Math 142 - Calculus II (Sections 11-12) Final Exam – April 30, 2005

Name: _____

1	$(5 \ pts)$
2	$(10 \ pts)$
3	$(5 \ pts)$
4	$(35 \ pts)$
5	$(5 \ pts)$
6	$(5 \ pts)$
7	$(5 \ pts)$
8	$(5 \ pts)$
9	$(15 \ pts)$
10	$(10 \ pts)$

Directions: Calculators are allowed on this Exam. To receive proper credit however, you must show your intermediate work and *box* your final answer.

- 1. Compute the area bounded between the curves $y = x^3$ and y = 4x.
- 2. Compute the volume of revolution of each:
 - (a) about the x-axis of the region bounded by the curves $x = \sqrt{y}$ and x = y/4.
 - (b) about the y-axis of the region bounded by the curves $y = x^2$, y = 0 and x = 1.
- 3. Differentiate $y = \exp(x \ln(x^2 + 1))$.
- 4. Compute each of the following integrals:
 - (a) $\int x^2 \arctan(2x) dx$
 - (b) $\int \sin(\frac{1}{2}x) \cos(2x) dx$

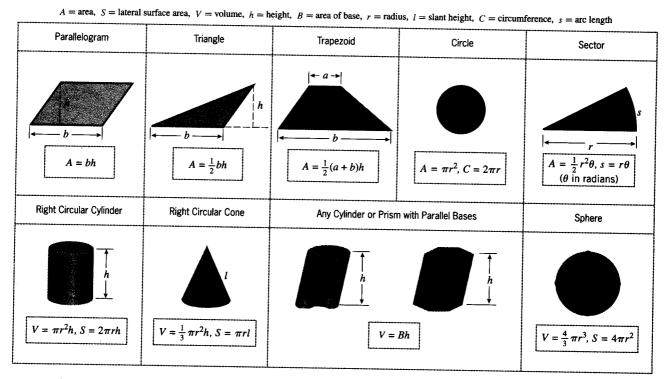
(c)
$$\int \frac{1}{(1-9x^2)^{\frac{3}{2}}} dx$$

(d) $\int \frac{x}{(x^2+1)} dx$

(e)
$$\int \frac{2x^2 + 3}{x(x-1)^2} dx$$

(f)
$$\int \frac{2x^2+3}{x(x^2-1)} dx$$

(g)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x}} dx$$


- 5. Use Simpson's rule to estimate the integral $\int_{1}^{3} (2+x) dx$ with 2n = 6 subintervals. Sketch a graph of what you are doing.
- 6. Determine if the sequence $\left\{\frac{n}{3n-1}\right\}_{n=1}^{\infty}$ converges. Justify your answer and compute the limit if it exists.
- 7. Compute the Taylor polynomial of degree 5 of the function $f(x) = e^{2x+1}$ about $x_0 = 0$.
- 8. Determine for what values of a the series $\sum_{k=1}^{\infty} (2/a)^k$ converges.
- 9. Determine if each of the series converges by stating the 'Test' you are using and verify the criteria. No credit can be given unless a proper test is applied:

(a)
$$\sum_{k=1}^{\infty} \frac{1}{20k+100}$$

(b) $\sum_{k=1}^{\infty} (-1)^k \frac{256+e^3}{\sqrt{k}}$
(c) $\sum_{k=1}^{\infty} \frac{k}{2k+1}$

10. Determine the interval of convergence for each of the following series:

(a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k (2x)^k}{k!}$$

(b) $\sum_{k=1}^{\infty} \frac{(-1)^k}{3^k k^2} x^k$

GEUMETRY FURMULAS

ALGEBRA FORMULAS

THE QUADRATIC FORMULA	THE BINOMIAL FORMULA
The solutions of the quadratic equation $ax^2 + bx + c = 0$ are	$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{1\cdot 2}x^{n-2}y^2 + \frac{n(n-1)(n-2)}{1\cdot 2\cdot 3}x^{n-3}y^3 + \dots + nxy^{n-1} + y^n$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$(x-y)^n = x^n - nx^{n-1}y + \frac{n(n-1)}{1\cdot 2}x^{n-2}y^2 - \frac{n(n-1)(n-2)}{1\cdot 2\cdot 3}x^{n-3}y^3 + \dots \pm nxy^{n-1} \mp y^n$

