 2. (Extreme Value Theorem) Each continuous function on a compact
set K attains its maximum (resp. minimum).
Proof. The set f(K) is compact and is therefore bounded and closed. Hence the
least upper bound γ for f(K) must belong to f(K). Therefore, there is an x0 ∈ K

such that γ = f(x0) and so

f(x) ≤ f(x0), for all x ∈ K.

Similarly, the greatest lower bound of f(K) is attained by some member of K. 2

Defn 4. A function f is called uniformly continuous if for each ǫ > 0, ∃ δ > 0 such

that whenever x1, x2 ∈ dom(f) and |x1 − x2| < δ, then |f(x1) − f(x2)| < ǫ.

Corollary 3. Each continuous function on [a, b] is uniformly continuous.
Proof. Suppose not, then negating the definition implies that there exist an ǫ0 > 0
such that for each n ∈ IN we can find xn, yn ∈ K with |xn − yn| < 1/n but
|f(xn) − f(yn)| ≥ ǫ0. K is compact so we can find a subsequence {xnk

}∞k=1 of

{xn}
∞
n=1 which converges to some x0 belonging to K. Notice that {ynk

}∞k=1 also
converges to x0 (use an ǫ/2 proof). But f is continuous at x0, so

ǫ0 ≤ |f(xnk
) − f(ynk

)| ≤ |f(xnk
) − f(x0)| + |f(x0) − f(ynk

)| → 0 as k → ∞

which is a contradiction. 2


