Name: ___________________________ 4 Digit CODE: ______

Directions: To receive credit, you must justify your statements unless otherwise stated. Answers should be provided in complete sentences.

1. a.) Define metric.

E is a set \(d : E \times E \rightarrow \mathbb{R}^+ \) with the properties:

1. \(d(p, q) \geq 0 \), all \(p, q \in E \)
2. \(d(p, q) = 0 \iff p = q \).
3. \(d(p, q) = d(q, p) \), all \(p, q \in E \).
4. \(d(p, r) \leq d(p, q) + d(q, r) \), all \(p, q, r \in E \).

b.) Give two examples of metric spaces. (You do not need to verify the properties.)

Both the set and the specific metric must be provided.

Notes or Text:

2. Let \((E, d)\) be a metric space.

a.) Define open set.

\(S \) is open means if \(p \in S \) then there exists \(\varepsilon > 0 \) so that \(B_\varepsilon(p) \subseteq S \).

Notes or Text:

b.) Prove that an open ball is an open set.

Suppose \(p \in B_\varepsilon(p_0) \). Let \(\varepsilon = r - d(p, p_0) > 0 \). If \(q \in B_\varepsilon(p) \), then \(d(p, q) < \varepsilon \) and so

\[
d(q, p_0) \leq d(q, p) + d(p, p_0) < \varepsilon + d(p, p_0) = r.
\]

Therefore, \(B_\varepsilon(q) \subseteq B_r(p_0) \), \(B_r(p_0) \) is open. \(\Box \)

c.) Let \(d \) be the discrete metric on a set \(E \). Prove that each subset \(S \) of \(E \) is a closed set.

It suffices to show each \(S \) is open, by considering complements.

But each point is open, since \(\{ p_0 \} = B_{\varepsilon}(p_0) \) is open. Arbitrary unions of open sets are open, so every set in \((E, d)\) is open. \(\Box \)
3. a.) Give the definition of a closed set.

Notes or text: C is closed means the complement of C is open.

b.) Give the definition of a limit point of a set.

Notes or text: p is a limit point of S means each open ball of p contains a point of S different from p.

c.) Prove that a set is closed if and only if it contains all its limit points.

Let \(S' \) be the set of all limit points of \(S \). Let \(O := \mathcal{G} S \).

\(\Rightarrow \) Suppose \(S \) is closed \(\Rightarrow \) let \(p_o \in S' \). By definition \(O = \mathcal{G} S \) is open.

If \(p_o \) is not in \(S \) (i.e. \(p_o \not\in O \)), then \(\exists B_\varepsilon(p_o) \) which misses \(S \). \(\therefore \)

\(p_o \) is a limit point of \(S \). Hence \(p_o \) must belong to \(S \) and \(S' \subseteq S \).

\(\Leftarrow \) It is enough to show \(O \) is open. Suppose not, then \(\exists p_o \in O \)

such that \(\forall \varepsilon > 0 \ B_\varepsilon(p_o) \not\subseteq O \). That is, \(\forall \varepsilon > 0 \) there is a member of \(S_0 = S \) which belongs to \(B_\varepsilon(p_o) \). That member cannot be \(p_o \) because \(p_o \in O \). Hence \(p_o \) is a limit point of \(S \). But \(S' \subseteq S \), so \(p_o \in S \). \(\therefore \)

4. Using the definition of "convergence of a sequence," prove that

a.) \(\{a_n\} \) converges to \(a \) implies that \(a_n^2 \) converges to \(a^2 \).

\(\sum a_n \) convergent implies \(\{a_n\} \) is bounded, so \(\exists M \ni\)

\[|a_n| \leq M, \quad n = 1, 2, \ldots \]

Let \(\varepsilon > 0 \), then

(\(\star \)) \[|a_n^2 - a^2| = |a_n - a||a_n + a| \leq |a_n - a|(|a_n| + |a|) \leq (M + |a|)|a_n - a|, \]

\(a_n \to a \) \(\Rightarrow \) \(\exists N \ni |a_n - a| < \varepsilon \) if \(n \geq N \). Hence

b.) \(\{a_n\} \) converges to \(a \) implies that \(|a_n| \) converges to \(|a| \).

Let \(\varepsilon > 0 \). Since \(\lim_{n \to \infty} a_n = a \), then \(\exists N \ni\)

\[n \geq N \Rightarrow |a_n - a| < \varepsilon. \]

By the reverse triangle inequality

\[|a_n| - |a| \leq |a_n - a| < \varepsilon \]

if \(n \geq N \). Hence \(\lim_{n \to \infty} |a_n| = |a|. \)
5. Using the **properties** of limits, determine whether or not the following limit exists. Be sure to state which property you are using as you show your work.

a.) \(a_n = 1 - \frac{2}{n} \)

We know that \(a_n = \frac{1}{n} \to 0 \) as \(n \to \infty \) \(\frac{1}{n} \) \(\to 0 \) as \(n \to \infty \), so \(c_n = \frac{1}{n} - \frac{2}{n} \to 0 \).

\(d_n = 1 \to 1 \) as \(n \to \infty \), so \(1 - \frac{2}{n} = d_n + c_n \to 1 - 0 = 1 \).

(For this problem an \(\varepsilon \)-proof is more direct & easier.)

b.) \(b_n = 2 + \frac{3}{n^2} \)

Similar to part a, \(\frac{1}{n} \to 0 \) \(\Rightarrow \frac{1}{n} - (\frac{1}{n^2}(\frac{1}{n^2}) \to 0 \).

Therefore by using the \(\varepsilon \)-proof, the limit of \(b_n \) is \(2 + \frac{3}{n^2} \to 2 + 0 \cdot 0 = 2 \).

Typo corrected during test.

c.) Consider the sequence, \(c_n = \frac{n-1}{2n^2 + 3} \). Use parts a.) and b.) to determine the convergence of \(\{c_n\} \).

\[c_n = \frac{n-1}{2n^2 + 3} = \frac{1}{n} \cdot \frac{1-\frac{1}{n}}{2+\frac{3}{n^2}} = \frac{1}{n} \cdot \frac{\frac{1}{n}}{b_n} \to 0 \cdot \frac{1}{2} = 0, \] since \(b_n \to 2 \neq 0 \).

Using quotients & products of limits.

6. Suppose that \(E \) is a metric space and \(S \subset E \) is complete. Prove that \(S \) is closed.

Suppose \(S \) is not closed, then there exists a limit point \(p \) of \(S \) which is not in \(S \). By our previous work, we know that there exists a sequence \(\{p_n\} \subset S \) such that \(\lim_{n \to \infty} p_n = p \) and \(p \notin S \) but \(p \notin S \). Convergent sequences are Cauchy, so \(\{p_n\} \subset S \) \(S \) is Cauchy. \(S \) is complete so \(\{p_n\} \subset S \) is convergent to a limit in \(S \). Hence \(p \in S \). Therefore \(S \) must be closed.