TABLE OF INTEGRALS

BASIC FUNCTIONS

1.
$$\int u^{n} du = \frac{u^{n+1}}{n+1} + C$$

2.
$$\int \frac{du}{u} = \ln |u| + C$$

3.
$$\int e^{u} du = e^{u} + C$$

4.
$$\int \sin u \, du = -\cos u + C$$

5.
$$\int \cos u \, du = \sin u + C$$

6.
$$\int \tan u \, du = \ln |\sec u| + C$$

7.
$$\int \sin^{-1} u \, du = u \sin^{-1} u + \sqrt{1 - u^{2}} + C$$

8.
$$\int \cos^{-1} u \, du = u \cos^{-1} u - \sqrt{1 - u^{2}} + C$$

9.
$$\int \tan^{-1} u \, du = u \tan^{-1} u - \ln \sqrt{1 + u^{2}} + C$$

10.
$$\int a^{u} du = \frac{a^{u}}{\ln a} + C$$

11.
$$\int \ln u \, du = u \ln u - u + C$$

12.
$$\int \cot u \, du = \ln |\sin u| + C$$

13.
$$\int \sec u \, du = \ln |\sec u + \tan u| + C$$

$$= \ln |\tan (\frac{1}{4}\pi + \frac{1}{2}u)| + C$$

14.
$$\int \csc u \, du = \ln |\csc u - \cot u| + C$$

$$= \ln |\tan \frac{1}{2}u| + C$$

15.
$$\int \cot^{-1} u \, du = u \cot^{-1} u + \ln \sqrt{1 + u^{2}} + C$$

16.
$$\int \sec^{-1} u \, du = u \sec^{-1} u - \ln |u + \sqrt{u^{2} - 1}| + C$$

17.
$$\int \csc^{-1} u \, du = u \csc^{-1} u + \ln |u + \sqrt{u^{2} - 1}| + C$$

RECIPROCALS OF BASIC FUNCTIONS

$$18. \int \frac{1}{1 \pm \sin u} \, du = \tan u \mp \sec u + C$$

$$22. \int \frac{1}{1 \pm \cot u} \, du = \frac{1}{2} (u \mp \ln |\sin u \pm \cos u|)$$

$$19. \int \frac{1}{1 \pm \cos u} \, du = -\cot u \pm \csc u + C$$

$$23. \int \frac{1}{1 \pm \sec u} \, du = u + \cot u \mp \csc u + C$$

$$24. \int \frac{1}{1 \pm \csc u} \, du = u - \tan u \pm \sec u + C$$

$$21. \int \frac{1}{\sin u \cos u} \, du = \ln |\tan u| + C$$

$$25. \int \frac{1}{1 \pm e^{u}} \, du = u - \ln(1 \pm e^{u}) + C$$

POWERS OF TRIGONOMETRIC FUNCTIONS

26.
$$\int \sin^2 u \, du = \frac{1}{2}u - \frac{1}{4}\sin 2u + C$$

27.
$$\int \cos^2 u \, du = \frac{1}{2}u + \frac{1}{4}\sin 2u + C$$

28.
$$\int \tan^2 u \, du = \tan u - u + C$$

29.
$$\int \sin^n u \, du = -\frac{1}{n}\sin^{n-1}u\cos u + \frac{n-1}{n}\int \sin^{n-2}u \, du$$

30.
$$\int \cos^n u \, du = \frac{1}{n}\cos^{n-1}u\sin u + \frac{n-1}{n}\int \cos^{n-2}u \, du$$

31.
$$\int \tan^n u \, du = \frac{1}{n-1}\tan^{n-1}u - \int \tan^{n-2}u \, du$$

22.
$$\int \frac{1}{1 \pm \cot u} du = \frac{1}{2}(u \mp \ln|\sin u \pm \cos u|) + C$$

