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Abstract 

Maximal functions which measure the smoothness of a function are intro" 

duced and studied from the point of view of their relationship to classical 

smoothness and their use in proving embedding theorems, extension theorems 

and various results on differentiation. New spaces of functions which 

generalize Sobolev spaces are introduced. 
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§I. Introduction 

Maximal functions play a central role in the study of differentiation, 

Jingular integrals and almost everywhere convergence. For example, the 

classical Lebesgue differentiation theorem follows readily from the mapping 

properties of the Hardy-Littlewood maximal operator: 

1 
Mf(x): =sup TQT JQ lfl 

Q::>x 
(1.1) 

where the sup is taken over all cubes Q c lRn which contain x. The key pro· 

perty of M for differentiation theory is that M is of weak type (1,1), i.e. 

(I. 2) l{x: Mf(x) > y}l ~ £ J lfl, 
y :mn y > 0. 

It is perhaps less well known that other maximal functions are useful 

in the study of smoothness of functions and the mapping properties of various 

operators on smoothness spaces. The main theme of this monograph is to 

study certain maximal functions of this type and related spaces of functions. 

To begin with the simplest example, let 0 ~ a < 1 and consider the 

maximal function 

(1. 3) 

where 

(1.4) 1 
fQ: = TQT JQ f 

is the average of f over the cube Q. The maximal function f: was apparently 

first introduced in a paper of A. P. Calderon and R. Scott [6]. The case 

a = 0 is important in the study of the space BHO - functions of bounded mean 

oscillation. For example, BHO can be described as the set of functions f such 

that f~ € L~ and llfg11 1 is equivalent to the usual BMO norm. The fact that 
~ 

the Lp spaces are interpolation spaces between 1
1 

and BMO rests on the fact 

that f~ € Lp is "equivalent" to f € Lp (see §6). 

Rec~ived by the editors June 1, 1982. 
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2 Ronald A. DeVore and Robert C. Sharpley 

When 0 < a < I, the maximal function f~ measures the smoothness of f. 

For example if x,y clRn, we have the simple inequality (cf. (2.16)) 

lf(x) - f(y)l ~ c [f:(x) + f~(y)) lx-yla. 

Thus, the finiteness of f~ gives a local control for the smoothness of f. In 

particular, if f: E L
00

, then f E Lip a on lRn. Actually, the converse is a I~" 

true. Namely, iff E Lip a onlRn then f: c L
00 

(see Theorem 6.3). 

The mappings f-+ fQ are linear projections from L1(Q) onto the space of 

constant functions. They arise from the projection P 0 : f -> JQ f, Q0 = [0, !Itt, 
0 

by change of scale. To extend the definition of f: to a ~ 1, we replace 1'
0 

hr 

a projection Pk' k = [a], mapping L1 (Q0) onto IPk the space of polynomials of 

degree at most k. Such a projection P gives rise to projections PQ: 

L1(Q) -+lPk for each Q by change of scale. This leads to the maximal functl"!l 

(1.5) f!(x): = ~~~ l~ll+a/n JQ lf-PQfl, P = P{a]· 

It turns out that different projections of the same degree give equivalent 

maximal functions (see §2). In fact, there is an important property wh i' lr 

shows that any projection P of degree~ [a] when used in (1.5) gives a mnKim~l 

function equivalent to f: (cf. LeDI!Ia 2.3). This is akin to the Marchau<l 

inequalities for moduli of smoothness. 

When a is an integer, there is another important, indeed perhaps mor<' 

natural, choice for the degree of the projection, namely, (a) -the gn·111""' 

integer strictly less than a. This choice gives the maximal function 

(I. 6) 

Note that 

that t'1 ~ a -

f# if a is non-integral. a 

if a is an integer. 

Also it can be shown (Corollary 

There are several modifications of the definitions (1.5-6) which lcn•l t;, 

equivalent maximal functions. One of the more important is that (§2) th" 

maximal function 

(I. 7) sup 
Q3X 
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is equivalent to f: if k = [a] and is equivalent to f~ if k = (a). 

( 1. 8) 

Another important variant is the maximal function defined by 

~(f,x): = sup 
1 

1+a/n JQ lf-Pxl 
Q:;~x IQI 

3 

if there is a polynomial P of degree less than a such that (1.8) is finite. 
X 

Maximal functions of this type were introduced by A. P. Calderon [5] and 

atudied by A. P. Calderon and R. Scott [6]. If there is a P which makes 
X 

(1.8) finite then it is unique. Notice that in (1.8), P stays fixed as Q 
X 

varies, but in (1.6), PQf varies with Q. Nevertheless it turns out that the 

mMximal functions ~(f) and f~ are equivalent (Theorem 5.3). The equivalence 

of these maximal functions rests on the fact that when f~(x) is finite then 

f has Peano derivatives of order v at x for each lvl < a. The polynomial Px 

Is then the Taylor polynomial of degree (a) formed from these Peano deriva-

ltves. 

The maximal functions f~ are related to classical differentiation. For 

txamp1e, it follows from results of Calderon [5) that if f~ is locally in 11 , 

then the weak derivatives Dvf exist a.e. and satisfy 

(1. 9) l IDvf(x)l ~ c ~(x) , 
lvl=k 

In the other direction, we have 

(1.10) ~(x) ~ c M( l IDvfl)(x) 
lvl=k 

a.e. 

whenever f has weak derivatives Dvf which are locally in 1
1

. The connections 

between the finiteness of the maximal functions f:, f~ with classical dif

ferentiation, Peano derivatives and the like are investigated in §5. 

The maximal functions f# f~ can be used in a natural way to define new a' .. 

1paces of functions. If 1 ~ p ~ ~ and a > O, let Ca: = {f E 1 : f# € 1 } and 
P P a P 

11£11 a: = 11£11 1 + 
c p 
p 

The analogous space ta and norm II II a are 
p t 

p 

defined with f: in place of £11 • a 
These are spaces of smoothness a. The major 

theme of this work is to study the properties of these spaces and their use in 

the study of smoothness properties of functions. 
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There are several smoothness spaces of fractional order. The most 

useful are the potential spaces !Ci (see [15, Chapter V]) and the Besov spuc!'i! 
p 

Ba,q (see §3). As we have already noted the spaces C~ are related to 
p 

Lipschitz spaces. Indeed, we have C~ = B~'~ for all a > 0. 

the space Lip f1 if f1 is not an integer and is Lip* a (higher order differ~ 

ences) when a is integral. Also C~ = Lip a for all a > 0. Moreover, it 

follows from (1.9-10) that Ck is the Sobolev space Wk if 1 < p ~ oo and k ~~ 
p p 

an integer. It turns out that the spaces Ca and Ca are not Besov or potcon= 
p p 

tial spaces for any other values of p and a. Rather, they offer an attrcH 

tive alternative to the Besov and potential spaces for many problems in 

analysis. One of the main advantages of the spaces Ca, Ca lies in the full 
p p 

that for fractional f1 the function f: = f~ is akin to a fractional derivut tv~ 

of f, or better said, a maximal fractional derivative. Thus, these span• a 

are similar in nature to the Sobolev spaces. 

In §7, we establish embeddings between Besov spaces, potential spal'f'M 

and Ca. If 1 ~ p ~~and f1 > 0, then we have the continuous embeddings 
p 

Ba,p -> ca -> Ba,~ 
p p p 

These embeddings cannot be improved within the scale of Besov spaces. Jo'ot 

potential spaces, we have the continuous embedding 

ta -> Ca 
p p 

Of course, !f1 = Cf1 when a is an integer and 1 < p < oo but they are uneqt111l 
p p 

for all other values of p and a. 

For fixed f1 > o, the spaces c(l and cf1 form interpolation scales aN p 
p p 

ranges over [l,oo]. In fact, we show in §8 the characterization of the K 

functional 

(1.11) 

where g* denotes the decreasing rearrangement of a function g. A sim1 lrH 

result holds for K(f,t,C~,C~) with f: replaced by f~. Of course, (l.ll) I~ 

a statement about decomposing a function f in c~ as f = f-g + g with a • u! 
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and a control on llf-gll a and llgl I Decompositions of this type were 
c ca 

1 00 

given by A. P. Calderon [5]. For a given t > 0, one considers 

Et: = {ffl > f/1* (t)} U {Mf > (Mf) * (t)}. a a 

The function f is smooth outside of Et. The function g is the extension of f 

from E~ to all ofiRn. It is also possible to use the techniques developed for 

(1.11) to the K functional for interpolation between W~ and w! as was done in 

R. DeVore-K. Scherer [8]. We should mention that for p fixed and a varying, 

the spaces Ca (or ta) are not interpolation scales with respect to the real p p 

method of interpolation since the corresponding interpolation spaces are 

Besov spaces [see Theorem 8.6]. 

We prove Sobolev type embedding 

§9. These follow from inequalities 

theorems for the spaces ca (and ta) in 
p p 

for f 11 • For example, the inequality a 

(1.12) ~ c JIQI ffl*cs) sa/n ds 
0 a s 

holds for any Q and f. The right hand side tends to zero as IQI+O whenever 

L (the Lorentz space). This gives the embedding n,I 
II LI: f E L I 1} ~C. The inequality (1.12) (for a=1) can be exploited a n a, 

further to give a straight forward proof of the result of E. Stein {16] which 

lays if Vf E L locally then lf(x+h)-f(x)-Vf(x)·hl = o(lhl) a.e. in x. n, 1 

We also establish continuous embeddings Ca ~ C~ if a - ~ = n(l/p-1/q) 
p q 

and I ~ p ~ q ~ oo. In the case ~ = 0, the space c! can be replaced by Lq' 

1 ~ q < oo and BMO, q = oo. 

Results in the paper are established for domains iniRn. There are two 

types of results: those that hold for all domains 0, and those that hold 

only with some smoothness conditions on 0. Whenever a result is of the first 

type, we prove it in its full generality directly. For results of the second 

type, we establish them originally only for 0 = IRn or 0 a cube in IRn. Later 

tn §II, these results are generalized to domains with minimally smooth 

boundary in the sense of Stein [15] by using extension theorems for the 

Ca and ta. 1paces p p 
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We prove the extension theorems of §10-11 using the ideas of Whitney 

who first proved such extension theorems for Lip a spaces. The constructon 

uses a Whitney decomposition of nc into cubes {Q.} whose distance to the 
J 

boundary is comparable to its sidelength and a related partition of unity 

{41!;}7 with .; supported on a cube Q; c nc slightly larger than Qj" Our 

extension operator then takes the form 

{ 

f(x), 

Ef(x): = ~ P_ f(x)41!:(x), 
1 Q. J 

J 

x € n 

where the cubes Qj are contained inn and dist (Qj,Qj) ~ c diam (Qj). Thin 

technique should be compared to the usual approach to extension theorems tor 

Sobolev spaces W:(n) based on potential integrals (see (15, Ch. V]. Siner 

tk = wk, 1 < p;;; oo, our results include extension theorems for Sobolev sp111"'' 
p p 

While preparing this paper, it was pointed out to us by S. Krantz that P. 

Jones [12] had also used the ideas of Whitney to prove extension theorems 

for Sobolev spaces although P. Jones' interest is different than ours. 

Namely he investigates the weakest smoothness on n which are sufficient to 

guarantee extensions for wk(n), 1;;; p < oo. 
p 

In §12, we indicate to what extent the results of the previous secti 01111 

a ,..a carry over to the case p<1. The spaces C and~ for p<1 
p p 

terms of f~ and ~ but instead use variants f# and fD ... .... a,p a,p 

are not defined In 

which are defined 

as in ( 1. 7) but with Lp norms in place of L1 norms. The maximal function• 

f# and f~ are studied in §4. We show among other things that for 
a,p ... ,p 

1 ;;; p ;;; oo the space {f E L : ffl E L } is equal to Ca provided that q :.1 Jl, 
P a,q P P 

This equivalence only persists for a certain range of p<1 and in fact the 

"proper" definition of Ca for p<1 is Ca: = {f E L : f// E L } . With th111 
P P P a,p P 

definition for example, we have that for fixed a, C~ (p0 ;;; p ~ p 1) is an 

interpolation space for the pair (Ca ,Ca ) whenever 0 < Po < p1 ~ oo. 
Po P1 

Finally, we indicate the proof of the extension theorem for minimally smooth 
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domains where 0 < p ~ 1 and use it to get embedding theorems and interpo-

lation theorems for these domains in this case. 

As we have already mentioned, the maximal function f~ is equivalent to 

the maximal function N~(f) introduced by Calderon. For this reason, there is 

considerable overlap of this work with the papers (5] and (6], most notably 

in §5 and §8. Rather than refer the readers back to these papers, we have 

chosen to integrate their results into our development. We have also 

included some elementary and for the most part well known results about 

polynomials and approximation in §3. 

We have been encouraged by the referee to make some remarks on homogenous 

1paces. The results presented in this monograph are for non-homogeneous spaces 

The corresponding homogeneous spaces Ca, ~a which are defined as 
p p 

equivalence classes of functions with respect to the seminorms l·lca' l·lea 

p p 

are not discussed. These spaces are not merely factor spaces (modulo poly-

nomials of appropriate degree) since the function f(x): = ~(x) log x (~ = 1 

on (e,~), ~ = 0 on (-~,o), smooth otherwise) satisfies llf:11 1 <~for 
p 

p > 1/a > 1, but f - n is not in L for any polynomial n. 
p 

On the other hand, 

it will be clear to the reader that some of the embeddings of §7 and §9 have 

tnalogues for homogeneous spaces. For example, Lemma 2.3 can be modified 

appropriately to give the analogue of Theorem 9.6 for Ca: If 0 ~~~a; 
p 

0- ~ = n{~ ~); 0 < p,q, then for each f € C~ there is a polynomial 

IT t:lP{a] so that If- Also the proofs in §7 show that 

la,p ~ ca ~ Ba,~ . 
p p p 

We have included a glossary of notation indicating what the notation 

means and where it is first introduced or defined. Throughout the paper, we 

uae the symbol c for generic constant whose value may be different at each 

occurence, even on the same line. Most often, the constant c depends at most 

~ n and a. When this is the case, we will not mention that fact. 

other cases, we shall indicate the quantities on which c depends. 

In all 



§2. Maximal Functions 

Let Q0 be the unit cube in~n. The space 1k of polynomials of (total) 

degree at most k is a Hilbert space with the inner product (f,g): = JQ fg. 
0 

Consider the orthonormal basis. {~v}, lvl ~ k which results when the Gram-

v Schmidt orthogonalization is applied to the power functions {x }lvl~k 

arranged in lexicographic order. The operator P defined by 

(2.1) Pf: Pkf: = l: (f,~ )~ 
lvl::;!k v v 

is a projection from L1 (Q
0

) ontoFk. 

For any cube Q, the projection P induces a projection PQ from L
1

{Q) 

ontoFk by change of scale. In particular when k = o, 

PQf = fQ: 
1 

= TQT JQ f. Now take any open set Q c!Rn. If 

integrable on Q and 

(2.2) 

a iii: o, we 

i 1cx): = a 

choose k: = [a] and define 

1 
sup - 1+ I JQ If - PQfl. 

0=>Q3x IQI a n 

f is locally 

The maximal function ffl measures the smoothness of f. When a is an intes10r, 
a 

we have made a choice in (2.2) of taking k = a. The choice k = a-1 is ahu 

important and so we introduce 

sup --
1
--1 I JQ If - ~Qfl 

O=>Q3x IQI +a n 

where pPis the projection of degree (a) (the greatest integer strictly lcgn 

than a). Then fp(x) = f#(x) if a is not an integer. 
a a 

The study of i 1, fb a a 

and certain related maximal functions is the main theme of this paper. 

There are many variants which can be incorporated into the definition 

(2.2) while resulting in equivalent maximal functions. From time to timl', 

these variants are more convenient to use in proofs. Therefore, we wish l" 

study some of these possibilities in this· ... J;ection. To this end, we first 

make some observations about the projections PQ. It is simple to see by 

the construction that 

8 
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(2. 3) 

Let x
0 

be any point in Q, then there are polynomials hv (obtained from 

fixed polynomials on Q0 by a change of scale) with llhviiL (Q) ~ c for 
Ql) 

which 

(2 .4) 

where x
0 

is the point in Q corresponding to x
0 

under the change of scale. 

Define a Hardy-Littlewood type maximal function (localized to Q) by 

(2.5) 

then using (2.3) we see that 

(2.6) 

IP_f(x)l, x € Q 
Q 

otherwise 

if X € Q 

where M is the Hardy-Littlewood maximal operator. In particular MQ·is 

weak-type (1, 1) and strong type (ao, ao). Moreover, if x € Q, 

llf-fll +IIP(f-f)ll lf(x) - P_f(x)l ~ 
Q Q L

00
{Q) Q Q L

00
(Q) 

It follows that 

(2. 7) 

clif-f II 
Q L""(Q) 

lim P_f(x) = f(x) 
Q+{x} Q 

for continuous f. Consequently, the weak type (1, 1) property of the 

maximal operator MQ shows that (2.7) holds at each Lebesgue point off 

whenever f is in L
1

(Q). 

Lemma 2.1. If a~ 0 and k: = [a], there is a constant c > 0 such that 

i 1 (x) ~ inf 1 
JQ If - nJ ~ f# (x) X € 0 . c sup 

IQI1+a/n a fl:>Q3x 7T€lPk 
a 

The same result holds for fb 
a and k (a). 

Proof. The right hand inequality is clear. To prove the left hand 

estimate, let n be any polynomial of degree at most k. Then PQ(n) = n 

9 
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and since PQ is linear, 

Jf(y)- PQf(y)J ~ Jf(y)- n(y)J + IPQ(f- n)(y)J. 

Integrating over Q, we obtain from (2.3) 

JQ If - PQffdy ~ JQ If 

~ JQ .If - nfdy + JQJ IIPQ(f- n)f I 
Lco(Q) 

The desired result now follows by taking an infinum over n, dividing by 

1+a/n 
IQI , and then taking a supremum over all cubes Q containing x. 0 

The same proof shows that any other projection P from L
1

(Q
0

) toPk 

would lead to a maximal function which is equivalent to f#. The following 
Cl 

is an immediate consequence of the last lemma. 

Corollary 2.2. If a > 0, there is a constant c > 0 such that for each 

f e: L
1 

(loc 0) 

X € 0. 

The next result shows that the projections P. with j > [a] (cf. (2.1)) 
J 

give a maximal function equivalent to f:. 

Lemma 2.3. If j ~ [a] , a ~ O, and 

F. (x): = sup 
J O:l(px 

1 
I f If - (PJ.)Qfl , 

JQil+a n Q 

then there are constants c
1

, c
2 

> 0 depending only a, j, and n such that 

for each f e: L
1

(0) + L
00

(0), x e: 0 

(2.8) c1 Fj(x) ~ f!(x) ~ c2 Fj(x), 0 = 1Rn 

(2.9) c
1 

Fj(x) ~ f!(x) ~ c
2 

[Fj(x) + fo Iff], 0 the unit cube inlRn 

Remark: Such upper estimates do not hold for f~ when a is an integer. 

