1. Compute the derivative of \(F(x) := \int_{x^2}^{0} \ln(1 + t) \, dt \)

2. Determine each of the following integrals:
 (a) \(\int (3 - 2x)^5 \, dx \)
 (b) \(\int xe^{-x^2} \, dx \)
 (c) \(\int \frac{e^{2x}}{e^x + 1} \, dx \)

3. (a) Express \(x^{(x^2+1)} \) in terms of the \(\ln \) and \(\exp \) functions.
 (b) Differentiate \(x^{(x^2+1)} \).

4. (a) Sketch a graph of the region bounded by the curves \(y = x^2 \) and \(x = y - 2 \).
 (b) Determine the area of the specified region.

5. Using the Disk/Washer method, determine the volume of revolution, about the \(x \)-axis, of the region bounded by the curves \(y = x^2 \) and \(x = y - 2 \).

6. Using the Cylindrical Shell method, determine the volume of revolution about the \(y \)-axis of the region in the first quadrant which is bounded by the curves \(y = x^2 \) and \(x = y - 2 \).

7. Determine the arc length of the curve given by the graph of \(y = \frac{1}{3} (x^2 + 2)^{3/2} \) for \(x = 0 \) to \(x = 1 \).