Math 554/703I - Analysis I Homework #4 Due Thursday, Oct 23 2008

- 1. Show each Cauchy sequence is bounded.
- 2. Suppose $\{a_n | n \in \mathbb{N}\}\$ is a Cauchy sequence in \mathbb{R} , then show that

$$\alpha_N := \operatorname{lub}_{n \ge N} a_n$$

is a monotone decreasing sequence which converges.

- 3. If $\{p_n | n \in \mathbb{N}\}\$ is a Cauchy sequence and p_0 is a limit point of the sequence considered as a set, then show that $\lim_{n\to\infty} p_n = p_0$.
- 4. Carefully determine whether the sequences $\{a_n\}$ converge and, if so, determine their limits using the standard properties involving sequences: i.e. sums, products, and quotients.

(a)
$$a_n := \frac{15}{n}$$

(b) $a_n := \frac{(-1)^n + 1}{n^2}$
(c) $a_n := \frac{n^2 - 3n}{5 - 3n^3}$

- 5. Prove that if $\lim_{n \to \infty} a_n = 0$ and $\{b_n\}$ is bounded, then $\{a_n b_n\}$ converges.
- 6. Prove the *reverse triangle inequality* for absolute value:

$$|a| - |b| \le |a - b|$$

7. Using the previous problem, show that if $\lim_{n\to\infty} b_n = b$ and $b \neq 0$, then there exists $N \in \mathbb{N}$ so that for every $n \geq N$, the lower estimate

$$|b_n| > |b|/2$$

is satisfied.