Proof. Using Lemma 2.1, the left hand inequalities in (2.8) and (2.9) are 

clear since j ~ [a]. 
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For the right hand inequality, let j > [a]. We will estimate F. 
1 

by 
J-

Fj for each such j. Begin by choosing cubes Q = Q1 c Q
2 

c ... c QN c n with 

-n 
IQil = 2 1Qi+1 f. Further properties of this sequence will be prescribed 

ahortly. 

(2.10) 

If P denotes the projection operator P., we can write 
J 

N-1 
f = [f - P f] + I PQ (f - PQ f) + PQ f 

Ql i=1 i i+1 N 

N-1 
=: f - P f + L n. 

Q1 i=1 ~ + ~· 

Now fix X inn. According to (2.4), for 1 ~ i ~ N-1, each polynomial ni 

can be written 

n. = I [ IQII JQ (f - PQ f) h .] [ y - 1~ ]" + p. 
~ fvf=j i i i+1 "•~ IQil n ~ 

with pi of degree at most j-1. Similary 

7L = L [ -
1
- f f h ] ( y - X )" + p 

.N fvf=j IQNI QN v,N IQNI1/n N 

N 
Let p: =I p. so that p has degree at most j - 1. Using (2.10), 

1 ~ 

(2.3), and the fact that the h .'s are uniformly bounded, 
"·~ 

we find 

(2 .11) 
1 1 JQ If-pi ~ 1+a/n JQ lf-PQ fl 

IQ1 1 1 1 IQI1+a/n 

1 
N-1 1 t( y -1~n)"fdy + 

IQI1+a/n 
I I [ TQ.T JQ_If-PQ.+/1] JQ 

lvl=j i=l ~ ~ ~ IQil 

( " c 1 
JQ Iff J f I y- X fdy + 

IQI1+a/n 
I [TQT 

Q IQNil/n) lvl=j N N 

= : I + II + III. 

We can estimate I trivially 

I ~ F. (x). 
J 

Uaing the fact that x E Qi c Qi+1 and 1Qi+1 1 = 2n IQ.f, we find 
~ 

11 
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N-1 
1 (jgl_)j/n II ;::; c 

~ 
IQI1+a/n [ ~ IQ. lf-PQ_+1fl] IQI 

i=1 1 1 1 IQil 

N-1 
IQ.Ia/n (jgl_)j/n :ii 

c 
~ F. (x) 

IQia/n i=1 J 1 IQil 

N-1 
2
ia 2-ij) ;::; c ( ~ F. (x) :l'! c F. (x) 

i=1 J J 

where the constant c does not depend on N. 

The sum III can be estimated by 

(2 .12) 

If 0 =IRn, the right hand side tends to 0 as n ~ ~. Therefore the esti-

mates for I, II, and III in this case give 

(2.13) :l'! c F. (x). 
J 

Since pis of degree at most j - 1, the argument in Lemma 2.1 then shows 

F. 
1 

(x) ;l'! c F. (x). 
J- J 

Repeated application of this inequality establishes (2.8). 

When 0 is the unit cube in IRn, we can choose N so that QN c 0 and 

2niQNI > 101. -rn this case (2.12) gives 

III 
1 

c IOij/n+1 fo lfl 
IQI (j-a)/n ~ c J

0 
lfl . 

Hence 

Repeated application of this inequality gives (2.9). o 

One other observation will be helpful to us: 

(2.14) In the case 0 =IRn, any maximal function of the type introduced in 

this section is equivalent to the corresponding maximal function resultina 

when the supremum over all cubes Q containing the point x is replaced by • 

supremum over 
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i) cubes centered at x; 

or ii) spheres containing x or centered at x, 

or iii) any family of sets S such that for any S E S there are cubes 
X X 

c
0 

depends at most on n. 

For f:, f~ this follows from the simple fact that when s
1 

c s
2 

and 

IS
2

1 ~ c!S 11, then for any g ~ 0 

The maximal functions f: and f~ give a control for the smoothness of 

f as will be shown in our next theorem. First we give the following esti-

mate for PQf. Henceforth, unless otherwise indicated, if a ~ 0 then P is 

the projection operator of degree [a]. 

* Lemma 2. 4. If x E Q c Q c 0, 

(2. 15) 
n 

inf 
UEQ* 

for 0 ~lvl < a. This inequality also holds for lvl = a provided 

13 

IQI ~ 2niQ*I. 

l'. 
The same statements hold for Pb replacing P and fb replacing a 

a 

~- Consider first the case when IQI ~ 2niQ*I and fvl ~ a, then by 

Markov's inequality 

Using (2.3) and the fact that PQ is a projection gives 

IIPQf - PQ*fll * ~ IIPQ*(f - PQf) II * ~ IQ~I fQ* If - PQfl 
L~(Q ) L~(Q ) 

which combines with the preceding inequality to give (2.15) in this case. 
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For the general case of arbitrary Q* c Q and lui < a choose a sequence 

of nested cubes Q* =: Q1 c Q2 c ••• c Qm c Q =: Qm+1 with 1Qi+1 1 = 2niQi I, 

1 ~ i ~ m, and 1Qm+1 1 ~ 2niQml' then using the case we have just estab-

1ished, we have 

~ c 
m 
I 

i=1 

a-lui 

~ ciQI n inf 
UEQ* 

inf 
uEQ* 

a-lui 
n where we have used the fact that (IQil ) is a geometric sequence. The 

same proof applies for pb and fb. 0 
a 

Let ~ denote the difference operator defined by 

~(f, x): = f(x +h) - f(x) and define its powers a: inductively as 

~f:= ~(~-1 f). The difference ~f is defined for each x such that 

x, ... , x+kh E Q. Let ~ be the set of all points x such that there is a 

cube Qx c Q with x + ih E Qx , i = 0 , 1 , ... , k. 

Theorem 2.5. Suppose k > [a] and f is locally integrable on Q, then for any 

h, 

(2.16) la:(f, x) I k 
~ c I 

i=O 
i 1 (x + ih) lhla 
a 

a.e. 

Proof. Fix h and set nh = {x E ~: X, ••• , X + kh are Lebesgue points of 

f}, then~\~ has measure zero. If X E 0h is fixed, set yi: =X+ ih 

with i = 0, 1, ... , k. Choose Q as the smallest cube with 

{y
0

, y
1

, ... , yk} cQcQ. Since each yi is aLebesgue point off, if we choou 

cubes Q* ~ {y.}, then PQ*f(y.) ~ f(y.) and so according to Lemma 2.4, 
~ 1 1 
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k 
Since ~(PQf) = 0, we have 

l~(f,x)( = I~ (f - PQf, x)( ~ c max (f(y.) - PQf(y.)( 
O~i~k ~ ~ 

which gives (2.16). D 



§3. Inegualities for Polynomials 

In this section, we give several inequalities for polynomials which will b~ 

used in the sequel. We begin by comparing various L "norms" of polynomial• 
q 

Lemma 3.1. If k ~ O, q > O, there is a constant c > 0 depending at most on 

q, k and n such that for each q ~ p ~ ~. each polynomial n € JPk and each 

n-cube Q, 

(3.1) 

When either q or p =~the corresponding expression is replaced by llnll 1 (QJ 
~ 

Proof. The left hand inequality is an immediate consequence of Holder's 

inequality. It is enough to prove the right hand inequality for p = <». To 

this end, choose a point x0 € Q such that fn(x0 ) I = llnfl 1 (Q). Using 
~ 

Markov's inequality, there is a c
0 

> 0 depending only on k and n such that 

Thus if S: = {x € Q: 
IQil/n 

lx-x0 1 ~ ~}, then lSI ~ c
1 

IQI with c
1 

dependirtl! 
0 

only on n and c0 and 

1 
ln(x)l ~ 2 llniiL (Q), x€ S. 

~ 

Integrating we find 

If Q is an n-cube and A > 0, we let AQ denote the cube which has the ••~~ 

center as Q and side length ~(Q) where t(Q) is the side length of Q. 

Lemma 3.2. If k ~ 0; q, A > 0, then there is a constant c depending only <J!I 

k, q, A and n such that for each n ElPk and each cube Q; we have 

16 
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In the case q = m, the norms in (3.2) are replaced by Lm norms over XQ and 

Q respectively. 

Proof. For Q = Q0 , the unit cube, (3.2) holds for 1 ~ q ~ m since any two 

norms onFk are equivalent. For any other cube Q and 1 ~ q ~ m, (3.2) now 

follows from the case Q0' by a change of variables. The case q < 1 follows 

by using (3.1) with p = 1. 0 

Our next lemma estimates the coefficients of a polynomial. 

Lemma 3.3. If k ~ 0, q > O, there is a constant c depending only on k, q 

and n such that for each polynomial n(x) = 

with x0 E Q, 

(3.3) ~ lcviiQIIvl/n ~ c(l~l JQ lnlq) 1/q 
lvl~k 

When q m, (3.3) holds if the right hand side is replaced by c 11n11
1 

(Q) 
® 

Proof. By translating the cube if necessary we can assume x0 = 0. Also 

17 

in view of (3.1), we need only prove (3.3) for q = ~. When Q = [-1,1]n and 

q = ~. then (3.3) follows from the fact that any two norms oniPk are equiv

alent. The case Q = [-X,A]n and q =~follows from the case Q = [-l,l]n by 

a simple change of variables. Finally, for an arbitrary cube Q of side 

length~ with 0 E Q, we have Q c [-~.~]n =: Q. Hence 

~ 

lvl~k 

where the last inequality uses (3.2) together with the fact that Q c 3Q. 0 

We now turn briefly to some well known principles (cf [14] or [7]) con-

cerning the approximation of functions by polynomials. 

k = 1,2, ... , be the Sobolev spaces and 
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(3.4) 

lfi~(O) : = 
p 

llfll k 
w--(0) 

p 

" .L II D f II L (0) 
lvl=k p 

Theorem 3.4. Let 1 ~ p ~ ~ anp k be a nonnegative integer. There is a 

constant c > 0 depending at most on p, k, n and 0 such that for each cube Q 

and any f € w:(Q), there is a polynominal n € lPk_
1 

with 

(3.5) llf-niiL (Q) ~ c IQik/n lfl 
p ~(Q) 

p 

Proof. It is enough to verify (3.5) for the unit cube Q
0 

since the case of 

arbitrary Q then follows from a linear change of variables. Now suppose 

(3.5) does not hold for Q
0

. In this case, there is a sequence of functionK 

(f ) such that 
m 

If we let nm denote best Lp(Q0) approximant to fm' m 1,2, ... then by 

rescaling if necessary, we find functions gm = A (f -n ) such that 
m m m 

1 = 

~ 

Thus {gm}
1 

is precompact in Lp(Q
0

) [1, p. 143] and for an appropriate subs~~ 

quence, gm ~ g with g E Lp(Q0). It follows that 
j 

and so g € lPk_ 1 • On the other hand, inf llg-niiL (Q ) 
n€lPk_ 1 p o 

1 and so we hav~ 

a contradiction. 0 

Inequalities like (3.5) hold for more general semi-norms on the right 

hand side. As another example, we consider the Besov spaces. If 0 is 

domain in!Rn,/hl> 0 and r is a positive integer, then define 
I 

0 h: = {x: x,ix+h, ... ,x+rh € 0}. When f E L (0), 1 ~ p < ~, (f € C(O) when 
r, p 

p = ~), the r-th order modulus of smoothness in L (0) is defined by 
p 
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w (f' t) : = 
r p sup 11~(£)11 1 (Q ) 

lhl~t p r,h 

r 
where~ are the usual difference operators (cf. §2). 

(3.6) 

For any a, q > O, take r: = [a] + 1 and define 

= J
{f~ [t-aw (f t) ]q dt}1/q 

0 r ' p t 

sup t-aw (f,t) 
O<t r p 

q < ~ 

q = ~ 

The Besov space Ba,q is the set of those functions in L (Q) such that 
p p 

llfll is finite. This is a Banach space if 1 ~ p ~ ~. 
Ba,q(O) 

p 

19 

Theorem 3.5. Let 1 ~ p ~ ~ and a, q > 0. There is a constant c > 0 depend-

ing at most on p, a, q, n and Q such that for each n-cube Q and each 

f E: B;'q(Q), there is a 7t E: lP[a] satisfying 

(3. 7) llf-nll 1 (Q) ~ c IQia/n lfl 
P Ba'q(Q) 

p 

Remark: The constants in Theorems 3.4 and 3.5 can be chosen independent of 

p and q but we will not need this. 

Proof. Using the fact that the unit ball in Ba,q is compact in L , we can 
p p 

establish (3.7) for Q = Q0 the unit cube in the same way that we have proved 

{3.6) for the unit cube. For the case of general Q, we note that if f is 

defined on Q and A is the linear transformation which maps Q
0 

onto Q then 

the function f = foA has a modulus of smoothness which satisfies 

w {f,t) = 
r p 

with t the side length of Q. Thus, 

t-n/p w (f .Itt) 
r ' p 

lfl = ta-n/p 
Ba'q(Q ) 

p 0 

aeneral case of (3.7) follows easily from the case Q
0

. D 

and the 

We shall need one more technical result which is similar to Theorems 

3.4-5 but uses different semi-norms. 



20 Ronald A. DeVore and Robert C. Sharpley 

Theorem 3.6. Let 0 < k < m and 1 ~ p ~ ~. If Q is a cube inmn and 

f " wkCQ), then there is a polynomial n E ll' such that 
p m 

(3.8) llf-nll 1 (Q) ~ c IQik/n I ( inf IIDvf-nvll 1 (Q)) 
p lvl=k nv"ll'm-k p 

with c depending at most on n, m and p. 

Proof. As before, it is enough to prove (3.8) for the unit cube Q0 since 

then the case of an arbitrary cube Q follows by change of scale. It is also 

enough to prove (3.8) for functions f which have a zero polynomial as a best 

Lp(Q0) approximation fromll'm. 

Now suppose (3.8) does not hold for Q0 and such functions f. Then for 

each j 

(3.9) 

= 1,2, ... there is a function f. such that 
J 

II f. -n II 1 CQ ) 
J p 0 

> . = J I 
lvl=k 

We can also assume that the f. have been normalized so that 
J 

(3.10) 
llfjiiLP(Qo) + lvt=k I I D" f . I I 1 (Q ) = 1 

J p 0 

It follows that there is a subsequence (f.,) of (f.) such that f., converg~8 
J J J 

in LP(Q0) to a function f in LP(Q0). 

If n . denotes a best L (Q0) approximation to D"f. fromll' k' then 
V,J p J m-

~ 

(3.9) and (3.10) show that for each lvl = k, (nv,j)j=1 is a bounded sequencft, 

Thus we can assume without loss of generality that the subsequence (j') haq 

the property that n . , converges to a polynomial n E ll' k for each I vI = k, 
V,J v m-

It follows from (3.9) that Dvfj' converges to nv in Lp(Q0). Also, for any 
~ 

test function cp " c0 (Q0) 

= lim 

j ·--
v Hence D f = nv, lvl = k. This implies that f is a polynomial inFm. Sinc8 

a best approximation to each f. is the zero polynomial, f also has this 
. J 
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property and hence f = 0 on Q0 . But this implies Dvf = 0 on Q
0

, lvl = k. 

This contradicts (3.10) when j' is sufficiently large since f., 7 f and 
J 

21 



§4. Additional Estimates 

If 0 < q < ~, a function f belongs to BMO if and only if 

sup l~l JQ If - fQiq < ~ 
Q 

with the supremum taken over all cubes Q c]Rn. This useful characterization 

of BMO follows easily from the. John-Nirenberg Lemma [10] and is also con-

tained in the inequality [2) 

(4.1) [(f f) ]*(t) ~ c JtiQI(f~Q~)*(s)dss ' - Q XQ - O<t<lQl_ 
2n 

where f# denotes the sharp function of f on Q and g* denotes the decreasing 
Q 

rearrangement of g. 

Our interest in this section is to study the analogous situation of 

taking Lq norms (in place of 1
1 

norms) in the definition of f: and also to 

give analogues of (4.1) for / 1. Such inequalities for 0 <a< 1 were given 
a 

in [2]. Throughout this section we assume a> 0 unless stated otherwise. 

As a starting point, let us introduce some variants of f#. If 0 < q < • a 

and f E Lq(Q), then f has a set of best approximants fromlP(a] in Lq(Q) whidl 

we denote by A(f): = A(f,Q,q). Let PQ be any selection for these best 

approximants, i.e. PQf E A(f) for each f. Define 

(4.2) i 1 (x): a,q 
= sup --1- (-1- f If - P flq)l/q 

Q~3x IQia/n IQI Q Q 

= inf --
1

- c
1
Q
1

I JQ If- nlq)
1
/q . 

IQi
a/n 

n ElP [a] 

Analogously, define 

fp (x): 1 1 
If - p flq) 1/q (4.3) = sup 

IQia/n <TQT IQ a,q 
Q~3X 

Q 

where ~is a selection for best approximation in L (Q) by polynomials from 
q 

lP (a). Note that we can take ~ = PQ when a is not an integer and therefor~ 

i' ff;J for such a. For any a $:: 0, 
a,q a,q 

22 
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As we have shown in Lemma 

i' a,q 
II 

2.1, f 1 a, 

~ fb 
a,q 

is equivalent to f# and tD 
1 

is a a, 

23 

equivalent to ~- Actually, for any q ~ 1, we can replace PQf by PQf and 

get an equivalent maximal function. However for q < 1, PQf is not necessar

ily defined since f may not be locally integrable. 

Our next task is to give an analogue of the Lebesgue differentiation 

theorem for q < 1. Consider the Hardy-Littlewood type maximal functions 

M f(x): = 
q 

sup fn(x) I 
D:>Q3x 

m:A(f,Q,q) 

where the supremum is taken not only over all cubes containing x but over 

all best approximants. It is easy to estimate M f in terms of the Hardy
q 

Littlewood maximal operator M. Indeed, if n £ A(f,Q,q), then 

Using Lemma 3.1, we have for x £ Q, 

(4.5) 

Taking now a supremum over all n and Q, we find 

(4.6) 

where M f: 
q 

Mf~cMf on 0 
q q 

[M(Iflq)] 1/q and c depends only on q and a. 

The inequality (4.6) shows thatM is weak type (q,q), i.e. M maps L 
q q q 

into the Lorentz space Lq,~· Using this, we now prove that PQf(x) ~ f(x) 

a.e. as Q ~ {x}. 

temma 4.1. If f E L (loc 0), then 
q 

lim P Qf(x) = f(x) a.e. x E 0. 
Q~{x} 

froof. Since this is a local result, we may assume that f E L (0). Let q 

Af(x): = lim (l~l fQ lf(y) - f(x)fqdy)l/q. 
Q~{x} 

Since 1£1 < M f have Af ~ 2!/q M f a.e. which shows that A is also = q a.e., we q 

weak type (q,q). Therefore 
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l{x: Af(x) > y}l ~ c CllfiiL /y)q 
q 

Now for any continuous function g we have 

[A(f- g)]q(x) ~ lim (l~l fQ lf(y) - f(x)lqdy) 
Q4-{x} 

+ 1~ (l~l fQ lg(y) - g(x)lqdy) 
Q4-{x} 

= Af(x). 

y > 0. 

