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Axioms for Finite Affine Geometry

Axiom 1. There exists at least 4 points, so that when taken any 3 at a time are not co-linear.

Axiom 2. There exists at least one line incident to exactly n points.

Axiom 3. Given two (distinct) points, there is a unique line incident to both of them.

Axiom 4. Given a line [ and a point P not incident to [, there is exactly one line incident to P
which does not intersect [.

For the remainder of this section, all our results are stated for an affine geometry of order n.

Notation: We denote by @, R, S, T the four points guaranteed by Axiom 1, and by P;, (1 <j <n)
the points on [y guaranteed by Axiom 2.

Lemma 1. There exists a point Py which lies on exactly n + 1 lines.

Proof. By Axiom 1 we have four points and we know at least two of them cannot belong to [.
Denote by P, to be either one of these two points (so Py is one of @, R, S,T). By Axiom 2, there
are n distinct points on [y, which we denote by P;, 1 < j < n. By Axiom 3 there are lines [; which
are incident to /4 and, respectively, each of the points ;. These n lines must be distinct, otherwise
the points P; would not be distinct. By Axiom 4, there is one and only one line through 7 which
does not intersect [y, call this line /,,.1. If there are any other lines through Fy, then they would
have to intersect [y at a new point P,., but [y has exactly n points, so there can be no other lines
through F,. O

Corollary 1. Each line [ contains at least one point.

Proof. Consider the point Py from the previous lemma. If Py belongs to [, then we are done. If it
does not, then by the previous lemma, there exists n 4+ 1 lines through Fy. But then, Axiom # 4
implies that one and only one of these lines misses [, so n of them must intersect [. Hence, [ has at
least n points. O

Lemma 2. Fix J, 1 < J <n, and denote by P be any of the points @, R, S, or T'. If P # P;, then
there exists a line m which ‘misses’ both P and Pj.

Proof. Without loss of generality, we may suppose that P from the previous lemma is the point Q).
Consider the line m; which passes through the pair of points R, S and the line my which passes
through the pair of points R, T.

Neither of these lines contains P := () or then we would have a selection of 3 of these 4 special
points which would be co-linear. If both of the lines contained the point P;, then they must in fact
be the same line (Axiom 3), since they would have two distinct common points, R and P;. O

Theorem 1. Each point P lies on exactly n + 1 lines.

Proof. Fix the arbitrary point P. If P does not lie on [y, then the proof in the first lemma shows
how to construct the unique n + 1 lines through P (i.e., one and only one line through P and the
points of P; € [y, and exactly one line "parallel” to Iy through P).



If, instead, P € [y, then pick one of the special 4 points, Py := @) say, which is not on [y. Also, let
J be the index so that P = P; since P belongs to [y. By the previous lemma, there is a line m
which misses both P; and Fy. Since there are exactly n + 1 lines going through Py and exactly one
of these is parallel to m, the rest must intersect m. Hence there are exactly n points which lie on
m (otherwise there would be another line through F).

Now m has the property that it misses P;, so the number of lines through P; (with the exception of
the one line parallel to m) are in one to one correspondence with the points on m as was guaranteed
by Axiom 4. Denote these points as Q; (1 < j <n)

Those n points are the only points on m. Changing our view to that of P;, and recalling that m
misses Py, we see that there are n lines from P; and to the points @);. Again by Axiom 4, there is
one additional line through P; which ‘misses’ m, i.e. is parallel to m. Hence there are a total of
exactly n + 1 lines through P;, which is our point P. a

Lemma 3. Each line [ has exactly n — 1 lines which do not intersect [.

Proof. (Exercise # 14 Homework. Solution on Tuesday) O

Theorem 2. Each line [ has exactly n points.

Proof. From Axiom 1 (i.e. 4 special points), we know that there is some point, Py which is not on
l. There are n + 1 lines through Py, and exactly one of those does not meet [. All the remaining n
lines do meet [ and result in n distinct points of intersection. These are the only points on [, since
the points on [ are in one to one correspondence with the lines through Py which meet [. O

Theorem 3. There are exactly n? points and n (n + 1) lines.

Proof. Fix any line [. By Lemma 3, there are n — 1 lines which do not intersect [. Moreover, these
lines do not intersect each other (why?). By Theorem 2, each line has n points. We know each
point belongs to one of these lines by Axiom 4. So these n lines (which includes [) partitions the
points into n disjoint sets of points, with n points in each of the sets. This shows that there are
exactly n? points.

To count the number of lines, we use ly. There are exactly n— 1 lines which do not intersect . This
statement is true by Lemma 3. If we include [ itself, then there are n lines in the same ‘direction’
as lp. All other lines must intersect . These lines can be separated into disjoint sets, indexed by
their point of intersection on ly. At each of these n points (i.e. each of the P;), there are exactly n
lines, not counting ly, which pass through P;. Hence there are ((n — 1) + 1) + n-n = n? + n lines.
O