23.
$$\int \frac{1}{1 \pm \sec u} du = u + \cot u \mp \csc u + C$$

24.
$$\int \frac{1}{1 \pm \csc u} du = u - \tan u \pm \sec u + C$$

25.
$$\int \frac{1}{1 \pm e^u} du = u - \ln(1 \pm e^u) + C$$

ſ

32.
$$\int \cot^{2} u \, du = -\cot u - u + C$$

33.
$$\int \sec^{2} u \, du = \tan u + C$$

34.
$$\int \csc^{2} u \, du = -\cot u + C$$

35.
$$\int \cot^{n} u \, du = -\frac{1}{n-1} \cot^{n-1} u - \int \cot^{n-2} u \, du$$

36.
$$\int \sec^{n} u \, du = \frac{1}{n-1} \sec^{n-2} u \tan u + \frac{n-2}{n-1} \int \sec^{n-2} u \, du$$

37.
$$\int \csc^{n} u \, du = -\frac{1}{n-1} \csc^{n-2} u \cot u + \frac{n-2}{n-1} \int \csc^{n-2} u \, du$$

PRODUCTS OF TRIGONOMETRIC FUNCTIONS

$$38. \int \sin mu \sin nu \, du = -\frac{\sin(m+n)u}{2(m+n)} + \frac{\sin(m-n)u}{2(m-n)} + C \qquad 40. \int \sin mu \cos nu \, du = -\frac{\cos(m+n)u}{2(m+n)} - \frac{\cos(m-n)u}{2(m-n)} + C
39. \int \cos mu \cos nu \, du = \frac{\sin(m+n)u}{2(m+n)} + \frac{\sin(m-n)u}{2(m-n)} + C \qquad 41. \int \sin^m u \cos^n u \, du = -\frac{\sin^{m-1}u \cos^{n+1}u}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2}u \cos^n u \, du = \frac{\sin^{m+1}u \cos^{n-1}u}{m+n} + \frac{n-1}{m+n} \int \sin^m u \cos^{n-2}u \, du$$

PRODUCTS OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS

42.
$$\int e^{au} \sin bu \, du = \frac{e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C$$

43.
$$\int e^{au} \cos bu \, du = \frac{e^{au}}{a^2 + b^2} (a \cos bu + b \sin bu) + C$$

POWERS OF *u* MULTIPLYING OR DIVIDING BASIC FUNCTIONS

44.
$$\int u \sin u \, du = \sin u - u \cos u + C$$

45.
$$\int u \cos u \, du = \cos u + u \sin u + C$$

46.
$$\int u^2 \sin u \, du = 2u \sin u + (2 - u^2) \cos u + C$$

47.
$$\int u^2 \cos u \, du = 2u \cos u + (u^2 - 2) \sin u + C$$

48.
$$\int u^n \sin u \, du = -u^n \cos u + n \int u^{n-1} \cos u \, du$$

49.
$$\int u^n \cos u \, du = u^n \sin u - n \int u^{n-1} \sin u \, du$$

50.
$$\int u^n \ln u \, du = \frac{u^{n+1}}{(n+1)^2} [(n+1) \ln u - 1] + C$$

51.
$$\int ue^{u} du = e^{u}(u-1) + C$$

52.
$$\int u^{n}e^{u} du = u^{n}e^{u} - n \int u^{n-1}e^{u} du$$

53.
$$\int u^{n}a^{u} du = \frac{u^{n}a^{u}}{\ln a} - \frac{n}{\ln a} \int u^{n-1}a^{u} du + C$$

54.
$$\int \frac{e^{u} du}{u^{n}} = -\frac{e^{u}}{(n-1)u^{n-1}} + \frac{1}{n-1} \int \frac{e^{u} du}{u^{n-1}}$$

55.
$$\int \frac{a^{u} du}{u^{n}} = -\frac{a^{u}}{(n-1)u^{n-1}} + \frac{\ln a}{n-1} \int \frac{a^{u} du}{u^{n-1}}$$

56.
$$\int \frac{du}{u \ln u} = \ln |\ln u| + C$$

POLYNOMIALS MULTIPLYING BASIC FUNCTIONS

57. $\int p(u)e^{au} du = \frac{1}{a}p(u)e^{au} - \frac{1}{a^2}p'(u)e^{au} + \frac{1}{a^3}p''(u)e^{au} - \cdots \quad \text{[signs alternate: } + - + - \cdots \text{]}$ 58. $\int p(u) \sin au \, du = -\frac{1}{a} p(u) \cos au + \frac{1}{a^2} p'(u) \sin au + \frac{1}{a^3} p''(u) \cos au - \cdots$ [signs alternate in pairs after first term: $+ - - + + - \cdots$] 59. $\int p(u) \cos au \, du = \frac{1}{a} p(u) \sin au + \frac{1}{a^2} p'(u) \cos au - \frac{1}{a^3} p''(u) \sin au - \cdots$ [signs alternate in pairs: $+ - - + + - \cdots$]

