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Axioms for Finite Affine Geometry

Axiom 1. There exists at least 4 points, so that when taken any 3 at a time are not co-linear.
Axiom 2. There exists at least one line incident to exactly n points.
Axiom 3. Given two (distinct) points, there is a unique line incident to both of them.
Axiom 4. Given a line l and a point P not incident to l, there is exactly one line incident to P

which does not intersect l.

For the remainder of this section, all our results are stated for an affine geometry of order n.

Notation: We denote by Q, R, S, T the four points guaranteed by Axiom 1, and by Pj , (1 ≤ j ≤ n)
the points on l0 guaranteed by Axiom 2.

Lemma 1. There exists a point P0 which lies on exactly n + 1 lines.

Proof. By Axiom 1 we have four points and we know at least two of them cannot belong to l0.
Denote by P0 to be either one of these two points (so P0 is one of Q, R, S, T ). By Axiom 2, there
are n distinct points on l0, which we denote by Pj , 1 ≤ j ≤ n. By Axiom 3 there are lines lj which
are incident to P0 and, respectively, each of the points Pj . These n lines must be distinct, otherwise
the points Pj would not be distinct. By Axiom 4, there is one and only one line through P0 which
does not intersect l0, call this line ln+1. If there are any other lines through P0, then they would
have to intersect l0 at a new point Pn+1, but l0 has exactly n points, so there can be no other lines
through P0. 2

Corollary 1. Each line l contains at least one point.

Proof. Consider the point P0 from the previous lemma. If P0 belongs to l, then we are done. If it
does not, then by the previous lemma, there exists n + 1 lines through P0. But then, Axiom # 4
implies that one and only one of these lines misses l, so n of them must intersect l. Hence, l has at
least n points. 2

Lemma 2. Fix J, 1 ≤ J ≤ n, and denote by P be any of the points Q, R, S, or T . If P 6= Pj, then
there exists a line m which ‘misses’ both P and PJ .

Proof. Without loss of generality, we may suppose that P from the previous lemma is the point Q.
Consider the line m1 which passes through the pair of points R, S and the line m2 which passes
through the pair of points R, T .
Neither of these lines contains P := Q or then we would have a selection of 3 of these 4 special
points which would be co-linear. If both of the lines contained the point PJ , then they must in fact
be the same line (Axiom 3), since they would have two distinct common points, R and PJ . 2

Theorem 1. Each point P lies on exactly n + 1 lines.

Proof. Fix the arbitrary point P . If P does not lie on l0, then the proof in the first lemma shows
how to construct the unique n + 1 lines through P (i.e., one and only one line through P and the
points of Pj ∈ l0, and exactly one line ”parallel” to l0 through P ).



If, instead, P ∈ l0, then pick one of the special 4 points, P0 := Q say, which is not on l0. Also, let
J be the index so that P = PJ since P belongs to l0. By the previous lemma, there is a line m

which misses both PJ and P0. Since there are exactly n + 1 lines going through P0 and exactly one
of these is parallel to m, the rest must intersect m. Hence there are exactly n points which lie on
m (otherwise there would be another line through P0).
Now m has the property that it misses PJ , so the number of lines through PJ (with the exception of
the one line parallel to m) are in one to one correspondence with the points on m as was guaranteed
by Axiom 4. Denote these points as Qj (1 ≤ j ≤ n)
Those n points are the only points on m. Changing our view to that of PJ , and recalling that m

misses PJ , we see that there are n lines from PJ and to the points Qj . Again by Axiom 4, there is
one additional line through PJ which ‘misses’ m, i.e. is parallel to m. Hence there are a total of
exactly n + 1 lines through PJ , which is our point P . 2

Lemma 3. Each line l has exactly n − 1 lines which do not intersect l.

Proof. (Exercise # 14 Homework. Solution on Tuesday) 2

Theorem 2. Each line l has exactly n points.

Proof. From Axiom 1 (i.e. 4 special points), we know that there is some point, P0 which is not on
l. There are n + 1 lines through P0, and exactly one of those does not meet l. All the remaining n

lines do meet l and result in n distinct points of intersection. These are the only points on l, since
the points on l are in one to one correspondence with the lines through P0 which meet l. 2

Theorem 3. There are exactly n2 points and n (n + 1) lines.

Proof. Fix any line l. By Lemma 3, there are n − 1 lines which do not intersect l. Moreover, these
lines do not intersect each other (why?). By Theorem 2, each line has n points. We know each
point belongs to one of these lines by Axiom 4. So these n lines (which includes l) partitions the
points into n disjoint sets of points, with n points in each of the sets. This shows that there are
exactly n2 points.

To count the number of lines, we use l0. There are exactly n−1 lines which do not intersect l0. This
statement is true by Lemma 3. If we include l0 itself, then there are n lines in the same ‘direction’
as l0. All other lines must intersect l0. These lines can be separated into disjoint sets, indexed by
their point of intersection on l0. At each of these n points (i.e. each of the Pj), there are exactly n

lines, not counting l0, which pass through Pj. Hence there are ((n − 1) + 1) + n · n = n2 + n lines.
2


