

Compactness

Handout #7

Defn 1. Suppose that \(K \subseteq \mathbb{R} \). A collection \(G \) of open subsets such that

\[
K \subseteq \bigcup_{O \in G} O.
\]

is called an open cover of \(K \). \(K \) has a finite subcover from \(G \) if there exist \(O_1, O_2, \ldots, O_n \) in \(G \) for which

\[
K \subseteq \bigcup_{j=1}^n O_j.
\]

Defn 2. \(K \) is called compact, if each open cover \(G \) of \(K \) has a finite subcover.

Theorem 1. The continuous image of a compact set is compact.

Proof. Suppose \(f : K \to \mathbb{R} \) is continuous and \(K \) is compact. Each open cover \(C \) of \(f[K] \) can be drawn back to an open cover \(\tilde{C} \) of \(K \), by considering the sets

\[
\tilde{O} := f^{-1}(O), \; O \in C.
\]

\(K \) compact implies that we may draw a finite subcover from \(\tilde{C} \). Each of these members is the inverse image (under \(f \)) from a member of \(C \). These form the desired subcover of \(f[K] \). \(\Box \)

Theorem 2. (Heine-Borel) Suppose that \(a \leq b \), then the interval \([a, b] \) is compact.

Proof. Let \(C \) be an open cover for \([a, b] \) and consider the set

\[
A := \{ a \leq x \leq b + 1 \mid [a, x] \text{ has a finite open cover from } C \}.
\]

Note that \(A \) is bounded and nonempty (since \(a \in A \)). Let \(\gamma := \text{lub}(A) \). It is enough to show that \(\gamma > b \), since if \(x_1 \in A \) and \(a \leq x \leq x_1 \), then \(x \in A \). Suppose instead that \(\gamma \leq b \), then there must be some \(O_0 \in C \) such that \(\gamma \in O_0 \). But \(O_0 \) is open, so there exists \(\delta > 0 \) so that \(B_\delta(\gamma) \subseteq O_0 \). Since \(\gamma \) is the least upper bound for \(A \), then there is an \(x \in A \) such that \(\gamma - \delta < x \leq \gamma \). But \(x \in A \) implies there are members \(O_1, \ldots, O_n \) of \(C \) whose union covers \([a, x] \). The collection \(O_0, O_1, \ldots, O_n \) covers \([a, \gamma + \delta/2] \). Contradiction, since \(\gamma \) is the least upper bound for the set \(A \). \(\Box \)

Theorem 3. Each closed subset \(C \) of a compact set \(K \) is compact.

Proof. Let \(\tilde{G} \) be an open cover for \(C \). Let \(\mathcal{O}_0 \) be the complement of \(C \), then \(\mathcal{O}_0 \) is open and \(\mathcal{G} := \tilde{G} \cup \{ \mathcal{O}_0 \} \) is an open cover for \(K \). There is a finite subcover of
which covers K and hence C. This subcover (dropping O_0 if it appears) is the desired finite subcover for C. \[\square\]

Defn 3. Suppose $\{a_n\}$ is a sequence. A sequence $\{b_k\}$ is called a subsequence of $\{a_n\}$ if there exists a strictly increasing sequence of natural numbers

$$n_1 < n_2 < \ldots < n_k < \ldots$$

such that $b_k = a_{n_k}$, $k = 1, 2, \ldots$

Theorem 4. Suppose that $K \subseteq \mathbb{R}$, then TFAE:

a.) K is compact,

b.) K is closed and bounded,

c.) each sequence in K has a subsequence which converges to a member of K,

d.) (Bolzano-Weierstrass) each infinite subset of K has a limit point in K.

Proof.

(a) \Rightarrow (b): To show that K is bounded, consider the open cover of K consisting of the collection of nested open intervals $O_n := (-n, n)$, $n \in \mathbb{N}$. To show that K is closed, let x_0 be a limit point of K. Assume to the contrary that $x_0 \notin K$. Consider the open cover of K consisting of the collection of nested open sets $O_n := \{x \in \mathbb{R} | |x - x_0| > 1/n\}$, $n \in \mathbb{N}$. Any finite subcollection which would cover K would have union whose complement would be a neighborhood of x_0 not intersecting K. This shows that x_0 could not be a limit point of K.