RATIONAL FUNCTIONS CONTAINING POWERS OF a + bu IN THE DENOMINATOR

$$60. \int \frac{u \, du}{a + bu} = \frac{1}{b^2} [bu - a \ln |a + bu|] + C$$

$$64. \int \frac{u \, du}{(a + bu)^3} = \frac{1}{b^2} \left[\frac{a}{2(a + bu)^2} - \frac{1}{a + bu} \right] + C$$

$$64. \int \frac{u \, du}{(a + bu)^3} = \frac{1}{b^2} \left[\frac{a}{2(a + bu)^2} - \frac{1}{a + bu} \right] + C$$

$$65. \int \frac{du}{u(a + bu)} = \frac{1}{a} \ln \left| \frac{u}{a + bu} \right| + C$$

$$66. \int \frac{du}{u^2(a + bu)} = -\frac{1}{au} + \frac{b}{a^2} \ln \left| \frac{a + bu}{u} \right| + C$$

$$63. \int \frac{u^2 \, du}{(a + bu)^2} = \frac{1}{b^3} \left[bu - \frac{a^2}{a + bu} - 2a \ln |a + bu| \right] + C$$

$$64. \int \frac{u \, du}{(a + bu)^3} = \frac{1}{b^2} \left[\frac{a}{2(a + bu)^2} - \frac{1}{a + bu} \right] + C$$

$$65. \int \frac{du}{u(a + bu)} = \frac{1}{a} \ln \left| \frac{u}{a + bu} \right| + C$$

$$66. \int \frac{du}{u^2(a + bu)} = -\frac{1}{au} + \frac{b}{a^2} \ln \left| \frac{a + bu}{u} \right| + C$$

$$67. \int \frac{du}{u(a + bu)^2} = \frac{1}{a(a + bu)} + \frac{1}{a^2} \ln \left| \frac{u}{a + bu} \right| + C$$

RATIONAL FUNCTIONS CONTAINING $a^2 \pm u^2$ IN THE DENOMINATOR (a > 0)

$$68. \int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

$$69. \int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + C$$

$$70. \int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C$$

$$71. \int \frac{bu + c}{a^2 + u^2} du = \frac{b}{2} \ln(a^2 + u^2) + \frac{c}{a} \tan^{-1} \frac{u}{a} + C$$

INTEGRALS OF $\sqrt{a^2 + u^2}$, $\sqrt{a^2 - u^2}$, $\sqrt{u^2 - a^2}$ AND THEIR RECIPROCALS (a > 0)

$$72. \int \sqrt{u^2 + a^2} \, du = \frac{u}{2} \sqrt{u^2 + a^2} + \frac{a^2}{2} \ln(u + \sqrt{u^2 + a^2}) + C$$

$$73. \int \sqrt{u^2 - a^2} \, du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln|u + \sqrt{u^2 - a^2}| + C$$

$$74. \int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a} + C$$

$$75. \int \frac{du}{\sqrt{u^2 + a^2}} = \ln(u + \sqrt{u^2 + a^2}) + C$$

$$76. \int \frac{du}{\sqrt{u^2 - a^2}} = \ln|u + \sqrt{u^2 - a^2}| + C$$

$$77. \int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \frac{u}{a} + C$$

POWERS OF *u* MULTIPLYING OR DIVIDING $\sqrt{a^2 - u^2}$ OR ITS RECIPROCAL

$$78. \int u^2 \sqrt{a^2 - u^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{a^2 - u^2} + \frac{a^4}{8} \sin^{-1} \frac{u}{a} + C$$

$$81. \int \frac{u^2 \, du}{\sqrt{a^2 - u^2}} = -\frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \sin^{-1} \frac{u}{a} + C$$

$$82. \int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

$$80. \int \frac{\sqrt{a^2 - u^2} \, du}{u^2} = -\frac{\sqrt{a^2 - u^2}}{u} - \sin^{-1} \frac{u}{a} + C$$

$$83. \int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2 - u^2}}{a^2 u} + C$$

