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Introduction to Metric Space Topology

Please read Chapter 2 of Rudin which deals with the concepts of metric space

topology (pages 30-36). Some portions are outlined again here, in the order of
lecture presentation, for your convenience. An idea of the proof is given in some
cases, but the full proofs are given during in class.

Defn. A set X equipped with a non-negative function d : X ×X → [0,∞] is called
a metric space if d satisfies

1. d(p, q) ≥ 0 for all p, q ∈ X, and d(p, q) = 0 if and only if p = q.

2. d(p, q) = d(q, p)
3. d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X.

Defn. A neighborhood of radius r of a point p is defined by

Nr(p) := {q ∈ X| d(p, q) < r}

On the real line R, the neighborhoods of a point a take the form of intervals
(a− r, a+ r) since the inequality |a−x| < r is equivalent to −r < x−a < r, which

in turn is equivalent to a − r < x < a + r.

Defn. Suppose (X, d) is a metric space.

1. A limit point p of a set E ⊆ X is a point for which each of its neighborhoods

contains a point from E distinct from p.
2. E ′ denotes the set of all limit points of a set E and is called its derived set.
3. A set E is called closed if it contains all its limit points (i.e. E ′ ⊆ E).

4. Ē := E ∪ E ′ denotes the closure of a set E.
5. A point p of E is called an isolated point if it is not a limit point of E.

Theorem. If p is a limit point of E, then each neighborhood of p contains an
infinite number of members of E.

(think of the proof that every interval contains an infinite number of rational numbers, from the

result that each interval had at least one )

Corollary. A finite set has no limit points. (i.e. , E finite implies E ′ = ∅)

Defn. Suppose (X, d) is a metric space.

1. A point p is called an interior point of E if there exists an r > 0 so that
Nr(p) ⊆ E.



2. A set E is called open if each point of E is an interior point of E.
3. The set of all interior points is called the interior of E and is denoted by Eo.

In this case, a set E is open is equivalent to E ⊆ Eo

Theorem. In a metric space, each neighborhood is an open set.
Proof. For q ∈ Br(p0), let ǫ := r − d(p0, q), then Bǫ(q) ⊂ Br(p0).

Corollary. For any set E, the interior of E is an open set.
( Proof. If p ∈ Eo, then there is a nhbd Nr(p) ⊆ E. From the previous theorem Nr(p) is open and

so contains a corresponding nhbd for each of its points. This shows that each point of Nr(p) is an

interior point of E.)

Theorem. A set E is open if and only if its complement Ec is closed.
(Essentially a tautology. Using the definitions: each point of E is an interior point ⇐⇒ each

point of E has a nhbd with no elements of Ec ⇐⇒ no element of E can be a limit point of Ec

⇐⇒ Ec contains all its limit points.)

Corollary. Let (X, d) be a metric space, then

1. Arbitrary unions of open sets are open.
(Use an r from any of the open sets of the collection to which the point belongs.)

2. Finite intersections of open sets are open.
(Use the smallest r for the open sets of the collection to which the point belongs.)

3. Arbitrary intersections of closed sets are closed.
(Use De Morgan’s law and apply the previous Theorem.)

4. Finite unions of closed sets are closed.
(Use De Morgan’s law and apply the previous Theorem.)

Note. Arbitrary intersectons of open sets need not be open.

a.) If On := (−1/n, 1/n), then

∞⋂

n=1

On = {0}.

b.) If On := (−1/n, 1 + 1/n), then
∞⋂

n=1

On = [0, 1].

c.) If On := (−1/n, 1), then

∞⋂

n=1

On = [0, 1).

Examples, examples, examples....
(For example, R, C, Rd, discrete metric, C[a, b] - the space of continuous functions.)