Hence, A(f - g) ~ Af and it must also follow that Af ~ A(f - g) (use f - g 

in place of f and -g in place of g). We must therefore have A(f - g) = A( f) 

whenever g is continuous. 

Given~> 0 andy> 0 choose g so that I If- gilL ~ 
q 

~y, then 

I{Af > y}l :;; C (

I If -ygiiL )1/q:;;_ 
I {A(f - g) > y} I 

Hence Af = 0 a.e. and we have shown 

(4.7) lim (l~l fQ lf(y) - f(x)lqdy)
1
/q = 0 

Q4-{x} 
a.e .. 

Return now to PQf. Fix x
0 

as any point where (4.7) holds. 

from LeDDIIa 3.1, 

(4.8) 

We have 

where the last inequality uses the fact that Pqf - f(x
0

) is a best approxi• 

mation to f- f(x
0
). Taking a limit as Q4-{x

0
} in (4.8) and using (4.7) show~ 

that 0 

Let us now establish our estimates which are similar to (4.1). Notic~ 

that if R* c Rare cubes with IRI ~ 2n IR*I, then 

(4.9) 

- PR*fll * ~ c( l~l fR* IPRf - PR*flq)
1
/q 

L..,(R ) 

~ c[(l!l JR If- PRflq)l/q + (IR!I JR* If- PR*flq)l/q] 

inf 
UER* 

i 1 (u). a,q 
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Suppose x E 0 and lim PQf(x) = f(x). If Q is any cube containing x choose 
Q4-{x} 

Q=: Q1 =>···=>Qj=>··· withx eQj, j = 1, 2, ... ,and 

then using (4.9) we see that 

- -jn 
1Qj+11-2 IQI, 

~ ~ 

IPQf(x)- f(x)l ~I IPQ f(x)- PQ f(x)l ~ c f# (x) I IQ.Ia/n 
j=l j j+1 a,q j=1 J 

(4.10) 

~ c IQict/nf# (x) 
a,q 

because x E Q. for all j. Hence (4.10) holds a.e. on 0. 
J 

The same proofs hold for fp so that 
a,q 

(4.9)' 

and 
(4.10)' 

are valid. 

II P:f - P:*f II * ~ 
L~(R ) 

IPQPf(x) - f(x)l ~ ciQia/n fb (x) 
a,q 

inf 
ueR* 

fb (u) 
a,q 

a.e. 0 

Now we refine the inequalities (4.10), (4.10)' along the lines of (4.1). 

Lemma 4.2. Iff e L (loc 0), then for each cube Q c 0 
q 

(4.11) [(f- PQf)XQ]*(t) ~ c[ J~QIF*(s)sa/n d: + ta/~(t)], O<t~IQI/2n 

with F:= f# Q where the subscript Q means that f# is taken as in (4.2) a,q, a,q 

with Q in place of 0. The inequality (4.11) holds if PQ is replaced by P~ 
and F is set equal to fp 

a,q,Q 

Proof. Let E: = {x e Q: F(x) > F*(t)} so that lEI ~ t. If xeQ\E and 

lim PQf(x) = f(x), then choose cubes Q =: Q1 :::> ••• with 1Qj+1 1 = 2-njiQI 
Q+{x} 

and x e Q. , j = 1 , 2, ... 
J 

Let m be the integer with 2-(m+1)n ~ l~l < 2-mn. 

Using (4.9), we see that 

(4.12) IPQf(x) - PQ f(x)l 
m 

m-1 m-1 
~ I IIPQ f- PQ fll ~ ~ c I IQ.Ia/n inf F(u) 

2 J·-1 · L (Q.) 2 J ueQ. 
J J J 

IQI 
~ c f sa/n F*(s)ds. 

t s 

m-1 
~ c I IQ.Ia/~CIQ.I) 

2 J J 

Since x e Q\E and lim 
j->eo 

PQ_f(x) = f(x), we have by inequality (4.10) that 
J 
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IPQ f(x)- f(x)l ~ c F(x) IQmla/n ~ c F*(t)ta/n. 
m 

This inequality combines with (4.12) to show that 

outside E. Since lEI ~ t, (4.11) follows by the usual properties of decreaa

ing rearrangements. The same proof works for fp by using (4.9)' in place 
a,q 

of (4.9). D 

Using Lemma 4.2 we can now relate f# and i 1 
a,r a,q 

then it is clear by Holder's inequality that i' ~ a,q 

Theorem 4.3. If 0 < q < r and f E L (loc 0), then 
q 

(4.13) f# (x) ~ c M (f# )(x) 
a,r a a,q 

Of course if q < r 

f# 
a,r 

with a: = (; + ~)- 1 and Ma(g):= [M(Igla)] 1/a where M is the Hardy

Littlewood maximal operator (for 0). The inequality (4.13) also holds with 

# replaced by p. 

Remark. The critical index a is the smallest value for which f# E La 
a,q 

ensures that f E Lr(loc) . See §9. 

Proof. The starting point is inequality (4.11). Applying an Lr norm over Q 

and using Hardy's inequality [17, p. 196], we obtain 

JIQI/2n [t1/r~]r dt ~ c JIQI [s1/aF*(s)]r ds 
0 t 0 s 

~r decreases so JIQig ~ 2n JIQI/2na 
0 0 

and consequently 

(J6QI[t1/r~]r d~)1/r ~ c(J6QI [s1/aF*(s)]r d:)1/r. 

Given an x E Q c 0, we divide by IQI 1/a and take a supremum over all 

Q 3 x in our last inequality to find that 
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i 1 (x) = 
a,r 

where we have 

sup 
Q3x 

used the 

known inequality 11-11 

notation L 
o,r 

:;; c 11-11 
L 
o,r 

for 

L 
o,o 

the 

sup 
Q3X 

Lorentz 

= cll-11 
L 

0 

norms 

when o 

p. 192]). The same proof works for b in place of #. D 

The following extends Lemma 2.3 to the case q < 1. 

Lemma 4.4. Let 0 < q < 1 and F.(x): 
J 

1 
=sup---

Q3x IQia/n 

and the well 

< r (see [17, 

If a~ 0 and j ~ [a], there is c
1 

> 0 depending at most on a, j, q and n 

1uch that for each f € L + L 
q 00 

(4.14) 
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~- The proof is the same as Lemma 2.3 except for certain modifications 

necessitated by the fact that q < 1. The lower inequality in (4.14) follows 

. II 
from the fact that F[ ] = f The upper inequality follows from the a a,q 

inequality 

(4. 15) F. 
1

(x) ~ c F.(x), 
J- J 

which holds for all j > [a]. 

To prove ( 4. 15), choose cubes Q Q
1 

c Q
2 

c •.. c QN as in Lemma 2. 3 and 

write 
N-1 N-1 

f = f - P f + l [ P f - P f] + P f = f - PQ f + l ni + ~ 
Q1 i=1 Qi Qi+1 QN 1 1 

where pis the best L projection operator of degree j. We write 
q 

with pi of degree ~ j - 1. 

ni = pi + terms of order j 

N 
If p: = l p., then 

1 l. 

with the notation corresponding to that in Lemma 2.3. 
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Each of the terms I, II~ c [F.(x) JQia/n]q. The proof of I is the 
J 

same as in Lemma 2.3. The proof of II uses Lemma 3.3 and the subadditivity 

off f•fq with the same basic argument as in Lemma 2.3. Since III~ 0 as 

N ~ ~. (4.15) follows. D. 



§5. The Calderon Maximal Operator and Peano Derivative 

A.P. Calderon [5) and later Calderon and R. Scott [6] have introduced 

certain maximal operators in conjunction with the study of singular integrals, 

differentiation and the embeddings of Sobolev spaces. In this section, we 

shall show that these maximal operators are equivalent to fb 
a,q 

process bring out connections between the finiteness of fb (or 
Q' 

differentiability of f. 

For q, a > 0 and 

define 

(5 .1) 

f E L (loc), 
q 

and in the 

ffj) and the 
a 

if there is a polynomial P of degree less than a such that (5.1) is finite, 
X 

otherwise let ~(f,x): = ~- This is in essence the maximal function de
q 

fined by Calderon although Calderon makes the definition only for 

q ~ 1 (q > 1 in [5) and q ~ 1 in [6)) and takes the sup over balls rather 

than cubes (which as was noted in §2 leads to an equivalent maximal function). 

It should be emphasized that in contrast to the definitions of f: and f~, the 

polynomial in (5.1) does not vary with Q. Nevertheless it turns out that 

N°(f) and fb are equivalent. q a,q 

Much of the material of this section can be found in the paper of 

Calderon [5]. We begin by showing that ~(f,x) is well defined for each 
q 

0 < q < ~ and 0 < a. 

Lemma 5 .1. If there is 

sup 
!l:>Q3X 

then Px must be unique. 

Suppose that 

sup 
O::>Q:;.x 

a polynomial Px of degree less 

- 1- (-1- f If - P lq) 1/q 
IQia/n IQI Q x 

n2 are two polynomials in P(a) 

1 f q)1/q (TQT Q If- njl < ~ 

29 

than a such that 

< ~. 

which satisfy 

j = 1,2, 
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then the polynomial p(y) = n1(y) - n2(y) -. l cu(Y - x)u satifies 
lul<a 

1 1Piq) 1/q ~ c 
2 1 - rc.lq)l/q ~ IQia/n <m IQ l <m IQ If c 

j=1 J 

for all Q containing x. Because of Lemma 3.3, 

l I cui IQIIul/n ~ c IQia/n 
lul<a 

for all Q containing x. Letting IQI ~ 0 shows that cu = 0 for all u. 0 

We start with a definition of the u-th Peano derivative of f at x
0

. 

Suppose there is a q > 0 and an open set 0 c 0 with x
0 

e: 0 such that f is 

in L on 0. 
q Suppose further there is a family of polynomials {nQ}Q 

x
0 

e: Q and deg nQ ~ M, for all Q c 0, and 

C--1-- f If - n lq)l/q = O(IQik/n). 
IQI Q Q 

Then, if I" I < k 

(5.2) lim u 
=: D"f(x0) 

Q+{xol 
D nQ(x0) 

* * 

with 

exists and is finite. Indeed, when Q c Q and IQ I ~ 2-niQI, then using 

Markov's inequality and Lemma 3.1 

u 
II D CnQ - n *) II * 

Q Loo(Q ) 
~ ciQI-Iul/nlln - n .... II 

Q Q~ Loo(Q) 

~ c1QI-Ivl/nc 1 ~ 1 JQ lnQ - nQ*Iq) 1/q 

~ ciQI(k-lul)/n. 

Hence, the same exact telescoping argument as used in the proof of Lemma 2.4 

shows that 

(5.3) 

for any x
0 

e: Q* c Q 

u 
I I D (nQ - n *) I I * 

Q Loo(Q ) 

which shows that (5.2) exists. 

Whenever such a family of polynomials exist, we call D"f(x0) as defined 

by (5.2) the v-th Peano derivative of f at x0 . 

Let us observe that Duf(x0) does not depend on the neighborhood ~ th• 

family nQ, or on q. If {nQ} is a family for 0, q, and k, and {nQ} a family 
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for a. q, and k, it follows for a suitably chosen 00, that whenever Q c 00 

and q0 is the minimum of q and q, 
1 

q q 
II - II < ( 1 J I - n- I 0 ) 0 

nQ - nQ L~(Q) = c TQT Q nQ Q 

1 1 

[ If qq 1 - qq 
~ c (- In - fl ) + (TQTJQinQ - fl ) 1 

IQI Q Q 

k /n 
~ ciQI 0 

with k0 the minimum of k and k. Since lvl < k
0 

k /n 
IDV(nQ- nQ)(xo)l ~ ciQI-Ivl/n(IQI 0 ) = o(l) 

v v -This shows that lim D nQ(x0) = lim D nQ (x0). 
Q~{x0 } Q~{x0 } 

31 

~emma 5.2. If a, q > 0; lvl < a and f is locally in Lq' then Dvf(x) exists 

at each point where f# (x) is finite. In addition, for such x a,q 

(5.4) 
a-lui 

IDv(PQf)(x) - Dvf(x)l ~ c f~,q(x) IQI n 

If ££ (x) is finite, then ... ,q 

(5.4)' 

~· 

a-lui 

IDv(~Qf)(x) - D,f(x)l ~ c ~ (x) IQI n 
v a,q 

-n 
If x E R

2 
c R

1 
and IR

2
1 ~ 2 IR

1
1, then from (4.9) 

~ c f# (x) IR la/n . 
a,q 2 

Using the exact same telescoping argument as in Lemma 2.4 shows that 

(5.5) 

* * for any cubes Q, Q with x E Q c Q. Hence {PQf} can be used in (5.2), and 

so lim Dv PQf(x) = D f(x). Using this in (5.5) gives (5.4). To prove 
Q+{x} v 

(5.4)' use (4.9)' in place of (4.9) and Pg in place of PQ in the above 

argument. D 



32 Ronald A. DeVore and Robert C. Sharpley 

Theorem 5.3. If a, q > 0, there are constants c
1

, c
2 

> 0 such that for each 

f E L (loc), 
q 

(5 .6) 

Proof. The lower estimate in (5.6) is clear from the definitions of these 

maximal functions. For the upper estimate, suppose f (x) is finite and 
a,q 

" define P (y): = L D f(x) (y-~) where D f(x) are the Peano derivatives 
x I " I <a " " · " 

off at x which are guaranteed to exist by Lemma 5.2. Using (5.4)', we find 

for any cube Q 3 x 

(1~1 JQIPX-~flq)l/q ~ c IIPX-PgfiiL (Q) 
00 

~ c L ID f(x)-D"~f(x)l 11(·-x)"ll 
l"l<a " L

00
(Q) 

~ c L fb (x) 
l"l<a a,q 

a-1"1 
IQI n 

M 
IQI n ~ c 

But (JQif- Pxlq) ~ c (J If- Pbflq + J IP - Pbflq) which together Q Q Q X Q 

with the last inequality shows (---1--- J If - P lq)l/q ~ c tb (x) IQia/n. IQI Q x a,q 

Dividing by IQia/n and taking a supremum over all Q establishes the right 

hand inequality in (5.6). o 

Corollary 5.4. If a> 0 there are constants c
1

, c2 > 0 such that 

c
1 

f~(x) ~ N~(f,x) ~ c2 f~(x). 

Proof. ~ 
1

(x) is equivalent to f~ because of Lemma 2.1. 0 
' 

" Corollary 5.5. If fb (x) < oo, then P (y) = L D f(x) iY:!l_ 
a,q x l"l<a " "' 

Proof. This follows immediately from the proof of Theorem 5.3 and the 

uniqueness of Px. 0 

When a is an integer fb can be estimated in terms of classical deria 

vatives as the following result shows. 



MAXIMAL FUNCTIONS MEASURING SMOOTHNESS 33 

Theorem 5.6. There are constants c1 , c2 > 0 such that for any f E ~(lac Q) 

b v . 
fk(x) ~ c1 M( l ID fiXQ)(x) 

lvl=k 
(5. 7) 

and for any f E L
1

(loc) for which£~ E L
1
(loc), the weak derivatives Dvf, 

fuf = k, exist and satisfy 

(5. 8) l ID"f(x)l ~ c2 f~(x) lvl=k 
a.e. X E Q. 

Proof. Let V£ := l IDV£1. When f E ~(lac Q) and Q is a cube contained 
lvl=k 

in n, then according to Theorem 3.4 there is a polynomial n o£ degree < k 

with 

fql£- nl ~ c IQik/n fqiVfl. 

Dividing by IQfk/n+l and taking an in£ over n and a sup over all Q containing 

xgives (5.7). 
Q> 

To prove (5.8), let f E L
1

(loc) and consider any test function$ E c0(Q) 

with supp $ =: K cc Q. Choose a function ~ E Ce» with ~ supported on the unit 

cube and f ljJ = 1. 
lRn 

-n -1 
Set ljle(x): = e ljl(e x). If e > 0 is sufficiently 

small the functions Fe : = f * ljle are defined on K. Also for any lvl = k, we 

have for z E K 

(5. 9) IDvFe(z)l =If f(y)D"Ijl (z-y)dyl = If [f(y) - P (y)]Dvljl (z-y)dyl 
lRn e lRn z e 

-k-n k b 
~ c e f lf(y) - Pz(y)ldy ~ c N

1
(f,z) ~ c fk(z) 

z+Qe 

with Qe the cube with side length 2e centered at 0. The second equality 

uses the fact that fP Dvg = (-l)lvlfDvP g = 0 if g has compact support and 

Pis a polynomial of degree less than fvf. We also used the fact that 

IID"Ijlefle» ~ e-k-niiD"IJllle» ~ c e-k-n and ljle is supported on Qe. 

inequality is Corollary 5.4. 

Using (5.9), we have 

The last 

This estimate shows that the distributional derivative D"£ is a distribution 

of order 0 and hence must be a Radon measure. Moreover, the same estimates 
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show that Duf must be absolutely continuous with respect to Lebesgue measur~. 

Therefore Duf must belong to L1(loc) and satisfy 

IDufl ~ c fb 
k 

a.e. 

as desired. 0 

Remark. The preceding proof actually shows that the weak derivatives Duf 

(lui = k) exist and satisfy 

(5 .10) u 1 
ID f(z)l ~ c Fk(z) := sup ( 1+k/n JQ lf(y) - Pz(y)l) 

O:>Q;>x IQI 
IQIH 

whenever Fk is locally integrable. This follows since the integration in 

inequality (5.9) was performed over cubes of measure (2~)n as ~ 7 0+. 

The following Corollary extends Theorem 5.6 to the case of nonintegral a 

Corollary 5.7. Suppose a> 0 and f~ E L1(loc 0), then for each lui <a both 

the weak derivatives Duf and the Peano derivatives Duf exist a.e., are 

locally integrable, and coincide a.e. on 0. Moreover, 

(5.11) a.e. 0 

where Q is any cube satisfying IQ I ~ 1 and 0 ~ Q ,. x. 

Proof. Let k = (a) and suppose lVI ~ k, then according to Lemma 5.2 the 

Peano derivative Duf exists a.e. and satisfies for any cube Q with x E Q • II 

a-lui 

(5 .12) IDuf(x)l ~ c ~(x)IQI ___ n ___ + IDu(PQf)(x)l 

where the last inequality follows from the representation of PQf given in 

(2.4). 