POWERS OF *u* MULTIPLYING OR DIVIDING $\sqrt{u^2 \pm a^2}$ OR THEIR RECIPROCALS

$$84. \int u\sqrt{u^{2} + a^{2}} \, du = \frac{1}{3}(u^{2} + a^{2})^{3/2} + C$$

$$96. \int \frac{du}{u^{2}\sqrt{u^{2} \pm a^{2}}} = \mp \frac{\sqrt{u^{2} \pm a^{2}}}{a^{2}u} + C$$

$$85. \int u\sqrt{u^{2} - a^{2}} \, du = \frac{1}{3}(u^{2} - a^{2})^{3/2} + C$$

$$96. \int \frac{du}{u^{2}\sqrt{u^{2} \pm a^{2}}} = \mp \frac{\sqrt{u^{2} \pm a^{2}}}{a^{2}u} + C$$

$$96. \int \frac{du}{u^{2}\sqrt{u^{2} \pm a^{2}}} = \mp \frac{\sqrt{u^{2} \pm a^{2}}}{a^{2}u} + C$$

$$96. \int \frac{du}{u^{2}\sqrt{u^{2} \pm a^{2}}} = \mp \frac{\sqrt{u^{2} \pm a^{2}}}{a^{2}u} + C$$

$$97. \int \frac{du}{u\sqrt{u^{2} + a^{2}}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{u^{2} + a^{2}}}{u} \right| + C$$

$$97. \int \frac{du}{u\sqrt{u^{2} - a^{2}}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$

$$98. \int \frac{\sqrt{u^{2} - a^{2}} \, du}{u} = \sqrt{u^{2} - a^{2}} - a \sec^{-1} \left| \frac{u}{a} \right| + C$$

$$97. \int \frac{\sqrt{u^{2} - a^{2}}}{u^{2}} \, du = -\frac{\sqrt{u^{2} + a^{2}}}{u} + \ln(u + \sqrt{u^{2} + a^{2}}) + C$$

$$98. \int \frac{\sqrt{u^{2} + a^{2}} \, du}{u} = \sqrt{u^{2} - a^{2}} - a \sec^{-1} \left| \frac{u}{a} \right| + C$$

$$99. \int \frac{\sqrt{u^{2} + a^{2}} \, du}{u} = \sqrt{u^{2} + a^{2}} - a \ln \left| \frac{a + \sqrt{u^{2} + a^{2}}}{u} \right| + C$$

$$99. \int \frac{\sqrt{u^{2} + a^{2}} \, du}{u} = \sqrt{u^{2} + a^{2}} - a \ln \left| \frac{a + \sqrt{u^{2} + a^{2}}}{u} \right| + C$$

$$99. \int \frac{\sqrt{u^{2} - a^{2}} \, du}{u} = \sqrt{u^{2} - a^{2}} + \frac{a^{2}}{2} \ln |u + \sqrt{u^{2} - a^{2}}| + C$$

INTEGRALS CONTAINING $(a^2 + u^2)^{3/2}$, $(a^2 - u^2)^{3/2}$, $(u^2 - a^2)^{3/2}$ (a > 0)97. $\int \frac{du}{(a^2 - u^2)^{3/2}} = \frac{u}{a^2\sqrt{a^2 - u^2}} + C$ 100. $\int (u^2 + a^2)^{3/2} du = \frac{u}{8}(2u^2 + 5a^2)\sqrt{u^2 + a^2} + \frac{3a^4}{8}\ln(u + \sqrt{u^2 + a^2}) + C$ 98. $\int \frac{du}{(u^2 \pm a^2)^{3/2}} = \pm \frac{u}{a^2\sqrt{u^2 \pm a^2}} + C$ 101. $\int (u^2 - a^2)^{3/2} du = \frac{u}{8}(2u^2 - 5a^2)\sqrt{u^2 - a^2} + \frac{3a^4}{8}\ln|u + \sqrt{u^2 - a^2}| + C$ **99.** $\int (a^2 - u^2)^{3/2} du = -\frac{u}{8} (2u^2 - 5a^2) \sqrt{a^2 - u^2} + \frac{3a^4}{8} \sin^{-1} \frac{u}{a} + C$