(b) \Rightarrow (d): We use the ‘divide and conquer’ method, better known as the ‘bisection’ method. Let A be an infinite subset of K. Since K is bounded, there is an interval $[a, b]$ such that $K \subseteq [a, b]$. Inductively define the closed subintervals as follows. Let $[a_0, b_0] := [a, b]$. Either the left or right half of $[a_0, b_0]$ contains an infinite number of members of K. In the case that it is the right half, set $[a_1, b_1] := [(b_0 + a_0)/2, b_0]$. Set $[a_1, b_1]$ equal to the left half of $[a_0, b_0]$ otherwise. Inductively, let $[a_{n+1}, b_{n+1}]$ be the half of $[a_n, b_n]$ which contains an infinite number of members of A. Notice that the length of this interval is $(b - a)/2^{n+1}$, that the a_n’s satisfy $a_n \leq a_{n+1} \leq \ldots < b$ and so must converge to some real number $a \leq x_0 \leq b$. Each neighborhood of x_0 will contain one of the intervals $[a_n, b_n]$ and hence will contain an infinite number of members of A, i.e. x_0 is a limit point of A. This also shows that x_0 is a limit point of the closed set K and must therefore belong to K.

(d) \Rightarrow (c): Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in K. If the sequence’s image is finite, then we may construct a constant subsequence which has the value which we may choose as any of the values of $\{x_n\}_{n=1}^{\infty}$ which is repeated infinitely often. Otherwise, let A
be the range of the sequence. Then A is an infinite subset of K. By the Bolzano-Weierstrass property, A must have a limit point (x_0 say) which belongs to K. For each $k \in \mathbb{N}$, we may find an integer n_k larger than those previously picked (i.e., n_1, \ldots, n_{k-1}), so that $|x_{n_k} - x_0| < 1/k$. This is the desired subsequence.

$(c) \Rightarrow (b)$: If K were not bounded, then there would exist a sequence $x_n \in K$ such that $|x_n| > n$. If this sequence had a subsequence which converged, then it would have to be bounded. But each subsequence of $\{x_n\}$ is clearly unbounded. To show that K is closed, we let x_0 be a limit point of K which is not in K. We can then find a sequence $\{x_n\}$ from K which converges to x_0. By condition (c), this has to have a subsequence which converges to a member of K. Contradiction. Each subsequence of a convergent sequence converges to the same limit, in this case x_0, which does not belong to K. □

Corollary 1. Each continuous function f on a compact set K is bounded.

Proof. The set $f(K)$ is compact and is therefore bounded. □

Corollary 2. (Extreme Value Theorem) Each continuous function on a compact set K attains its maximum (resp. minimum).

Proof. The set $f(K)$ is compact and is therefore bounded and closed. Hence the least upper bound γ for $f(K)$ must belong to $f(K)$. Therefore, there is an $x_0 \in K$ such that $\gamma = f(x_0)$ and so

$$f(x) \leq f(x_0), \text{ for all } x \in K.$$

Similarly, the greatest lower bound of $f(K)$ is attained by some member of K. □

Defn 4. A function f is called uniformly continuous if for each $\epsilon > 0$, $\exists \delta > 0$ such that whenever $x_1, x_2 \in \text{dom}(f)$ and $|x_1 - x_2| < \delta$, then $|f(x_1) - f(x_2)| < \epsilon$.

Corollary 3. Each continuous function on $[a, b]$ is uniformly continuous.

Proof. Suppose not, then negating the definition implies that there exist an $\epsilon_0 > 0$ such that for each $n \in \mathbb{N}$ we can find $x_n, y_n \in K$ with $|x_n - y_n| < 1/n$ but $|f(x_n) - f(y_n)| \geq \epsilon_0$. K is compact so we can find a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ which converges to some x_0 belonging to K. Notice that $\{y_{n_k}\}_{k=1}^{\infty}$ also converges to x_0 (use an $\epsilon/2$ proof). But f is continuous at x_0, so

$$\epsilon_0 \leq |f(x_{n_k}) - f(y_{n_k})| \leq |f(x_{n_k}) - f(x_0)| + |f(x_0) - f(y_{n_k})| \to 0 \text{ as } k \to \infty$$

which is a contradiction. □