Next we prove that the weak derivaties are locally integrable. Suppo1~ 

lVI = k and let Fk denote the maximal function defined in (5.10). Since lht 

supremum in (5.10) is over all cubes Q with IQI ~ 1, it follows from Corol~ 

lary 5.4 that 
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(5 .13) 

Since Fk is locally integrable, inequality (5.10) shows that Dvf is also 

locally integrable. Hence, as is well known [1, p. 75), DIJf is locally 

integrable for each IIJI < k. 

Finally, in order to complete the proof of the theorem, we must show 

that Dvf = Dvf a.e. on 0 for lvl ~ k. Define P (y): = l D f(x) (y-x)v 
x lvl~k v v! 

Let ~ E C~ be supported on the unit cube with J~ = 1 and set 

-n -1 
~&(x): = e ~(e x), e > 0. If Q is any closed cube contained in 0, then 

Dvf * ~ is defined on Q provided e is sufficiently small. Moreover (see e 

[15, p. 62]), 

(5.14) a.e. x € n. 
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v Let x be any point in Q where (5.14) holds and where both Dvf(x) and D f(x) 

exist. Since P is a polynomial, lim+ DvP *~ (y) = DvP (y) holds for each 
x e~o x e x 

y. But Dv(P )(x) = D f(x) by the definition of P , so 
X V X 

lDvf(x) - D f(x)l = IDvf(x) - DvP (x)l 
V X 

=lim+ l(f-Px) * D~~e(x)l 
e~o 

~ lim+ e-n-lvl J lf(y)-P (y)ldy 
e~o Jy-xl~e x 

~ c lim+ fb(x) ea-lvl = 0. 
e~ a 

The last inequality follows since ~(f,x) ~ c f~(x) by Corollary 5.4. D 



§6. Smoothness Spaces 

We have already pointed out that f: measures the local smoothness of t, 

Accordingly for 1 ~ p ~ ~ [see §12 for the case 0 < p < 1] and a > 0, we 

define smoothness spaces 

= {f ~ L (Q): f# ~ L (Q)} 
P a P 

and 

ta := {f ~ L (Q) : fp ~ L (Q)}, 
P P a P 

then ~a c Ca and equality holds if a is not an integer. We could also use p p 

f# (q ~ p) in place of f# in the definition of Ca. However, in light of a,q a p 

the inequalities (Theorem 4.3) f# ~ f# ~ c M (f#) with a= (1/q + a/n)-l a a,q a a 

and the fact that M is bounded on L , it follows that f/l E L is equiva-a p a,q p 

lent to f# E L for 1 ~ q ~ p. Also for 0 < q < 1, we have a P 
f# ~ f# ~ c M f# with a: = (1 + a/n)- 1. 
a,q - a a

0 
a,q 0 

Since M is bounded on L (II), ao P , 

f# E Lp(Q) is equivalent to f~ a,q ... E L (Q) in this case as well. Similar 
p 

statements hold for fb and fb a a,q 

Iff ~ Ca, we define the seminorm 
p 

and the norm 

Similarly, 

II f II a 
c 

p 

If 
= llfaiiL (O) 

p 

= II filL (O) 
p 

llf~ll 1 (O) 
p 

+ lfl 
ca 

p 

and llfll a 
t 

p 

= llfll 1 {0) 
p 

The triangle inequality for the two norms follows from the subadditivity 

of the # and p maximal operators which is an immediate consequence of the 

definition (2.2). Another useful inequality which follows from the sub-

additivity is 

(6.1) lf:(x) - g:(x)l ~ (f- g):(x) X~ Q 

l 

which holds whenever g:(x) is finite. 

36 
t 

__ j 
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Lenuna 6 .1. < < a Aa For 1 = p = ~ and a > O, C and ~ are Banach spaces under their 
p p 

respective norms. 

~· We prove that Ca is complete with the proof for Ca following in much 
p p 

the same way. Suppose {f } is Cauchy in Ca. Since L is complete there 
m p p 

exists an f E L such that f ~f in L . If Q is a cube in~n. then whenever 
p m p 

h ~ h in L there must hold 
m P 

1 f 
IQII+a/n Q 

lh - PQhl = 

;;; 

lim 1 f lh P h I l+a/n Q m - Q m or- IQI 

lim (hm)!(x) X E Q 
or-

since the operator PQ is bounded on L
1

(Q). Taking a supremum over all cubes 

Q containing x gives 

(6.2) h! (x) ;;! lim (h )# (x) 
... or- ma 

X E 0. 

Applying this inequality to the sequence {f }, taking p-th powers, and applym 

ing Fatou's lenuna, we deduce (f lim l(f )#lp)l/p;;! lim I If II 
or- m a or- m ca 

p 

and so f E Ca. Similar reasoning shows that inequality (6.2) applied to the 
p 

~ 

sequence {fm- fm,}m=l gives 

II (f - fm' ):11 1 ~ lim 
p or-

But the right hand side converges to zero as m' ~ ~ since {fm} is Cauchy in 

Ca. Since f ~ f in L has already been established, f ~ f in Ca. D 
p m p m p 

The following result of Calderon [5] shows that Ca is the Sobolev space 
p 

wa{n) when a is an integer and p > 1. 
p 

Theorem 6.2. (Calderon) If k is a no~egative integer, then for each 

1 < p ~ ~. Ck(O) = wkcn) with equivalent norms. 
p p 

Proof. We have shown in Theorem 5.6 that for Vf:= I IDvfl, 
lvl=k 

a.e. on n 
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with M the Hardy Littlewood maximal operator. 

p > 1, we have 

provided p > 1. 0 

Since M is bounded on L (0), 
p 

The spaces C~ and ~ can also be described in terms of classical 

smoothness. a a oo The following theorem shows that C
00 

= B
00

' (see §3 for the 

definition of Besov spaces) when n islRn or a cube in!Rn. More general 

domains are discussed in §11. 

Theorem 6.3. If Q =IRn or a cube inlRn, then C~ = B~' 00 

with equivalent 

norms. 

Proof. If f € 
a C
00

, then Theorem 2.5 shows that for k = [a] + 1 

II a 
wk(f,t)00 ~ c llfaiiL (Q) t , t > 0. 

00 

Hence f E B~'
00 

and llfll Ci 
00 

~ 
Boo' 

c llfll a 
coo 

On the other hand, if f E B~'
00

, then for each Q there is a polynomial 

n of degree less or equal [«] (Theorem 3.5) such that 

llf-niiL(Q) 
00 

Hence, 

~ c lfl IQia/n 
n«,oo 

00 

Taking a sup over Q 3 x and using Lemma 2.1, we observe that 

x € n 

and hence II f II a ~ c II f II a 
00 

0 
Coo Boo' 

. h Ba,oo . When a is not an 1nteger, t e space 
00 

1s the same as the Lipschitz 

space Lip a. Recall that there are several definitions of the space Lip a. 

The following theorem shows that these definitions are equivalent when Q is 

lRn or a cube in JRn. 
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Theorem 6.4. Let 0 be lRn or a cube inmn and a > 0. For f locally inte-

arable, the following conditions are equivalent: 

i) there exists M1 > 0 and functions {fv}(v(<a such that f
0

: = f and· 

for each 

(vi < a and for almost every x € 0 

fv(y) = L f (x) (y-x)~ + R (x y) 
l~+vl<a ~+v ~! v ' 

a-lvl with (Rv(x,y)( ~ M1 (y- x( a.e. y € 0, 

ii) there exists M2 > 0 such that for almost every x E 0, there is 

a polynomial Px of degree less than a with 

(f(y) - Px(y)( ~ M2 (x- y(a a.e. y € Q , 

iii) for k the smallest integer ~ a, there is an M
3 

> 0 such that 

I~ (f,x)l ~ M
3 

(h(a 

iv) f~ E l.co(O) • 

a.e x, x + kh E 0, 

In addition, if in i), ii), or iii) Mf denotes the smallest M. for the 
·1 

corresponding property, then Mf is a seminorm equivalent to I (f~( (Lco(O)" 

v 
Proof. If i) holds, then ii) holds with P (y): = L f (x)(y-~) and 

x (v( <a v v. 

H2 = M1. If ii) holds and x, x + kh € 0, then ~(Px,x) = 0 since 

deg(P ) < k. Hence 
X 

k k k 
l~(f,x)( = l~(f- Px, x)( ~ 2 max 

O~j~k 
(f(y.) - p (y.)( 

J X J 

~ ka 2k M2 (h(a 

with yj := x + jh, j = 0, ... , k. Hence iii) holds with M
3 

= ka 2~2 . 

If iii) holds, then according to Theorem 3.4-5 for each cube Q c 0 

there is a polynomial n of degree less than a such that 

I If- nll 1 (Q) ~ c M
3

(Q(a/n. 
()0 

Hence, if x € Q, 

. 1 I If - nl ~ c M
3

. 
IQil+a/n Q 
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Taking a supremum over all such Q and using Lemma 2.1, we see that 

llfallt (Q) ~ c M3 • 
00 

Finally, if condition iv) holds, then define fv := Dvf with Dvf the 

Peano derivative whose existence is guaranteed by Lemma 5.2. The Peano 

v b derivatives satisfy for almost every x, Duf(x): = lim D (PQf)(x), lvl = k. 

Fix x €.Q for which this holds. 
Q+{x} 

Since 

Dv(pQPf)(y) = l D~+u(Pbf)(x) (y-~)~ 
l~+vl<a Q ~· 

if y € Q with f~(y) < oo, then 

(6.5) 

IRv(x,y)l = lfv(y) - l 
l~+vl<a 

f (x) (y-x)~l 
~+v ' u. 

v 
~ IDvf(y)- D (PQf)(y)l 

+ l ID~+v(PQf)(x) 
l~+vl<a 

where Q is chosen as the smallest cube with x,y € Q c Q. Inequality (5.4)' 

shows that 

and also 

a-lvl 

IDvf(y) - Dv(PQf)(y)l ~ c f~(y) IQI n 

a- I p+v I .!JlJ 
fb(x) l IQI n IQI " 
a l~+vl<a 

a-lvl 
f:(x) IQI_n_ 

Substituting these estimates into inequality (6.5) gives 

IR .. (x,y)l ~ c [fb(y) + fb(x)] lx-yla-lvl 
v a a 

I l
a-lvl x-y 

as desired, since IQil/n ~ c lx-yl. D 

Condition i) of Theorem 6.4 is the usual definition of a function in 

Lip a for Q closed and is for example the standard hypothesis in the 
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Whitney extension theorem (cf. [15, p. 176)). Condition ii) is the charac-

terization of Lipschitz functions due to H. Whitney [20]. We choose to 

adopt i) as the definition of the space Lip a ( = Lip(a,O)) and define 

lfiLip a := inf {M: M satisfies i) of Theorem 6.4} 

and 

+ 

Corollary 6.5. If 0 is JRn or a cube in JRn and a > 0, then t~ = Lip a with 

equivalent norms. 

Lemma 6.6. Let 0 < ~ ~ a and 1 ~ p ~ ~. Then, there is a constant c 

independent of f such that 

(6.6) llfll I!~ c llfll . cP ca 
p p 

Proof. First suppose p > 1 and Pis the projection operator of degree [a]. 

From Lemma 2.3, we have 

(6. 7) f#(x) ~sup 1 J lf-PQfl ~ [sup IQII JQ lf-PQfi]I-e [f~(x)] 8 

~ Q3x IQI 1+~/n Q Q3X u 

With 8: = ~ja. When X € Q, inequality (2.3) shows that 

1 TQT JQ lf-PQfl ~ c Mf(x) 

with M the Hardy-Littlewood maximal operator. Using this together with 

(6.7) gives 

Applying L norms and using the fact that M is bounded on L readily gives 
p p 

(6.6). 

For p = I, we use the techniques of §4 to circumvent the fact that M 

is not bounded on L1. -1 Let q: = (1+~/n) and PQf denote a polynomial of 

best Lq approximation to f fromW[a] on Q. Take e: =~/a and argue as in 

(6. 7) to find 
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~ c [M f(x)] 1-e [f# (x)] 6 
q a,q 

where we used definition (4.2) and the fact that fq 1£-PQflq ~ fq lflq. 

Also we have used Lemma 2.4. 

It follows that 

f# ~ c (M f + f# ) ~ c 
~.q q a,q 

(M f + ffl) 
q a ' 

where we used the fact that f:,q ~ f: for q ~ 1. Taking an L1 norm shows 

that 

(6.8) I I £
11 

I I ~ c C I I £ I I L 
~,q L1 1 

+ II £:II L ) = c II f II a . 
1 c

1 

Finally, recall from Theorem 4.3 that f~ ~ c M (f~ ) with a:= (1+~/n)- 1 . 
~"' a p,q 

Since Ma is bounded on L1, we have llf~IIL ~ c II£~ IlL. When this is 
I' 1 ... ,q 1 

used in (6.8), the inequality (6.6) follows. D 

The next result is a "reduction theorem" for the spaces Ca and ta. 
p p 

Theorem 6.7. Suppose a > 0, 1 ~ p ~ ~, and k < a. The space ta is equal 
p 

to the space of functions f E L which have weak derivatives 
p 

D"f ~ ..,or-k ~ '- (lvl = k) and 
p 

(6.9) 

Similarly, C01 is equal to the space of functions f E L with weak deriva-
p p 

tives n"£ in cor-k (lvl = k) and 
p 

(6.10) 

Proof. Suppose f € t 01
• Corollary 5.7 shows that the weak derivatives n"£ 

p 

· d 1 h P d · · I I k Let a ·.-- (1 + an-k)- 1 and ex~st an equa t e eano er~vat~ves, \1 = . 

choose q so that a< q < 1 ~ p; then inequality (5.4)' shows that for any 

cube Q c 0 with xo € Q, the polynomial n:= n"~ is of degree less than a-k 

and satisfies 
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!-k (l~l JQ IDvf- nlq)
1
/q ~ c(l~l JQ(f~)q) 1/q ~ c Mq(f~)(x). 

IQI n 

Taking a supremum over all cubes Q with x £ Q c Q shows that 

(6.11) 

Since M is bounded on L , this gives 
q p 

v 
II (D f)a-k qiiL 

, p 

Now it follows from Lemma 2.1 and Theorem 4.3 that for a' =a- k 

vb< vb vb 
(D f)a, = c(D f)or', 1 ~ c M0 [(D f)or,,q], 

ao since M is bounded on L , we have 
0 p 

II(Dvf)g_kiiL ~ c 
p 

Tnis gives the right hand inequality in 

Iff . 
eor 

p 

(6.9). 

The right hand inequality in (6.10) is proved in the same way. The 

existence of the weak derivatives Dvf, fuf = k follows from Lemma 6.6, the 

fact that C~ = C~ if~ is not an integer, and Corollary 5.7. 
p p 

To prove the left hand inequality in (6.9), suppose f £ L and 
p 

Duf £ ~:-k, fvl = k. From Theorem 3.6, it follows that for each cube Q 

inf JQ If-ni ~ c IQik/n l inf JQ IDuf-nvl· 
n£lP(a) fuf=k nu£lP(a)-k 

If we divide both sides by IQJ 1+a/n, take a supremum over all Q containing 

x and use Lemma 2.1, we find 

(6 .12) l (D"f)~-k(x). 
fuf=k 

Applying L norms to (6.12) gives the desired result. 
p 

The same argument used in proving (6.12) shows that 

(6.13) 

Hence, the left hand inequality in (6.10) follows by taking L norms. D 
p 

0 Up to this point, we have not defined the space C , 1 ~ p ~ 00 • The 
p 

following theorem (see [2]) will motivate our definition. 

43 



44 Ronald A. DeVore and Robert C. Sharpley 

Theorem 6.8. Suppose 1 < p < ~ and f satisfies lim (Mf)*(N) 

the Hardy-Littlewood maximal operator, then 

(6.14) 

with c
1

, c2 independent of f. 

;;; II f 11 11 ;;; 0 L 
p 

0 where M is 

Proof. The inequality llf~ll 1 ';;; c2 llfll
1 

follows immediately from the 
. fl p p 

facts that f 0 ;;; 2 Mf and that the Hardy-Littlewood maximal operator M is 

bounded on L . To obtain the remaining left hand inequality in (6.9), for 
p 

each s > 0 we define E: = Es: = {Mf > (Mf)*(2s)} u {f~ > (f~)*(2s)}. Then 

E is open and lEI ;;; 4s. Now select for each x a dyadic cube Q(x) containing 

x which has smallest diameter and satisfies Q(x) n Ec I ~- Subdividing Q(x) 

into 2n congruent dyadic subcubes, we let Q(x) be one of those that contain~ 

x, then necessarily Q(x) c E and 

(6.15) 
n ~ n 

IQ(x) I = 2 IQ(x) I ;;; 2 IQ(x) n El. 

But dyadic cubes have the property that when any two have intersecting 

interiors, then one must contain the other; hence we may select from the 

countable collection {Q(x)}xEE countably many maximal cubes {Qj}~=1 whose 

interiors are pairwise disjoint and so that 

(6.16) E c u Q., 
j J 

Q. n Ec I$ (each j), l IQ.I;;; 2niEI. 
J j J 

The last inequality follows from summing inequality (6.15) over all j to gel 

l I Q. I ;;; 2n l I Q. n E I = 2n IE I . 
j J j J 

Next we decompose f into two functions: g: = l(f-f )x 
j Qj Qj 

and h: = f-g = l f X + f X . 
j Qj Qj Ec 

Since M is weak type (1,1) and strong 

type (~,~), then 

(6.17) (Mf)*(s) ;;; (Mg)*(s) + 11Mhll 1 ;;; ~ llgll 1 + llhll 1 
~ 1 ~ 

But Q. n Ec I $, so we observe that 
J 

(6.18) 

and 

inf f~(u) ;;; 
UEQ. 

J 

ci')*(2s) 
0 
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lfQ I ~ inf Mf(u) ~ (Mf)*(2s). 
j UEQ. 

J 

If X I ~ (Mf)X ~ (Mf)*(2s), so 
Ec Ec 

llhll 1 ~max {s~p lfQ_I, llf X 11 1 } ~ (Mf)*(2s). 
co J J Ec co 

Estimating the L1 norm of g we have from (6.18) and (6.16) that 

llgll
11 

~ ~ JQ. lf-fQ.I ~ ~ IQj I (f~)*(2s) 
J J J J 

~ 2n IEI(f~)*(2s) ~ c s(f~)*(2s). 

Combining these with (6.17) we obtain 

(6 .19) (Mf)*(s) ~ c (f~)*(2s) + (Mf)*(2s) 0 < s < ""· 

Let N > t > 0 be arbitrary but fixed real numbers, then integrating (6.19) 

from t/2 to N with weight 1/s we obtain 

~12 (Mf)*(s) ~s ~ c J~12 (f~)*(2s)~s + J~12 (Mf)*(2s)~s 

by changing variables. Subtracting the integral J~ (Mf)*(s)~s from both 

sides and using the fact that (Mf)* decreases we see 

(Mf)*(t) ~ c J~12 (Mf)*(s)~s ~ c [~ (f~)*(s)~s + J~N (Mf)*(s)~s] 

~ c [~ (f~)*(s):s + (Mf)*(N)]. 