POWERS OF *u* MULTIPLYING OR DIVIDING $\sqrt{a + bu}$ OR ITS RECIPROCAL

$$102. \int u\sqrt{a+bu} \, du = \frac{2}{15b^2} (3bu - 2a)(a+bu)^{3/2} + C$$

$$103. \int u^2\sqrt{a+bu} \, du = \frac{2}{105b^3} (15b^2u^2 - 12abu + 8a^2)(a+bu)^{3/2} + C$$

$$108. \int \frac{du}{u\sqrt{a+bu}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a+bu} - \sqrt{a}}{\sqrt{a+bu} + \sqrt{a}} \right| + C \quad (a > 0) \\ \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bu}{-a}} + C \quad (a < 0) \end{cases}$$

$$104. \int u^n \sqrt{a+bu} \, du = \frac{2u^n(a+bu)^{3/2}}{b(2n+3)} - \frac{2an}{b(2n+3)} \int u^{n-1} \sqrt{a+bu} \, du$$

$$105. \int \frac{u \, du}{\sqrt{a+bu}} = \frac{2}{3b^2} (bu - 2a)\sqrt{a+bu} + C$$

$$109. \int \frac{du}{u^n \sqrt{a+bu}} = -\frac{\sqrt{a+bu}}{a(n-1)u^{n-1}} - \frac{b(2n-3)}{2a(n-1)} \int \frac{du}{u^{n-1}\sqrt{a+bu}}$$

$$106. \int \frac{u^2 \, du}{\sqrt{a+bu}} = \frac{2}{15b^3} (3b^2u^2 - 4abu + 8a^2)\sqrt{a+bu} + C$$

$$110. \int \frac{\sqrt{a+bu} \, du}{u} = 2\sqrt{a+bu} + a \int \frac{du}{u\sqrt{a+bu}}$$

$$107. \int \frac{u^n \, du}{\sqrt{a+bu}} = \frac{2u^n \sqrt{a+bu}}{b(2n+1)} - \frac{2an}{b(2n+1)} \int \frac{u^{n-1} \, du}{\sqrt{a+bu}}$$

$$111. \int \frac{\sqrt{a+bu} \, du}{u^n} = -\frac{(a+bu)^{3/2}}{a(n-1)u^{n-1}} - \frac{b(2n-5)}{2a(n-1)} \int \frac{\sqrt{a+bu} \, du}{u^{n-1}}$$

POWERS OF u **MULTIPLYING OR DIVIDING** $\sqrt{2au - u^2}$ **OR ITS RECIPROCAL**

$$112. \int \sqrt{2au - u^2} \, du = \frac{u - a}{2} \sqrt{2au - u^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{u - a}{a}\right) + C$$

$$116. \int \frac{du}{\sqrt{2au - u^2}} = \sin^{-1} \left(\frac{u - a}{a}\right) + C$$

$$113. \int u \sqrt{2au - u^2} \, du = \frac{2u^2 - au - 3a^2}{6} \sqrt{2au - u^2} + \frac{a^3}{2} \sin^{-1} \left(\frac{u - a}{a}\right) + C$$

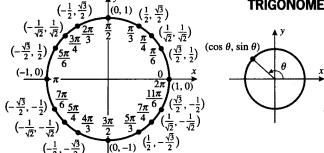
$$117. \int \frac{du}{u \sqrt{2au - u^2}} = -\frac{\sqrt{2au - u^2}}{au} + C$$

$$114. \int \frac{\sqrt{2au - u^2} \, du}{u} = \sqrt{2au - u^2} + a \sin^{-1} \left(\frac{u - a}{a}\right) + C$$

$$118. \int \frac{u \, du}{\sqrt{2au - u^2}} = -\sqrt{2au - u^2} + a \sin^{-1} \left(\frac{u - a}{a}\right) + C$$

$$118. \int \frac{u \, du}{\sqrt{2au - u^2}} = -\sqrt{2au - u^2} + a \sin^{-1} \left(\frac{u - a}{a}\right) + C$$

$$119. \int \frac{u^2 \, du}{\sqrt{2au - u^2}} = -\frac{(u + 3a)}{2} \sqrt{2au - u^2} + \frac{3a^2}{2} \sin^{-1} \left(\frac{u - a}{a}\right) + C$$


