1. Let \(f \) be defined by
\[
f(x) = \begin{cases}
5 - x^2, & \text{if } -1 < x < 1 \\
2(2 - x), & \text{if } x \geq 1.
\end{cases}
\]
(a) Sketch the graph of \(f \).
(b) Determine the domain and range of \(f \).
(c) Is \(f \) continuous at the points \(x = -1, 0, 1 \)? Verify your answer.

2. Using the properties of limits, find the following limits putting in each step:
 (a) \(\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 9} \)
 (b) \(\lim_{x \to 2} \frac{x^2 - 4x + 3}{x^2 - 9} \)
 (c) \(\lim_{x \to 0} \frac{\tan(x)}{\sin(x)} \)

3. Using the definition of derivative and the properties of limits, compute the derivative of \(f \) at \(x = 2 \) where \(f \) is given by
\[
f(x) = x^2 + x - 3.
\]

4. Let
\[
f(x) = 2x^3 - 6x - 2.
\]
(a) Compute the slope of the tangent line to the graph of \(f \) when \(x = 1 \).
(b) Give the equation of the tangent line to the graph of \(f \) at the same point.
(c) For which values of \(x \) is the tangent line horizontal?

5. Using the properties of derivatives, determine the derivatives of each of the following functions:
 (a) \(g(x) = (2x^2 - 3)(1 - 2x + x^2) \)
 (b) \(f(x) = x^2e^x - 2x^3 \) \hspace{1cm} \text{(Hint: You can use } D_x(e^x) = e^x)\)

6. [EXTRA CREDIT]
Using the definition of ‘limit’, prove that
\[
\lim_{x \to 0} x^2 = 0.
\]