By letting N ~ co and using the hypothesis that (Mf)*(N) ~ 0 we find that 

for t > 0, 

(6.20) (Mf)*(t) ~ c ~ (f~)*(s)~s . 

45 

But now we may use the fact that lfl ~ Mf a.e. and apply Hardy's inequality 

to the integral in (6.20) to obtain 

as desired. o 
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0 For 1 ~ p < ~ we define the space C to 
p 

For p = ~. we define C~: = BMO and I lfl I o= 

beL and set llfll 0 : 
p c 

= llfiiBMO = I If~~~~~ In view 
c~ 

Theorem 6.8, these are the natural definitions for 1 < p < ~. However, 

some explanation is needed for the case p = 1. As we explain in §12, the 

proper definition for p = 1 is.f# E 11 for some q < 1, which is equivalent 
O,q 

to f E 1
1 

modulo constants. With this definition C~, 1 ~ p ~~.forms an 

interpolation scale. On the other hand, the space obtained by requiring 

flf E 1
1 

implies Mf E 1
1 

(loc) and so f belongs to L log L locally. This 

space does not form an interpolation scale with the L spaces 1 < p < ~ 
p 



§7. Comparison With Besov Spaces 

We intend to carry further the study of the relationships of Ca and Ca 
p p 

to the classical smoothness spaces. 
. n 
We shall assume that Q = lR throughout 

this section. Similar arguments work for cubes inmn. Other domains are 

discussed in §11. 

We start with some approximation estimates. For 1 ~ p <~define 

Er(f,p,x)p : = inf (J lf-niP) 1/P 
nEll' Qp(x) 

r-1 

where Qp(x) is the cube centered at x with side length p and set 

E (f,p) 
r p = IIEr(f,p,·)tt 1 

p 

From Theorem 3.4, it follows that whenever g € ~ then 
p 

E (g,p,x) ~ c pr l IID~gll 1 (Q (x))' 
r p l~l=r p P 

Hence integrating over x ElRn, we get by Fubini's theorem that 

(7.1) E (g,p) ~ c pr l (J J ID~g(y)X~ ( )(y)fp dy dx) 1/p 
r p l~l=r JRn JRn . -~p x 

r+n/p 
~ c P lfgll r 

w p 

Similarly, when f E L 
p 

(7. 2) E (f,p) ~ [J (JQ ( )lflp)dx] 1/p ~ c Pn/p llfll 1 . 
r p JRn p x p 

Since E is subadditive, (7.1) and (7.2) give 

Er(f,p) ~ E (f-g,p) + E (g,p) ~ c pn/p{llf-gll 1 r r P 

Taking an infinum over all such g gives 

Er(f,p)p ~ c pn/p Kr(f,pr)p 

where Kr(f,t)p : = K(f,t;Lp,w;), t > 0, is the K functional for interpola

tion between~ and Wpr. It is known [11) that K (f,tr) ~ c w (f,t) for 
-p r p r p 

l > 0. Thus 

(7 .3) E (f,p) ~ c pn/p w (f,p) . 
r p r p 

The same estimate holds when p = ~ with C in place of L~. 

47 
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We are now in a position to prove the following continuous embedding 

theorem: 

Theorem 7.1. If 1 ~ p ~~and a> 0, then we have the embeddings: 

(7. 4) 

Proof. For r = [a] + 1 we have from Theorem 2.5, 

I I~ (f, ·) II 1 ~ c I hI a II f: I I 1 p p 

which leads immediately to the right hand embedding in (7.4). 

To prove the left hand embedding, let F : = f# with f# as in §4. a,p a,p 

By the observation (2.14) on the equivalence of maximal operators 

F(x)P ~ c sup {Er(f,p,x)P/pa+n/p}p 
p>O 

E (f,p,xl dn 
r p = 

pap+n p 

because Er(f,p,x) is increasing as a function of 

as desired. 0 

p ~ Er(f,p)~ dn 
J IFI ~ C Jn .:= ~ C 
JRn 0 pap+n p 

~ c( lfiB;,p) p 

c f# and hence 
a,p 

llf#ll ~ c a L 
p 

lfl a P B , 
p 

p. Thus from (7.3) 

Jn(W/f,p)p)p ~ 
0 pa p 

Next we show that the embeddings in Theorem 7.1 are best possible 

within the scale of Besov spaces. We begin with the lower embedding. 

Lemma 7.2. If 1 ~ p <~and a> 0, then there is an f which belongs to 

Ba' q for each p < q ~ ~. but f {. Ca.. 
p p 

Proof. Consider first the case 0 < a < 1 and n = 1. By the embedding 

Ba,q c Ba,~ it is obvious that we may assume q < ~. 
p p 

and a : = 2-o < 1. Consider the "hat" function 

Set o : = (1 + l- a)-l 
p 
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(7 .5) tfl(x) = 
otherwise 

We select disjoint intervals I. : = [a.,b.] with -2
1(b.-a.) =h. : = aj. 

J J J J J J 
Since l h. < ~, we can choose the intervals so they are all contained in 

J 

[O,A] with A < ~. Define 

f.(x) = j-1/p 2j h. tfl((x-a.)/h.). 
J J J J 

Then f. is supported on I .. Further define 
J J 

then 

~ 

f =lf., 
1 J 

so that f € Lp. 

To see that fiCa notice that if x 10 I., 
p J 

f#(x) ~ 1 f If-f I = j-1/P 2j h~-a122+a 
a I I.l1+a Ij Ij J 

J 

(7. 6) 

Hence 

49 

To estimate the Besov norm we need to estimate ll6sfl1 1 for 0 < s <a. 
p 

Choose k so that hk+1 ~ s < ~· Then with c depending at most on p and a, 

we have 

(7. 7) 

~ 

+ 2 l 11£.111 
k+1 J p 

~ c [~ j-1/p 2j s hJ~/p + ; j-1/P 2j hJ~+ 1 /P] 
1 k+1 

~ c [s ~ j-1/P(2a1/p)j 
1 

+; j-1/p(231+1/p)j] 
k+1 

~ c [s k-1/p ak(a-1) + k-1/p aka] 
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where we've used the fact that 2a1/P > 1 and 2a1+1/p < 1. Inequality (7.7) 

gives w(f,t) ~ p 
a -1/p c t llog tl for 

( 

w(f, t)P)q dt ro a t 
t 

Also w(f,t) ~ 2 llfl1
1

, hence 
p p 

.J: ( w(f,t)P)q dt ~ 
a ta t 

Thus f E Ba,q when p < q ~ oo. 
p 

0 < t < a and so 

~ c ro llog tl-q/p d~ < oo. 

2 llfllq f: t-aq- 1 dt < oo. 
1 a 

p 

In the case a = 1 and n = 1, the construction given above is also valid 

but it is necessary to make two changes in the estimates. In (7.6) we use 

the fact that fj is even on Ij and therefore its best 1
1 

approximation by a 

linear function on I. is the constant (f.)I . Hence inequality (7 .6) is 
J J j 

still valid. In the estimate (7.7) we replace~ by ~2 The second sum is 
s s 

estimated in the same way with 2 replaced by 4 in the first inequality. For 

the first sum, we have 11~2f.11 1 ~ c j-1/p2js 1+1/P and therefore the sum is 
s J 

smaller than c k- 1/p2ks 1+1/P ~cps llog si- 1/P. This shows as before that 

f E B1 'q. 
p 

Now consider the case n > 1 and 0 <a~ 1. Define F(x
1

, ... ,xn) . -

f(x
1

) +<x
1

, ... ,xn) where+ is infinitely differentiable with compact sup-

port and + = 1 on [O,A]n. Clearly FE 1 ORn). To estimate~ F write p s 

~ (F,x) = +(x+s) ~ (f,x
1

) + f(x
1

) ~ (+,x). s s
1 

s 

Since+ is smooth with compact support, +- 1 on [O,A]n, this gives 

a -1/p 
I s I I log Is II 

because of inequality (7.7) with c depending at most on p, a, and n. 

Similarly, for a= 1, 
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from which it follows that 

llt12FII ~ c lsi lloglsll-l/p . 
s L ()Rn) 

p 

Thus FE B~,q for q > p. But for any cube Q = J
1 

X .•. X Jn [O,A]n, we 

have FQ 

&ives 

= fJ and F(x) = f(x
1
), x E Q. 

1 
Hence for each x with x

1 
E I j, (7. 6) 

(7 .8) F~(x) ~ j-l/p 2j hra/2a+2 x E (O,A]n, x
1 

E Ij 

from which it follows that F# E L ()Rn) as desired. 
a P 

Finally, for a' = k + a with 0 < a ~ 1, let fk satisfy (fk)(k) = f with 

f as above and set Fk : = fk. with • as above. Since • has compact support 

Fk E Lp ()Rn). Using Leibnitz' s rule of differentiation one finds that 

D11Fk E B~' -k,q(IRn) for all 1"1 = k. Thus using the reduction theorems for 
kel (k) Ba' ,q()Rn) for 

p Since D Fk = (fk) = f on Besov spaces, Fk E 

(O,A]n, it follows from (7 .6) that Hence Theorem 6.7 shows 

0 

Lemma 7.3. If a> 0, then there is an f such that for each 1 ~ p ~~and 

1 ~ q < ~. f E ca but f i Ba,q. 
p p 

~- Consider first the case n = 1 and 0 < a < 1. We shall construct a 

function f in Lip a with compact support such that for sufficiently many x 

and s 

lf(x+s) - f(x)l ~ c sa. 

This will in turn show that t-aw(f,t) ~ c for sufficiently many t and 
p 

consequently II f II = ~. 
Ba,q 

p 

On the other hand f will be in Ca for all 
p 

Fix a such that 0 <a< min(Sl/(a-1),24-1/a) and set A:= aa-1 and 

1 Then A~ 5 and 0 < y < 24 . Let h. : = aj , m. : = Aj (j = 1, 2, ... ) 
J J 

and~ be as in (7.5). The dilated functions ~.(x) : = m.h.~(x/h.) 
J J J J 

port on [0,2h.] and I(~.)' I= m. a.e. on that interval. With M. = 
J J J J 

(where the brackets here denotes the greatest integer), define 

have sup-

1 
[2h.l- 1 

J 
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M. 
f.(x) : = lJ ~.(x-2ih.). 

J i=O J J 

Hence f. is 
J 

supported on [0,1]. Now define the function f by f: = l f .. 
j J 

Since IILIIL ~ m.h. 
J 00 J J 

= ~' it follows that f is a bounded continuous func-

tion. 

First we check that f E Lip a. If a/2 > s > 0, choose k so that 

hk+1 ~ 2s < hk' then 

if j ~ k 

if j > k 

Hence, 
k 00 

II~ filL ~ l m.s + 2 l m.h. 
s 00 1 J k+1 J J 

k+1 
<~ +2r__ = A-1 mks 1-y 

~ 2(aa-1)ks + 4(aa)k+1 ~ 10 sa. 

Since f is bounded, this shows that f~ E L
00 

(cf. Theorem 6.3). Observe 

further that if dist (x,[0,1]) = : 6 > 0, then 

f:(x) ~ sup !+1 J1 1fl ~ !+1 f~ 
III~6 III 6 

lfl < _c_ = 
6
a+1 

which shows that f# E L for all 1 ~ p ~ oo. 
a P 

Next we show that f i Ba,q for any 1 ~ q < oo, 1 ~ p ~ oo. 
p 

"f 1 h< < 1 h let s sat~s y 3 k = s = 2 hk. Define t e set 

E 
s 

1 
then IEsl ~ S' Es c [0,1], and for x € Es 

But 
k-1 

l~sf(x)l ~ l~sfk(x)l -,I l ~ f.(x)l 
j;tk s J 

k-1 00 

~ mks - { l m.s + 2 l m.h.}. 
1 J k+1 J J 

00 
1 < 1 l m. ~ 4 ~and l m.h. = 4 mks, so 

j=1 J k+1 J J 

(7 .9) 

Fix k and 

- ~---~ ~----
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On the other hand, 

and so by (7.9) 

(7 .10) 

Taking L 
p 

norms we see that 

1 1 
at least if s E [3 hk, 2 hk], k = 1,2, ... 

w(f,t) ~ c ta for all 0 < t ~ 1. Hence 
p 

ifxEE. 
s 

But since w is monotone, 

J1 [ -a ( ]q dt _ 0 t w f,t)p ~- ~. 

53 

The same ideas work for a = 1, n = 1 with the following modifications. 

1 We now take A = 24 and a = 24 • 

lfl(t) 

Set 

t2 

2-(t-2) 2 

(t-4) 2 

0 

0 ~ t ~ 1 

1 ~ t :S 3 

3 ~ t ~ 4 

otherwise 

then ljl.(t) : = m.h~ljl(t/h.) is continuously differentiable and lw."l ~2m. 
J JJ J J J 

a.e. In the definition of f. we take M. 
M. J J 

f. (x): = lJ 1jl. (x-4ih.), then 
J i=1 J J 

= [ 4~_] - 1 and 
J 

2 # Hence the same arguments as above show that I lA fll
1 

~ c s and f 1 E L for 
s ~ p 

all 1 ~ p ~ ~. On the other hand, arguing in a similar manner as in 

(7.9-7.10) will give w2(f,t) ~ c t, 0 < t ~ 1 and hence f t B~,q for all 

1 ~ q < ~ as desired. 

For the case 0 < a ~ 1 and n > 1, let 

F(x1, ..• ,xn) : = f(x1)$(x1 , ... ,xn) 

where f is as above and~= 1 on [0,1]n, is infinitely differentiable, and 

is supported on R: = [-1,2]n, then for s = (s 1 , ... ,sn) and 0 <a< 1 

a s . 
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This shows that F: 6 L~. 
fl F
1 

6 L~. Also if o(x) : 

Similarly for a= 1, II~!FIIL ~ c sand so 

fl ~ -a-n 
= dist (x,R), then Fa(x) ~ c o(x) Conse-

quently, Ffl E L for all 1 ~ p ~ ~. Since 1~5 (F,x) I = 
a P 

x,x+s E [O,l]n, it follows from (7.10) that 

(7.11) 

This gives 

w(F,t) ~ c ta , 0 < t < 1 
p 

I~ (f,x
1

) I, 
51 

and therefore F l Ba,q for any 1 ~ q < ~. A similar argument with second 
p 

differences shows that this follows for a = 1 as well. 

Finally, if a' = k + a with 0 < a~ 1, let fk be such that (fk)(k) = f 
with f as above and let Fk : = fk~ with ~ as above. Then it is readily seen 

a' a that Fk E cp for 1 ~ p ~ ~ by the reduction theorem for c spaces (Theorem 
bl p 

On the other hand D Fk = F on [O,l]n, therefore (7.11) shows that 6.7). 
ke 

D 1F f. Ba,q if q < ~. 
k p The reduction theorem [3] for Besov spaces then 

Corollary 7.4. If a > 0 and 1 ~ p < ~, then the space Ca is neither a Besov 
p 

space nor a potential space. 

Proof. In view of the embeddings of Theorem 7.1, the only possibility for 

Ca to be a Besov space is for it to equal Ba,q for some q with p ~ q ~ ~. 
p p 

However, Lemmas 7.2 and 7.3 show that this is not the case. 

If Ca were a potential space, it would have to beta (see Stein [15] 
p p 

for notation). On the other hand [15, p. 155] for p ~ 2, 1. a c Ba,p which 
p p 

would contradict Lemma 7. 3 if Ca = 1. a. 
p p 

would contradict Lemma 7. 3 if Ca = ! a. 
p p 

For p ~ 2, l a c Ba' 2 which again 
p p 

0 

We now want to go a little deeper into the relationship between Ca, ea p p 

and the potential spaces !a. If a= k is an integer and 1 < p < ~. then as 
p 

we have shown in Theorem 6.2, tk = Wk and as is well known l.k =wk. Hence p p p p 

ek = !k. Our next theorem gives embeddings when a is non-integral. 
p p 
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Theorem 7.5. If 0 < a and 1 < p < oo, we have the continuous embeddings 

(7. 12) ta ~ ta ~ca. 
p p p 

Proof. The right most embedding in (7.12) is well known to us since 

£{! ~ c fb. As noted above the left embeddings hold for a an integer. a - a 

will now use the complex method of interpolation to derive the case of 

arbitrary a from the case a an integer. 

Let m be an integer such that m < a < m + 1. Consider the maximal 

function 

(7. 13) -n-a = sup p 
p>O 

We 

with Qp the cube with side length p and center x and P the projection of 

degree m + 1. It follows from (2.14) i) and Lemma 2.3 that 

(7.14) fa~ f: ~ c1fa. 

It is clear that the supremum in (7.13) can be taken over p rational. 
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Let {Ak}~ be a sequence of sets such that Ak contains k positive rationals, 
00 

Ak c ~+1 , k = 1,2, ... and UAk is the set of positive rationals. 
1 

Define 

(7.15) J 
Qp(x) 

then Fk t fa and hence IIFk IlL 
p 

t llfaiiL . It follows from (7.14) that we 

need only show that 

(7 .16) 

Next fix k and let 

p(x): 

p 

k=1,2, .•. 

Ak = {p1, ... ,pk}. 

k 
=I p.Y-

1 J""::S j 

Define 

where Sj is the set of x such that the max in (7.15) is taken on for p=pj 

but not for any pi with i < j. Since for each j, J lf-PQ (x)fl is 
Qp. (x) pj 

J 
continuous,the function pis simple. 

Consider now the family of operators S , 0 ~ Re z ~ 1 defined by z 
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Szg(x): = p(x)-n-m-z J (g(y)-PQ (x)g(y)) ~(x,y)dy 
Qp(x)(x) p(x) 

with ~(x,y): = sign[f(y)-PQ . (x)f(y)]. 
p(x) 

potential operators of order z. 

Going further, let J be the Besa11l z 

Using the form of Sz and the fact that Jz le 

operator valued analytic in Re z > 0, it follows that 

Tz: = Sz o Jz+m 

is an analytic family in the sense of Stein [17, p. 205]. Now let us estiml\~ 

(7.17) 

From the definition of S we have 
z 

b 
~ c lliimll 1 therefore, 

p 

11Til'lgll1 ~ c II (Jm+if')g)~ll 1 ~ c 
p p 

~ c 

Here, we used the facts that Jm+. = J. o J , ~m = !m, IIJ
1
.nll ~ c(lf')l+l) 0 

1.1') 1.1') m p p ., 

from Lp to Lp, and Jm is an isometry from Lp to 1;. Similarly, we have 

(7 .18) 11Tl+il')gll 1 ~ c 11&11 1 {II'Jf+l)n . 
p p 

This shows that Tz satisfies the hypothesis of the Stein interpolation 

theorem for analytic families. Thus for any g € Lp' 

11Ta-mgfl 1 ~ c llgll 1 
p p 

Now since f E !..pa' there is a g E L such that J g = f and 11&11
1 

= 
P a P 

Hence 

which is (7.16). 0 

llfll 
0 1 
p 

Our final result of this section compares C~ to W~. Although the inliH' 

polation spaces for (t~, t!) and (~,~ = t!) coincide for the real method 

( §8) ~k · 1 · d · wk see , ~ 1 l.S proper y conta1.ne 1.n 1 . 
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Leoma 7. 6. Suppose Q is :mn or a cube in 1Rn and k is a positive integer, 

then there is a function f € W~ which does not belong to C~. Consequently, 

t~(Q) ~ ~(Q) k = 1,2 ..... 