INTEGRALS CONTAINING $(2au - u^2)^{3/2}$

 $120.\int \frac{du}{(2au-u^2)^{3/2}} = \frac{u-a}{a^2\sqrt{2au-u^2}} + C$

$$121.\int \frac{u\,du}{(2au-u^2)^{3/2}} = \frac{u}{a\sqrt{2au-u^2}} + C$$

THE WALLIS FORMULA

$\int \pi/2 \cdot n = \int \pi/2 \cdot n = \int \pi/2 \cdot n = \int 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (n-1) \cdot \pi \left(\int \pi/2 \cdot n = \int \pi/2 \cdot n$	n an even	$2 \cdot 4 \cdot 6 \cdot \cdots \cdot (n-1)$	(n an odd
$122. \int_0^{M^2} \sin^n u du = \int_0^{M^2} \cos^n u du = \frac{1 \cdot 3 \cdot 3 \cdot \dots \cdot (n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot n} \cdot \frac{\pi}{2}$	integer and	or $\frac{2 \cdot 4 \cdot 0 \cdot \dots \cdot (n-1)}{3 \cdot 5 \cdot 7 \cdot \dots \cdot n}$	integer and
50 50 2 7 0 11 2 ($n \ge 2$	501	$n \ge 3$)

TRIGONOMETRY REVIEW

PYTHAGOREAN IDENTITIES

$\sin^2\theta + \cos^2\theta = 1$	$\tan^2\theta + 1 = \sec^2\theta$	$1 + \cot^2 \theta = \csc^2 \theta$	
SIGN IDENTITIES			
$\sin(-\theta) = -\sin\theta$	$\cos(-\theta) = \cos\theta$	$\tan(-\theta) = -\tan\theta$	
$\csc(-\theta) = -\csc\theta$	$\sec(-\theta) = \sec\theta$	$\cot(-\theta) = -\cot\theta$	

COMPLEMENT IDENTITIES

$\sin\left(\frac{\pi}{2}-\theta\right)=\cos\theta$	$\cos\left(\frac{\pi}{2}-\theta\right)=\sin\theta$	$\tan\left(\frac{\pi}{2}-\theta\right)=\cot\theta$
$\csc\left(\frac{\pi}{2}-\theta\right)=\sec\theta$	$\sec\left(\frac{\pi}{2}-\theta\right)=\csc\theta$	$\cot\left(\frac{\pi}{2}-\theta\right)=\tan\theta$

ADDITION FORMULAS

$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$	$top(\alpha + \beta) =$	$\tan \alpha + \tan \beta$
$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	tan(u + p) =	$\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$

DOUBLE-ANGLE FORMULAS

$\sin 2\alpha = 2\sin\alpha\cos\alpha$	$\cos 2\alpha = 2\cos^2 \alpha - 1$
$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$\cos 2\alpha = 1 - 2\sin^2 \alpha$

 $\sin(\pi - \theta) = \sin \theta \qquad \cos(\pi - \theta) = -\cos \theta \qquad \tan(\pi - \theta) = -\tan \theta$ $\csc(\pi - \theta) = \csc \theta \qquad \sec(\pi - \theta) = -\sec \theta \qquad \cot(\pi - \theta) = -\cot \theta$ $\sin(\pi + \theta) = -\sin \theta \qquad \cos(\pi + \theta) = -\cos \theta \qquad \tan(\pi + \theta) = \tan \theta$ $\csc(\pi + \theta) = -\csc \theta \qquad \sec(\pi + \theta) = -\sec \theta \qquad \cot(\pi + \theta) = \cot \theta$

 $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta \\ \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta \\ \tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$

HALF-ANGLE FORMULAS

SUPPLEMENT IDENTITIES

$\sin^2 \frac{a}{a}$ –	$1 - \cos \alpha$	$_{2}\alpha$	$1 + \cos \alpha$
$\sin^2 \frac{1}{2} = -\frac{1}{2}$	2	$\cos^2 - \frac{1}{2} =$	2