~· The containment follows from Theorem 5.6. We will construct f to 

have compact support within Q and so llfl l __ k 
w-i(Q) 

change of scale we may assume that Q = [-l,l]n. 

Hence by a 

Consider first the case k = 1 and n = 1. 
00 

Let ~ be an even C function 

1 1 1 1 
with~= 1 on [-4,4 ], 11~11 00 = 1, and supp ~ c [-e'e]. Then define f to be 

odd with 

(7.19) f(x): 
= j (log 1/x) -

1 ~(x) , 

l 0 

X > 0 

X = 0 

Notice that f is a continuous function which increases on £-!,!J. Moreover, 

11£11
1 

~ 1, f is supported in[-!,!], and 
e ·e 

00 

f'(x) = x-1 (log x)-2 ~(x) +(log 1/x)-1 ~'(x), X > 0. 

Since f is an odd function, 

and so f 

(7. 20) 

II£' IlL ~ 2(J~/e (log x)-2 dx + II~' IlL ) < oo 
1 X oo 

On the other hand, for 0 < x < 1/12 (see §5 for notation) 

~sup 1
2 

Jx+p lf(u)-f(x)ldu 
p>O p x-p 

~ -4
1x-2 J 3x lf(u)-f(x)ldu ~ .x4

1 - 2 Jx [f(x)-f(u)]du 
-x -x 

= ~-2 Jx Jx f'(t)dt du 
4 -x u 

1 1 
where we've used the fact that f is an odd increasing function on [-4·4]. 

But now, by changing the order of integration we see that 

N!(f,x) ~ !x-2 J~x {x+t) f'(t)dt ~ Zx f~ f'(t)dt 

1 f(x) 1 -1 -1 = 4 -x--- = 4x (log 1/x) , 0 < x < 1/12 

Hence, from Corollary 5.4 ~ t L1(0). 

In case n > 1, let 
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where f is as above and ~ is an infinitely differentiable function with 

n [ 1 lJn support in [-1,1] and.= 1 on -4•4 . Obviously, IIFII 1 ~ 1 and 
co 

Hence F € w~ (0). However a Si!Jlple computation shows that JQ F~ = co, where 

Q = r-t.!Jn. 
For k > 1, we let fk satisfy f(~- 1 ) = f and Fk: = fk• with f and ~ as 

above. Using Leibnitz' s rule of differentiation we find that F k € W~(O). 
k-1 k-1 1 On the other hand, D Fk = f~ on Q, hence D Fk ~ ~1 (0). It follows from 
el e1 

the reduction theorem for e; spaces (Theorem 6. 7) that Fk € t~(O). o 

Actually, our proof could be slightly modified to show that there are 

constants c1 and c2 such that 

c1 Mf'(x) ~ f~(x) ~ c2 Mf'(x) 

if f is any odd function which is continuous, increasing, and concave on 

[0,1]. The right hand inequality is (5.7). 

The embeddings of this section are summarized in Figure I. Spaces 

connected by line segments indicate that the lower space is embedded in the 

upper space. 

FIGURE I 

Ba,pV2 
p 

I 

(a > 0; 1 < p < co) 



§8. Interpolation 

Of Of We now examine some interpolation properties of the spaces C and t . 
p p 

It turns out that these spaces form interpolation scales for the real method 

of interpolation when a is fixed and p varies. We will show this by calcu

lating the K functionals for the pairs (C~,c:) and (t~,t:). Recall that for 

any pair of Banach spaces (X
0

,x
1

) the K functional is defined for f E x
0 

+ x
1 

by 

(8.1) K(£,t,x0 ,x1): = in£ {ll£0 11x + tll£1 11x} 
£=£0+£

1 
o 1 

t > 0 . 

A key part of the calculation of these K-functionals is the Whitney 

extension theorem which extends a function f which is in Lip a on a closed 

1et F to a function in Lip a on all oflRn. We will need only a special case 

of this theorem for functions f which are defined on all ofiRn to begin with. 

It will be convenient for us to give a formulation of the extension theorem 

for this special case in terms of the functions £: and £~. 

Let fa denote either of the functions £: or £~. Recall that the space 

f
0 

& LwQRn) is a Lipschitz space or generalized Lipschitz space (see §6). 

Suppose f is defined on lRn with Mf ;:!! m0 and fa ;:!! m
1 

on some closed set F c lRn 

where M is the Hardy-Littlewood maximal function. Then there is a function g 

such that g=f on F; lgl ~ cm0 and ga ;:!! cm
1 

oniRn with c a constant depending 

at most on n. Indeed, g can be constructed as follows. 

Let {Q.} be a Whitney decomposition of Fe and.~ the corresponding 
J J 

partition of unity (see [15, p. 167-170]). 

interiors, UQ. = Fe and for each j 
j J 

The Q. have pairwise disjoint 
J 

(8.2) 

The functions 

Then 

(8.3) 

diam(Q.) ~ dist(Q.,F) ~ 4 diam(Q.). 
J J J 

* •. can be chosen to have support contained 
J 

* diam(Q.) ~ c dist(Q. ,F). 
J J 

59 

* ·- 5 in cubes Qj .- 4Qj· 
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For each j, let Q. denote a cube with the same center as Q. and side length 
J J 

10{0 times the side length of Qj; then Qj n F ~ ~- The function g can then 

be defined as 

f(x) X € F 
(8.4) g(x): 

* l P f(x) ~.(x) , 
j Qj. J 

where P is the projection operator P[a] (of degree [a]) 

Pis P(a) (of degree (a)) in case fa= f~. 

in case f = t'1 and a a 

Lemma 8.1. IfF is a closed set and f satisfies Mf ~ m0 and fa~ m1 on F, 

then the function g defined by (8.4) satisfies: 

i) g = f on F; ii) I g I ~ c m0 on mn; and iii) ga ~ c m1 on mn. 

Proof. From the definition of g, i) holds. To verify ii), first observe 

that lg(x)l = lf(x)l ~ m0 , X E F. Now if x E Fe, then since Q. n F ~ ~. 
J 

it follows from (2.3) and our assumption that Mf ~ m0 on F that 

Furthermore, supp ~; c Q; c Qj and so 

Hence 

lg(x)l ~ l c mo ~ .... J~(x) = c mo, X € Fe 
j 

since l ~ ~ (x) = 1, x E Fe. 
j J 

To verify iii), let Q be a cube in1Rn. We consider two cases: 

Q n F ~ ~ ; Q c Fe . Consider first the case Q n F ~ ~: Observe that if 

* Q n Q. ~ ~. then IQI ~ ciQ.I (because of (8.3)) and hence there is a cube 
J J 

R. which contains both Q and Q. with IR.I ~ ciQI. It follows from (2.15) 
J J J 

that 

liP f - PQfiiL00 (QnQ~) ~ liP f - PR fll ~ + IIPQf - PR. fii
100

(Q) 
Qj J Qj j Lco(Qj) J 

~ c[inf fa(u) IR.Ia/n + inf f (u) IR.Ia/n] 
uEQ. J uEQ a J 

J 

(8.5) 
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since both Q and Qj intersect F. Using (8.4), we can write g - PQf = 

(f -

(8.6) 

Now consider the second case Q c Fe. We have two possibilities: 

a) IQ. I > 4n IQI for some Q. which intersects Q; b) IQ.I ~ 4n IQI for 
Jo Jo J 

all Q. which intersect Q. In case a), we begin by showing that Q intersects 
J 

2 n * at most N (N:=12 ) cubes Q. and for each such j, IQ.I ~ 
J J 

this we note that any neighbor of Q. has measure ~ 4-n 
Jo 

To see 

There-

fore Q is contained in the union of Q. and its neighbors which number at 
_,_ Jo 

* most N. Now suppose Q~ n Q # ~- Since Q. is contained in the union of Q. 
J J J 

and its neighbors it follows that Q. and Q. have a common neighbor when 
J Jo 

Q~ n Q # ~- But there are at most N2 such Q. and IQJ.I ~ (4n) 2 1Q. I as 
J J Jo 

desired. 

Let k = [a] or (a) according to whether fa is f: or f~ and set m: = k+1. 

We estimate Dvg for any lVI = m. By Leibnitz's formula, 

Dvg = l l (v) Dv-~P f D~~:. 
j O<~~v ~ Q. J 

Note that DvP_ f = O, for each j and 
Qj J 

I D~~~ = 0 on Fe for ~ > 0. Thus we have 
J 

(8. 7) 

Using (2.15), the same argument as (8.5) shows that 

v-~ - (a-lv-~1)/n 
liD (P f- P_ f)ll * ~ c m1 IQ. I 

Qj Qj Lm(Qj) Jo 
0 
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* Here we used the fact that all the Q. which intersect Q have comparable size 
J 

* to Q. . Also, the functions ~- satisfy ([15, p. 174]) 
Jo J 

IIDIJ~~II ::;; c IQ.I-11-il/n::;; c IQ. 1-11-11/n. 
J co J Jo 

Using these last two estimates.back in (8.7) gives 

Hence from Theorem 3.4, there is a polynomial n of degree k such that 

llg - nl1 1 (Q) ;;l c m1 IQia/n. 
co 

Integrating gives 

(8.8) 1 
1 I J lg - nl ~ c m1 . 

IQI +a n Q 

Finally, we have case b). In this case, we can choose a cube Q of 

- - * measure ;;l c IQI such that Q contains each Q. for which Q. intersects Q. 
J J 

and so 

~ c inf fa(u) IQia/n ~ c m
1 

IQiafn, 
UEQ. 

J 

* I (g - Pj)(x) I ~ ... :L liP_ f - p f II ... ~. (x) 
Q~OQ1~ Q Lco(QJ) J Q 

J Qj 

::;; c m
1 

IQia/n L ~:(x) 
j J 

~ c m
1 

IQia/n X E Q. 

Integrating gives 

(8.9) 1 J lg - P fl ~ c m1 IQil+a/n Q Q 

hence the three inequalities (8.6), (8.8) and (8.9) show that 

as desired. 0 

The following theorem characterizes the K-functional for the couples 

a a "a ,~,a (C1 ,Cco) and (~ 1 .~co). The decomposition used below can be found in A. P. 

Calderon [5]. 
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Theorem 8.2. If a> O, there exists constants c1 , c2 > 0 such that 

(8.10) t * # * ] < a a c1 J0 [f (s) + (fa) (s) ds = K(f,t;C1 ,c®) 

and 

(8. 11) 

Proof. We will only give the proof of (8.10). The proof of (8.11) is the 

same. First suppose f = g + h with g E c! and hE C~. Since F ~ F: and 

....... 1 t * F ~ F~~(t): = t J0 F (s)ds are subadditive 

::! .fa (h*(s) + h!*(s))ds + t (llgll® + llg:ll®) 

= llhll a+ tllgll a 
c1 c® 
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Taking an infimum over such decompositions gives the left hand side of (8.10). 

For the right hand inequality in (8.10), let E: = {x: f:(x) > (f!)*(t)} 

u {x: Mf(x) > (Mf)*(t)} and F: = Ec; then lEI ::! 2t. If g is defined as in 

(8.4), then according to Lemma 8.1, 

(8.12) 

* ** where we used the fact that (Mf) (t) ::! c f (t), t > O, see [2]. 

We now want to estimate h: = f-g in the C~ norm. 

the ~onstruction of g and define E: = uQ. and F = Ec. 
j J 

we have 

(8. 13) 

Let Q. and Q. be as in 
J J 

Since h = 0 on F: = Ec, 

The first two integrals are easy to estimate. Since lEI ::! 2t, 
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(8.14) JEihl ~ JEifl +lEI llgll 1 ~ c [J~t f*(s)d~ + t (Mf)*(t)] 
()0 

t * ~ c J0 f (s)ds 

where we used the fact that ~t f*(s)ds ~a J~ f*(s)ds, a~ 1. Similarly, 

using Lemma 8.1, we obtain 

J~h: ~ J~(f: + g:) ~ J~t f:*(s)ds +lEI llg:ll 1 E E oo 

(8.15) 
~ c [J~ f:*(s)ds + tf~*(t)] ~ c f~ f~*(s)ds. 

In order to estimate the last integral in (8.13), we estimate h# on F. 
a 

Suppose x E F and Q is a cube containing x. Then, since h = 0 on F ~ F, 

(8.16) 

Now, c 

_...,...::...1-..,- J h :o; 
IQil+a/n Q -

1 * 
1+ I l J lf-P fl~. 

IQI a n j Q Q. J 
J 

:o; l 1 J 
- j IQI1+a/n QnQ~ 

J 
n * * IQI ~ [dist (x,Q.)] whenever Q n Q. 1 0 (recall dist{Q.,F) 

J J J 

parable to diam Q.). 
J 

Also, since Q; c Qj, 

f ... lf-P fl 
Q; Qj 

~ f#*(t) IQ.I 1+a/n ~ c 
a J 

Using this back in (8.16) and taking a sup over all such Q gives 

(8.17) 
IQ.Il+a/n 

h~(x) ~ c flf* (t) l ---"-----:--
u a j [dist(x,Qj))a+n 

X E F. 

Now, since dist(x,Q.) ~ 2 
J 

IQ.I 1/n (recall the 
J 

definition of Q.) 
J 

-a-n j -a-n n-1 -a/n J [dist(x,Q.)] dx ~ c 11 p p dp ~ c IQ.I . 
F J 2IQ.I n J 

J 

Hence integrating (8.17) gives 

(8.18) # #-'- #* t #* J h ~ c f n(t) 1 IQ.I ~ c t fa (t) ~ c J0 fa (s) ds . 
Fa a j J 

is com-

Therefore, the estimates (8.14), (8.15) and (8.18) us~d in (8.13) show that 

I lhl I ~ c J~ (f*(s) + f~~s))ds. 
CCX 

1 

This together with (8.12) proves the right hand estimate in (8.10). D 
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When x
1 

and x 2 are Banach spaces with K functional K(f,·), and 0 < 6 < 1; 

0 < q ~ ~, let x6 ,q:= (X1,X2)6 ,q denote the intermediate space (see 

[3,p. 167]) with 

llfllx : = <fa' [t-6K(f,t)]q ~t)l/q 
6,q 

with the appropriate change when q = ~. The spaces x6 are interpolation ,q 

spaces for (X1,X2). It follows from Theorem 8.2 and the Hardy inequality 

that (Ca
1

, Ca)
1 

l/ = Ca with equivalent norms. Similarly, 
~ - p,p p 

~a ta)
1 1

/ = ta with equivalent norms. Moreover, from the reiteration 
~1' ~ - p,p p 

theorem for interpolation [3, p. 175], we have the following corollary. 

Corollary 8.3. 1 If a > 0; 1 ~ p ~ q ~ ~ and r 1-6 
p 

then 

i) (Ca Ca) = Ca with equivalent norms, 
p' q e,r r 

ii) ce;. t~)6,r = ~~ with equivalent norms. 

+~with 0 < 6 < 1, 
q 

As was pointed out to us by Peter Jones, it is also possible to 

use the decomposition of Theorem 8.2 to prove the interpolation theorem for 

Sobolev spaces (oniRn) given by R. DeVore and K. Scherer [8]: 

Theorem 8.4. If k is a positive integer, there exists constants c1, c2 > 0 

depending at most on k and n such that for all t > 0 

t * " * k __ k c
1 

J
0 

[f (s) + ~ (D f) (s)]ds ~ K(f,t,W1 ,w~) 
'"l=k 

(8.19) 
t * " * ~ c

2 
J0 [f (s) + ~ (D f) (s)]ds . 

'"l=k 

Proof. The lower estimate follows in a simple way from the subadditivity of 

** the map F -+ F For the upper estimate, as in the proof of Theorem 8.2, 

b b... * let E: = {x: fk(x) > fkn(t)} u {x: Mf(x) > (Mf) (t)} and take gas in (8.4) 

for a= k and fk: = f~. Then using Theorem 6.2, and arguing as in (8.12), 

t * b* (8.20) llgii.J- ~ cllgll k ~ c [f0 f (s)ds + t fk (t)]. 
~ c~ 
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It follows from Theorem 5.6 that f~*(t) ~ c L (Dvf)**(t) because 
* ** lvl=k 

(MF) ~ cF for any F E 11 + L~. Hence (8.20) gives 

t * v * t llgll_~ ~ c J0 (f (s) + L (D f) (s))ds. 
~ lvl=k 

(8.21) 

Let h: = f-g. Then h = 0 on Ec and lEI ~ 2t, so 

llhll 1 = JE lh.l ~ JE lfl + lEI llgll 1 1 ~ 

(8.22) 
t * ** t * ~ c [J0 f (s)ds + t f (t)] ~ c J

0 
f (s)ds. 

Also, using (8.21), we have for 1~1 = k, 

(8.23) IID~hiiL ~ JE ID~hl ~ JE ID~fl + lEI IID~glfL 
1 ~ 

t * v * ~ c J0 [f (s) + l (D f) (s)]ds. 
lvl=k 

Hence, (8.22) and (8.23) show that 

t * v * llhll k ~ c J0 [f (s) + L (D f) (s)]ds. 
w1 fvl=k 

(8.24) 

The inequalities (8.21) and (8.24) give the right hand inequality in (8.19). n 

Corollary 8. 5. If 1 ~ p ~ q ~~and!= 1-e +~with 0 < 6 < 1, then 
r p q 

(8.25) (Wk, wk)6 = wk with equivalent norms. 
p q ,r r 

Using the results of the previous section we show that the spaces Ca do p 

not form an interpolation scale for the real method of interpolation if p is 

fixed. 

Theorem 8.6. Suppose 1 ~ p ~ ~; 0 < a0 < a 1; 0 < 6 < 1; and 1 ~ r ~ ~, then 

(8.26) 
ao a1 

(c C ) __ Ba,r 
p ' p e,r p 

where a= (1-6)ao + ea1. Consequently, 

(8.27) 

for any values of 1 ~ p < ~; 0 < e < 1; 1 ~ r ~ ~; 1 ~ q ~ ~; 0 ~ ~-
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~· To prove (8.26) we see from Theorem 7.1 that 

a.,1 a. a.,oo 
B J ~ C J ~ B J 

p p p 

and then apply the reiteration theorem [3, p. 175] for the real method of 

interpolation since 
a., 1 

= B J 
p 

a./k, for example. 
J 

j = 0,1 

The fact (8. 27) that the spaces d'- are not "stable" under the real 
p 

67 

method follows from (8.26) and Lemma's 7.2 and 7.3 which show that Ba,r ~,Ca 
p p 

ifl~p<oo 0 



§9. Embeddings 

We shall now discuss Sobolev type embeddings for the spaces Ca. Embed
p 

dings for ta follow from these and the classical embeddings for Sobolev p 

spaces. As a starting point, consider embeddings into the space C of con-

tinuous functions. 

If Rand R* are cubes with R* c Rand )R) ~ 2niR*I, then (2.15) with 

" :: 0 in gives 

I IPRf-PR*fl IL (R*) ~ c)R*Ia/n in£~ 
~ U£Rn 

* More generally, given any two cubes R c R, choose R
0

::. ••• ::> Rm with R
0

: = R; 

R : = R* and 
m 

(9.1) 

j=1,2, ... ,m-1; IR 11 ~ 2niR ). Then writing m- m 

gives 

a/n ds 
s -s 

Iff is locally in L1 on 0, then according to (2.7) 

a.e. X£ n. In view of (9.1), when f: is locally in the 

lim PQf(x) = f(x), 
Q+{x} 
Lorentz space Ln/a,l 

(see {17, p. 188] for the definition) on O, then lim PQf(x) exists for each 
Q+{x} 

x £ n. Let g(x): = lim 
Q+{x} 

PQf(x) so that g(x) = f(x) a.e. Our next result 

shows that g is a continuous function and in turn gives an embedding of the 

space {f: f: £ Ln/a, 1} into C. 

Theorem 9. 1. If 0 is a domain and f# is locally in L I 1 on O, then there a n a, 

is a function g E C(O) with g = f a.e. on n. Moreover, if i 1 
£ L I 1 (O) and a n a, 

0 is lRn or a cube in lRn, then there is a polynomial n of degree at most [a) 

such that 

(9.2) 

Proof. Let g be as above, then g = f a.e. on 0. We show that g is contin-

uous. Let R
0 

c 0 be any cube and u £ R
0

• If Q c R
0 

is a cube, then choosin& 

* R: = Q and R +{u} in (9.1) gives 

68 
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(9 .3) a/n ds 
s -

s 

with F: = f# where the subscript R means that f# is defined as in (2.2) a,R
0 

o a 

with R 
0 

(9.4) 

in place of 0. Hence for any x,y e: Q 

lg(x) - g(y)l ~ c J!QI F*(s) sa/n ~s + IPQf(x) - PQf(y)l. 

Now F(x) ~ f~(x), x e: R and F is supported on R . Hence F is in L I 
1

. 
... o o n a, 

Thus, first choosing Q small, then fixing Q and letting y ~ x shows that g 

is continuous at x. 

If 0 = R
0 

is a cube inlRn, then (9.3) gives (9.2) with n: = PR f. If 
0 

0 =lRn, take a sequence of cubes {Qj}~, with Qj c Qj+1 and IQjl 

using (9.1) we have for each j < k, 

then 

This shows that n: = ~im PQ.f exists and is a polynomial of degree at most 
J->00 J 

(a] whenever f# e: 
a 

n 
Ln/a, 1 OR ) and 

IIPQ. f - nllc(Q.) ~ 
J J 

On the other hand, from (9.3) 

llg - PQ.fllc(Q.) ~ c f~j f!*cs) 
J J 

and so 

Since j is arbitrary, this gives (9.2). D 

a/n ds 
s -

s 

a/n ds s -
s 

The approach above can also be used to study classical differentiability 

of functions. We illustrate this by giving another proof of the following 

recent result of E. Stein [16]. 

Theorem 9.2. Let 0 be a domain inlRn. If Vf exists in the weak sense and 

is in L 1(0), then f can be redefined on a set of measure zero so as to be 
n, 
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continuous. Moreover, for this redefined f and for almost all x E Q, 

Vf(x) is the classical derivative of f: that is, 

(9.5) lf(x+h) - f(x) - Vf(x)·hl = o(lhl), h 4 0. 

Proof. We suppose that n > 1, since the case n = 1 is a classical result 

(Lebesgue's theorem for f') of real analysis due to the fact that L1,
1 

= L
1

. 

Now, Theorem 5.6 and the boundedness of the Hardy Littlewood maximal oper

ator M on Ln, 1 show that the condition IVfl E Ln, 1 implies f~ E Ln, 1 . Since 

f~ ~ c f~, Theorem 9.1 shows that f can be redefined on a set of measure 

zero so as to be continuous. 

In order to prove (9.5), we can work locally and hence we assume forth~ 

remainder of the proof that Q is a cube inmn and f is continuous on Q. Con~ 

sider the maximal function 

Af(x): = lim lf(x+h)-f(x)-h·Vf(x)l 

h40 lhl 

We want to give a pointwise estimate between Af and T(~) where T is defined 

by 

Tg(x): = sup 
Q:>Q3X 

Let Q c Q be any cube. If Q2 c Q1 

lfQ - f I ~ IQc I JQ lf-fQ I 
1 Q2 1 1 1 

n sup --1-Q:>Q3x IQI 1 n 

c Q with IQ11 ~ 2niQ
2

1, 

~ c inf ~(u) IQ111/n 
UEQ

1 

IQII _h * 1/ d 
~ c s,Q11/2[f}Xo1 (s) s n ss 

then 

The same telescoping argument as used in the derivation (9.3) shows that 

ff(u)- fQI ~ c J!QI [f~Xq]*(s) s
1
/n :s = c llf~XqiiL 

1 n, 

Hence, given x and h, we choose Q as a cube which contains x and x+h with 

IQI ~ lhln, and find 

(9.6) lf(x+h) - f(x)l ~ c llf~Xqll 1 :$ c T(f1)(x) I hi 
n, 1 

From Theorem 5.6, we have IVf(x)l ~ c f~(x) c T(f~)(x), a.e. XE Q. Com-

bining this with (9.6) shows that 
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b Af(x) ~ c T(f1)(x), a.e. x € 0 . 

The sublinear operator T is easily seen to be of restricted weak type 

(n,n). Indeed, 

sup 
O::JQ:>x 

1/n 
JEnQJ = [M(X )(x)]1/n 

IQI1/n E 

with M the Hardy-Littlewood maximal operator (for 0). Recall that M is 
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weak type (1,1). Since n > 1, restricted weak type implies weak type [17, 

p. 195] and soT is of weak type (n,n). In view of (9.7), there is a c such 

that 

IIMIIL (O)~c 
n,oo 

Hence using Theorem 5.6, 

(9 .8) (Af)*(t) ~ c t-1/n llfb
1

JI
1 

(n) ~ c t- 1/niiiVflll 
" L 

1 
(0) . n,1 n, 

To complete the proof, note that A(f-~) = A(f) when ~ is smooth and so 

* -1/n 
(M) (t) ~ c t IIIV(f-+) IIIL (O) 

n, 1 

For any e > O, there is a smooth function + with 

I I JV(f-+) I IlL (O) ~ e 
* n,1 

Therefore (Af) (t) = 0 for all t and so Af = 0 a.e. 0 

~: It is worth pointing out that~ in (9.7) can be replaced by IV£1 

which can be proved directly (using Theorem 3.4) or deduced from (5.7). 

To get embeddings of Ca 
p 

an inequality between f~ and 

into L or, more generally, C~, we shall give q q 

f: in terms of fractional integrals. Such an 

inequality for ~ = 0, 0 < a < 1 was given by A. P. Calderon and R. Scott [6) 

and we follow that idea in the general case. We assume for the remainder of 

this section that Q =lRn and p ~ 1. More general domains are treated in §11 

using extensions while the case 0 < p < 1 is discussed in §12. Let P be the 

projection operator (2.1) of degree [a] and assume that~< a (and hence 

(~] ~ [a]). From Lemma 2.3, we have 
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(9. 9) 

whenever f E L
1 

+ L~. On the other hand for any cube Q 3 x and any 

n 
0 < r < a-~ , we have with y: = r(a-~) < n, 

(9.10) 
1 f l£ P I IQI1+~/n Q - Qf 

because fx-yl 

~ c {JQ [f:(y)]r fx-yly-n dy}1/r 

1/n 
~ IQI when x,y E Q. Let Iy denote the fractional integral 

operator 

(9 .11) I h(x): = J h(y) !x-yly-n dy , 
y mn 

then, returning to (9.9-10), we find 

(9. 12) f~(x) ~ c {ly((f:)rJ(x)}l/r , x € mn. 

Using (9.12) and the mapping properties of I , we prove the following 
y 

embeddings. 

Theorem 9 . 3. Let Q = mn. If 0 ~ f! ~ a < ~' 1 ~ p ~ q < ~' and ~ = ~ + ~I 

then whenever f € L1 + L~, 

(9.13) 

Proof. The case ~ =a requires no proof, so suppose ~ < a. The operator Iy 

maps L_QRn) boundedly into L~QRn) whenever 1 < p < q and 1/p = 1/q + y/n 
p 

[15, p. 119]. 
~ q ~ 

Let p: = p/r and q: = q/r with r < p and r < n/(a-~) as above, 

Then with g: = Iy 

llf~IIL ~ c 
q 

[(f#)r], we have from (9.12) a 

llg1/riiL = c llglti~r ~ c 
q q 

which is (9.13). o 

We concentrate now on the cases q = ~ and ~ = 0. 

= c 

Corollary 9.4. Let Q =mn, 1 ~ p ~~and ~ ~ 0. If a= ~ + n/p and 

f E L1 + L~, then 
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(9.14) 

~· Starting with the left most inequality in (9.10), we have 

---=-,
1 ,--,-- J If P fl < IQI(a-(3)/n inf i1(u) 

IQI 1+(3/n Q - Q = UEQ a 

Taking a supremum over all cubes Q proves (9.14). o 
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Recall the definition of the space C0 that is C0
: = L 1 ~ p < ~ and p' p p' 

Corollary 9.5. n 1 1 Let 0 = IR , 1 ~ p ~ q ~ ~ and a = n(- - -). 
p q 

Then, there is 

a constant c independent of f such that 

(9.15) 

Proof. 

llfll ~ c llfll a 
C0 c q p 

For q < ~. (9.13) gives 

11if11 ~c o L 
q 

But f E Ca implies f E L c L
1 

+ L~. 
p p Thus (9.15) holds 

when q < ~. On the other hand when q = ~. f E Ca implies i1 e: L c L and 
P a P p,~ 

therefore (9.15) follows from (9.14). 0 

Our next result summarizes the embeddings of Ca into cl3. These are p q 

depicted in Fig. II where for fixed p and a, the shaded region indicates 

those pairs (-q1 ,(3) for which ca ~ cl3. 
p q 

Theorem 9.6. Let 0 =JRn. If 1 ~ p ~ q ~~and 0 ~ (3 ~a+ n(~- ~), then 

(9.16) ca-+ cl3. 
p q 

Proof. In view of Lemma 6.6, it is enough to consider the case 

1 1 (3 =a+ n (-- -). For this case we want to show Ca-+ C~. There are two 
q p 

subcases depending on whether ! : 
qo 

p q 

= ! - ~ is non-negative or negative. 
p n 

In 
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the first case, 

Also 11t'f11 ~ 
~ Lq 

Ca ~ C0 n L ~ L because of Corollary 9.5 and Theorem 6.8. 
p qo p q 

c llf:11
1 

because of Theorem 9.3. Hence (9.16) follows in 
p 

this case. 

Consider now the case ! - ~ negative. Since n/a < p it follows that 
p n 

when l 1 
E: L then l 1 Q E: L I 1(Q) for each cube Q. Hence Theorem 9.1 gives a p a, n a, 

that f can be redefined on a set of measure zero so as to be continuous and 

for each cube Q with IQI = 1, the polynomial PQf (since P is a projection 

onto 1P[a]) satisfies 

Inequality (2.3) implies that 

Hence 

Since Q is arbitrary we have 

llfllc 

This gives that f E: C n L c L . 
p q 

~ c llfll a 
c 
p 

11l111 a L 
p 

llfll a 
c 

p 

To finish the proof, we note that when q <~then (9.16) follows from 

Theorem 9.3 and when q = ~. (9.16) follows from (9.14) and the fact that 

llfll a 
c p 

0 
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1 1 6-a = n(- - -) q p 

\ 
L 

p 

1 
(- a) 
p' 

1 
q 

L p 

BMO 

1 
(-a) 
p' 

FIGURE II 

Embed dings: c~ + c! 

1 

L p 

-q 

1 
(- a) p' 
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§10. Extension Theorems 

In the next section, we shall prove an extension theorems for the span•• 

Ca(n) and Ca(n), a> 0, 1 ~ p ~ oo when n is a domain with a minimally smooth 
p p 

boundary in the sense of Stein. [15, p. 189]. This will allow us to genera-

lize various results of the previous sections (proved only foriRn or a cubr 

in IRn) to n. In the process, we show how the seminal ideas of Whitney [20j 

can be used to prove extension theorems for 1 ~ p < oo. The original theorrm 

of Whitney extends functions in Lip a on a closed set F to all of 1Rn. OUIC'r 

extension theorems for Sobolev spaces w;, 1 ~ p < oo, are based on potential~ 

as in the early work of Sobolev [14]. We should point out that most of th~ 

material in this section is obvious geometrically but rather detailed to 

prove analytically. The reader may benefit by 'convincing himself of the 

statements geometrically in lieu of the analytical arguments given. 

We begi1;1 in this section by establishing extension theorems for domainN 

n c lRn, n > 1 of the form n = {(u,v): n-1 u E IR , v E IR and v > cp(u)} with cjl 

a fixed function in Lip 1. That is, cp satisfies lcp(u1) - $(u2) I ~ Mlu1 - u;!l 
n-1 for all u

1
,u

2 
E 1R and some M which we can take to be larger than 1. Lall'l 

these extensions are pieced together to get the general case. The case n ~ I 

is discussed separately later in the section. 

We need a decomposition of (an)c into dyadic cubes. In essence, we ~~~~ 

the Whitney decompositions as described in [15, p. 167] with certain modjJ i· 

cation to meet our specific needs. As a starting point, note that the conp 

C: = {(u,v): u € IRn-l' v € JR; v > Mlul} has the property that X + c c n WhPW 

ever X E n U an and X - C c nC - an whenever X € nC U an. 

Let Mk, k = 0, + 1, . . . denote the collection of all dyadic cubes of li I d11 
():) 

length 2 -k and M: = U Mk. Each cube Q E Mk is contained in a cube Q' c ~\ c 

-():) 

We call Q' the parent of Q. For any cube Q and any t > 0 let tQ denote thl' 

cube with the same center as Q and side length tQ(Q) where Q(Q) is the si~" 

length of Q. Define F
0 

as the set of all cubes Q E M with center (u,v) such 

76 
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that either 4Q c (u,~(u)) + C or 4Q c (u,~(u)) - C (see Fig. III). Thus when 

Q E F then either Q c n or Q c nc - an. Further let F denote all the cubes 
0 

Q En such that Q E F
0 

but the parent of Q is not in F
0

. Similarly let F 
c 

denote the set of all those cubes Q c nc - an such that Q E F but the parent 
0 

of Q is not in F • 
0 

J::l4Q 

~ 

FIGURE III 

an 

c n-1 s Suppose now that x = (u,v) E n \an, (u E JR , v E JR). Let x be the 

point inn which is "symmetric to x across 00", i.e. x8
: = (u,+(u)+h) where 

h = ~(u)-v. Our next lemma provides a procedure for reflecting cubes Q E F 
c 

into cubes Qs E F. 

Lemma 10.1. The cubes in Fare a cover for n with pairwise disjoint inte

riors and the cubes of F are a cover for Qc - an with pairwise disjoint 
c 
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interiors. Also, there is a constant c
0 

> 0 depending only on n and M such 

that 

(10.1) 

(10.2) 

(10.3) 

!(Q) ~ dist(Q,an) ~ c !(Q), 
0 

sup lv- ~(u)l ~ c !(Q), 
(u,v)EQ 0 

Q E F u F c 

. s 
For each Q in Fe' let Q be that cube in F which contains 

(u ,vs) where (u ,v ) is the center of Q; then 
0 0 0 0 

i) c- 1!(Q) ~ !(Qs) ~ c !(Q), 
0 0 

ii) dist(Q,Qs) ~ c !(Q), 
0 

iii) Each cube in F can be the symmetric cube Qs of at 

most c
0 

cubes Q E Fe. 

Proof. First we make the observation that for x: = (u,v) E n, if Q is a 

dyadic cube containing x, then Q E F
0 

if Q is small enough (e.g., 

!(Q) < (v-~(u))/(4+4M~)). On the other hand if Q is too large (e.g., 

!(Q) > v-~(u)), then Q t F • Since dyadic cubes have the property that when 
0 

any pair has intersecting interiors, one cube must be contained in the other, 

we have for each x E 0 a maximal cube in F
0 

containing x. Since F is defined 

to be the collection of all such maximal cubes, then F is a cover for 0 whose 

members have pairwise disjoint interiors. The same argument shows that the 

cubes in F are a cover for Oc with pairwise disjoint interiors. If 
c 

Q E F u Fe, then 4Q n an=~- Hence dist(Q,aO) ~ ~ !(Q) ~ !(Q) which is 

the left hand inequality in (10.1). Suppose now that Q E F and Q' is the 

parent of Q. Since Q' ;. F
0 

there is a point (u', v') E 4Q' with 

v' ~ ~(u ) + Mlu'-u I where (u ,v ) is the center of Q'. Hence for any 
0 0 0 0 

(u,v) E Q 
v-~(u) ~ v-v' + v'-~(u ) + ~(u )-~(u) 

- 0 0 

(10.4) ~ 4 !(Q') + Mlu'-u
0

l + Mlu
0
-ul 

~ 4 !(Q') + 4M~ !(Q') + M~ !(Q) ~ A!(Q) 

with A: = (9 M~ + 8). A similar argument holds for Q E Fe. This shows that 

(10.2) holds for any c
0 
~A. Also, (10.2) implies the right hand side of 

(10.1). 
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Finally to see (10.3), let Q E F • Since Qs E F, properties (10.1) and c 

(lo. 2) imply 

Q(Qs) ~ dist(Qs,oO) ~ vs- •(u) = •(u)- v ~ c Q(Q) 
0 0 0 0 0 

which verifies (10.3) i) if c ~ A. The left hand inequality of i) follows 
0 

similarly. By property (10.2) it is also clear that 

dist(Q,Qs) ~ c Q(Q) 
0 

if c
0 

~ 2A and so (10.3) ii) follows. Parts i) and ii) then show that iii) 

holds so long as c
0 

~ A2• Hence if we define 

all the conclusions of the lemma follow. o 

Let us note some other properties ofF u Fe. If Q1 , Q are two cubes in 

F u F which touch, then according to (10.1), c 

(10.5) 

ao that Q1 and Q have comparable size. It follows that there is a constant N 

depending only on n and M such that for each Q1 E F u Fe at most N cubes Q 

from F u Fe touch Q1• 

Now let 0 < e ~ c-l and consider the cubes Q: = (l+e)Q with Q E F u F • 
0 c 

We have the following property for the cubes Q: 

There is an N depending only on n and M such that each x appears in 
(10.6) 

at most N of the cubes Q with Q E F u F • 
c 

Indeed, it follows from (10.5) that Q is contained in the union of Q and all 

cubes in F u F c which touch Q. If Q1 E F u F c and Q intersects Q1, then Q1 

and Q must touch. As we observed above there are at most N such cubes. 

Hence (10.6) follows. 

Now suppose Q1 ,Q E F u Fe and int(Q1) n int(Q) t- cp, then as we observed 

Q is contained in the union of Q with all cubes in F u F which touch Q. c 

Similarly Q1 is contained in the union of Q1 and its neighbors. Therefore 

Q
1 

and Q have a common neighbor and it follows from (10.5) that 
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(10.7) whenever int(Q
1

) n 

Let Q1,Q2 , ... be an enumeration of the cubes in Fe. 

* and set Q.: = (1+£ )Q .. Accordingly (see [15, p. 170]), 
J 0 J 

* 00 of unity (~j)j=l with the properties: 

i) * 0 ~ ~- .~ 1 
J 

ii) * nc l ~- - 1 on - an 
(10.8) J 

~; * iii) is supported in int(Q.) 
J 

iv) " * [.t(Q.)]-1"1. liD ~-II ~ c J 00 J 

int(Q) 

Fix I 
there 

1' ~-

£ : = (4c ) -I 
0 0 

is a partition 

We can now define an extension operator E. Let a > 0 be fixed and 

] 

P: = P[a] be the projection in (2.1) of degree [a]. Iff is locally in L
1

(n), 

define E: = E# by a 

(10.9) Ef(x): 
- { f~x), X E n 
- l PQs f(x) 

k=l k 
~~(x), 

We do not define Ef on the set an which has measure 0. The extension 

operator~ is defined in the same manner withiP(a] now replaced byiP(a) 

and so E# = EP if a is not an integer. In what follows, we will establish a a 

the mapping properties of E~. The corresponding estimates for E~ simplify 

considerably and we will return this point later in the section. 

We want now to estimate (Ef)# This requires us to estimate a· 

inf 
TCElP[a] 

1 
I+a/n JR IE£-nl 

IRI 

for cubes R iniRn. It turns out that the most difficult case is when R is 

close to the boundary of n and therefore we begin with this case. 

If Q c n is cube in IRn, then 

Shad(Q): = {(u,v): v < v, (u,~) E Q} n n 

is the shadow of Q (see Fig. IV). 
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DQ 
I I 

I 
I 
I 

I Shad Q 
I 

FIGURE IV 

Shadow of Q 
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ao 

Lemma 10.2. There is a constant c1 > 0 such that whenever A ~ 1 and R is a 

cube iniRn with dist(R,oO) ~A t(R), then there is a corresponding cube R 
0 

with the following properties: 

ii) 4 R c 0 
0 ' 

(10.10) iii) v-fj)(u) ~ c1 A t(R), (u,v) E R
0

, 

iv) if Q E F and Q n R ':f !j>, then Q c Shad(R
0
), 

v) * s if Q. E F and Q. n R ':f fj), then Q. c Shad(R ). 
J c J J 0 

Proof. If Q E F u F c and Q n R ':f «P, then according to LeDDa 10. 1 

!(Q) ~ dist(Q,oO) ~ dist(R,oO) + {n t(R) ~ (A + {n) t(R) ~ 2{n A t(R) 

and so Q c (S{n A)R. * Similarly, if Q. E F and Q. n R ':f fj), then a neighbor 
J c J 

of Q., say Q E F, intersects R. Hence {10.5) together with the last ine-
J c 

quality shows that 

(2c )-l t(Q.) ~ t(Q) ~ 2{n A t(R). 
0 J 

On the other hand, (10.3) ii) gives 

dist(R,Q~) ~ 4fi !(Q:) + dist(Q.,Q~) ~ (2c) !(Q.) 
J J J J 0 J 

~ Be~ {n A !(R). 
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Now define s and R1: = yAR, then Q,Qj c R1 (the second 

containment use (10.3) i)) whenever Q and Q. satisfv the assumptions in iv) J • 
~ s ~ 

and v). Next we observe for cubes R1 = A.en + R1 (A>O) that Q,Qj c Shad(R
1

) 

since Q,Q~ c 0. Define 
J 

Ro: =co ~(R1) en+ R1. 

Then R
0 

satisfies properties i), iv), and v) if c
1 

~ y. Also one easily 

checks that 4 R c (u ,~(u )) + C c 0 (where (u ,v ) is the center of R). 
0 0 0 0 0 

Hence property ii) is also satisfied. Finally, we show inequality iii). 

If (u,v) E R
0

, we can find a (u,v') E R1 such that v- v' = c
0 

~(R1 ). 

Notice R1 n an 1 ~. so there is a point (ul'~(u1)) E R1 n 00 and 

v-~(u) = v - v' + v' - ~(u1 ) + ~(u1 ) - ~(u) ~ c
0 
~(R1 ) + ~(R 1 ) + Mlu1-ul 

~ (c
0

+1+MV0) ~(R1 ) ~ c1 A ~(R) 

where c1 : = (c0+1+~)y I . Here we have used the inequality 

lu1-ul ~ ~ ~(R1 ) in estimating l~(u1)- ~(u)l. Hence iii) holds. D 

Let c be the constant of Lemma 10.1. Set A : = 8c2 
0 0 0 

and apply 

Lemma 10.2 with A= A
0 

to obtain for each cube R, with dist(R,an) ~ A
0 

~(R), 

a cube R
0 

with the properties of Lemma 10.2. In particular, 

dist(R
0

,all) ~ c1 A
0 

~(R0 ) so Lemma 10.2 applies again to R
0 

with A= c1 A
0

• 

Let R be the cube guaranteed by Lemma 10.2 for R
0

, then 

i) dist(R,an) ~ ci Ao ~(R) 

ii) ~(R) < 2 A ~(R) 
(10.11) 

= c1 o 

iii) R c Shad(R) 
0 

iv) Q c Shad(R) if Q n R 1 ell, Q E F . 
0 

Although the cubes R and Rare not uniquely determined by (10.10) and 
0 

(10.11), the actual construction in Lemma 10.2 does produce a unique R
0

• 

For the remainder of this paper we take R and R to be unique cubes generated o-

by the construction in Lemma 10.2. 
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Lemma 10.3. Let R be a cube inlRn with dist(R,aQ) ~ A ~(R) and let R , R 
0 . 0 

be the cubes described above; then 

JR IE£-PR £1 ~ c J _ f:(y) 6(y)a dy 
o Shad(R) 

where 6(y): = v-~(u) whenever y = (u,v) € 0. 

Proof. Let Q € F be any cube with Q c Shad R
0 

and let (u ,v ) be its center. 
0 0 

Choose a minimal number v1 with (u
0

,v1) € R
0

• The line segment 

{(u
0

,v): v
0 

~ v ~ v1} intersects a finite number of cubes from f as v ranges 

For each j=2, ... ,m, R. touches 
J 

Indeed, the translated cube R~ = ~(R.) e + R. 
J J n J 

is a dyadic cube in F
0 

and intersects the interior of Rj_ 1 nontrivially. 

Hence one of R~ or R. 1 must contain the other. By the selection criteria 
J J-

for F, R~ c R. 
1

, so 
J J-

~(R.) ~ ~(R. 1) and in fact 
J J-

(10 .12) Shad(R.) c Shad(R. 1) j=2,3, .•. ,m. 
J J-

We need the estimate 

(10.13) IIPQ£-PR £11 1 (Q) ~ c _; ~.IR.Ia/n 
0 OD J=O J J 

where ~ : = in£ £:. 
j Rj 

To see this defineR.: = 4(R. 1), 2 ~ j ~ m. 
J J-

Since 

.t(R. 
1

) ~ ~(R.), it follows that R. c R.. For j=1, there is a common cube 
J- J J J 

i 1 such that Q => 'R1 ::> R1 u R
0 

and ~(R1 ) ~ c ~(R1 ). Notice that Rj c Q see 

(10.10) i)) and Q c (2c +1)R., 1 ~ j ~ m, by the selection criteria for F and 
0 J 

(10.2) respectively. Now using these facts, together with Lemma 3.2 and 

inequality (2.15), we see that 
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m 
:!! c I IR.Ia/n 

j=O ~j J 

which verifies (10.13). 
m 

For such cubes Q we define the tower of Q by T(Q): = U R. . Now it 
j=O J 

follows from (10.11) iv) that T(Q) c Shad R if Q n R ~ ~. Q E f. Hence, 

(10.15) 

= c 

m 
IQI I IR.Ia/n :!! c 

j=O ~j J 

IQI f f#(y) 6(y)a-ndy 
T(Q) a 

since IR.I 1/n is comparable to 6(y) when y E R. (see (10.2)for j > 0 and 
J J 

(10.10)iii) for j = 0) and {Rj };=1 are disjoint. 

First we estimate the integral over R n 0; from (10.15) 

(10.16) 
I IQI f f#(y) 6(y)a-ndy 

QEF T(Q) a 
QnR~cp 

= c f _ f:(y) 6(y)a-n ~(y) dy 
Shad(R) 

;:;; c f - f:(y) 6(y)ady 
Shad(R) 

where ~(y) = I IQI Xr(Q)(y). In the last inequality we use the fact that 
QEf 

QnR~cp 
if y = (u' , v') E T(Q), then either y E Q or Q is contained in the "cylinder" 

{(u,v): cp(u):!! v:!! v', lu-u' I :!! Jn 6(y)}. Hence, ~(y):!! c 6(y)n. 
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We can estimate I: = J IEf-P fl in much the same way. 
Rn(({\80) Ro 

Namely, 

if Q: n R ~ ~. then Q~ is also a cube in F with Q~ c Shad(R ) and so the 
J J J 0 

estimates used in (10.14-16) show that 

(10.17) 

L IQ~I 
Q-lfnRj~ J 

J 

IIPQsf-PR fiiL00(Q~) j 0 J 

~ c l IQ~I J f#(y) ~(y)a-ndy 
Q2nR~~ J T(Q~) a 

J J 

~ c J _ f:(y) 6(y)a-n ~(y)dy 
Shad(R) 

~ c J _ f:(y) ~(y)ady 
Shad(R) 

since Q~ c Shad(R). 
J 

Here we used the fact that Q~ 
J 

arises from at most c of 
0 

the Q.'s because of 
J 

* (10.3) iii). Now since~- is 
J 

* supported on Q. and 
J 

O~cp;;;;1, 

(10.18) 

where we've used Lemma 3.2 and the facts that 

* n n s I Q • I ~ c ( 1+£ ) I Q • I ; * 2 s Q. c (c +1) Q. (by Lemma 10.1). The combination of 
J 0 0 J J 0 J 

(10.17-18) gives I ~ c J f#(y) ~(y)a dy, which together with (10.16) 
Shad(R) a 

proves the Lemma. D 

Define Q: = {Q: dist(Q,aO) 

IJ(f,x) = sup 
Qe:Q 
Q:ilx 

;;; A R.(Q)} and 
0 

1 J f#(y) 6(y)a dy 
IQI 1+a/n Shad(Q) a 

where Q is given according to (10.11). The following theorem gives the main 

estimate of this section. 

Theorem 10.4. Iff is locally in L1(0), then 

(Ef): (x) ~ c IJ(f,x) + f: (x) • XQ(x), 



86 Ronald A. DeVore and Robert C. Sharpley 

Proof. Let R be an cube iniRn. If dist(R,&.n) ~A i(R), then it follows 
0 

from Lemma 10.3 that for x € R 

(10.19) 

If dist(R,aO) > A
0 

i(R), there are two cases depending on whether R c 0 

or R c nc - an. In the first case, since Ef = f on R, then for each X € R, 

(10.20) l~la/n+1 JR IEf-PRfl ~ f:(x) Xg(x). 

Consider now the second case R c Oc- an and dist(R,ao) >A !(R). We 
0 

* first count how many of the cubes Q. touch R. Let J be the set of all j such 
J 

* thatQ.€ f andQ.n Rf.+, then, forj€ J, 
J c J 

1 1 * * t(R) ~ x- dist(R,an) ~ x- [dist(Q.,ao) + 4n t(Q.)] 
0 0 J J 

~! [dist(Q.,O) + ~ !(Q.)] 
0 J J 

2c 
1 ~ ~ !(Q.) ~ (4c )- i(Q.). 

0 J 0 J 

-1 Hence, the cube (1+(2c) )Q. contains R. According to (10.6), there are 
0 J 

at most N such cubes with N depending only on M and n; that is, IJI ~ N. 

Now take the largest cube Q. with j € J. For any other j € J, 
J 0 

0 -1 * 
IQJ.I ~ c IQ. I because of (10.7). Also, (1+(c) )Q. n Q. 1 +and hence 

Jo 0 Jo J 
Q*J. c 4Q. =: Q. We can use Lemma 10.2 for Q because 

Jo 

dist(Q,aO) ~ dist(Q. ,an) ~ c t(Q. ) ~ c i(Q) < A !(Q) 
Jo o J

0 
o o 

with c the constant of Lemma 10.1. Let Q be the cube (for Q) guaranteed by 
0 0 

* - s - -Lemma 10.2. If j € J, then Q. c Q. c Q and T(Q.) c Shad(Q) ), therefore the 
J J J 

estimates in Lemma 10.3 show that for x € R c Q, 

since Q € Q, o(y) ~ c !(Q) 

~ c IQia/n p(f,x) ~ c !(Q.)a p(f,x) 
J 

when y € T(Q~), and IQ. I ~ c IQ.I when j 
J Jo J 

€ J. 
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Also since dist(Q~,Q.) ~ c ~(Q.) and c ~(Q~) ~ ~(Q.), we have 
JJ 0 J 0 J J 

* s Q. c c{4c +1)Q .. So, using Markov's inequality and Lemma 3.2, we have for 
J 0 J 

any multiindex v, 

(10.21) v 
liD (P sf-PQ f) IlL (Q'l) ~ c 

Q. 0 00 J 
[~(Q.)]a-lul ~(f,x), 

J 
J 

On the cube R, we have 

(10.22) ~: = Ef-P- f = I 
Qo jd 

* * 

* [P f-P- f)~. 
Q~ Qo J 

J 

j € J. 
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because each~- is supported on Q .. 
J J 

Differentiating any of the terms in the 

sum (10.22) and using (10.8) and (10.21) together with Leibnitz' rule gives 

c ~(Q.)a-lul (f ) u * liD ([P sf-PQ- f]~.)IIL (R) ~ 
Q. 0 J 00 

J 

J ~ ,x . 

Hence 

(10.23) v < a-lvl liD ~IlL (R) = c ~(Q. ) ~(f,x) 
oo Jo 

because IJI ~ N. It follows that ~ is in Lip a on R. Indeed, taking 

IIJI = [a] =: k, and using (10.23) and that ~(R) ~ i(Qj ) gives 
0 

ID~-'~(x+h)- D~-'~(x)l ~ lhl I IIDU~IIL (R) ~ c lhl ~(Q. )a-k-1 IJ(f,x) 
lvl=k+1 oo Jo 

a-k 
~ c h !J(f,x) 

whenever x; x+h E R. So the Lip a norm of ~ is at most c IJ(f,x). According 

to Theorem 6.4, there is a polynomial n of degree at most [a] such that 

I IEf-(n+PQ f) IlL (R) = 11~-niiL (R) ~ c IRia/n !J(f,x). 
0 00 00 

Integrating over R gives 

(10.24) 

Therefore the three estimates (10.19), (10.20), and (10.24) together with 

Lemma 2.1 prove the theorem. D 

Let us now briefly ~escribe the case n=l and 0 an interval which we take 

to be (0,1). Unions of intervals are handled in the discussion of extensions 

for domains with minimally smooth boundary in the following section. Let Fe 
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be the set of intervals I of the form [-2-v, -2-v-l] or [1+2-v-l, 1+2-v] for 

some v ~ 2, and associate to such I the interval Is:= [2-v-l, 2-v] or 

s -v -v-1 * s I : = [1-2 , 1-2 ] respectively. Also I : = 4I. We can enumerate the 

00 
intervals in F as {I.}. 1 c J J= . 

This is a covering for S: = {-i,o) u (1,i). 

*co Let {$j}j=l be a partition of unity with the properties (10.8). 

~ * 00 * 
So, in 

particular, each $J is supported on Ij and ~ +j = 1 on S. 

operator E: = E# is defined by 
(1 

The extension 

-

_(

00

f(x), XE(O,l) 
(10.25) Ef(x): J 

) l P f(x) +:(x), x E (-oo,O) u (1,oo) . 
( 1 I~ J 

J 

It follows that Ef vanishes outside of <-!,i). 

If I is any interval, then Shad(!): =I n (0,1). Defining ~(f,x) as 

before with A
0

: = 2, then Theorem 10.4 will hold with the same proof. With

out going into detail, let us elaborate on a couple of points of the proof. 

The geometry is much simpler and in particular one does not need Lemma 10.2. 

Again, there are three cases to consider in estimating 

sup 
I:;lx 

1 . f -a+! 1n 
III nEll'[a.] 

f 
I 

IEf-nl 

If I c (0,1) the estimate is trivial. If dist(I,(0,1)) ~ 2 !(I) but 

I¢ (0,1), then we select an interval I
0 

c (0,1) of the form (o,a) or (x,1) 

with the properties that II
0

1 is the same as the largest interval J which 

hits I and either J c (0,1) n I or J E Fe. Then n can be taken as PI f. 

The estimate of f 1Ef-P
1 

fl is trival since Ef=f there. The estimate 
I n(0,1) o 

0 

for P f-PI f is done as in (10.14). 
Is o 

The third case is when I c [O,l]c and 

dist(I,(O,l)) ~ 2 !(I). We also need only consider !(I) ~ ~ since otherwise 

Ef = 0 on I. It follows that I intersets at most two intervals from Fe and 

one can taken: =PI f where I
0 

is the largest interval from Fe which hits I. 
0 

The proof is then the same as in Theorem 10.4. 

The following theorem proves that Ef E Ca.(IRn) whenever f E Ca.(Q), 
p p 

1 ~ p ~ co, and a > 0. 
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Theorem 10.5. Let Q be an interval in the case n = 1 or 0: = {(u,v): u € 

mn-1, v EIR; v > ~(u)} in the case n ~ 2 with~ in Lip 1. The extension 

operator E: defined by (10.25), respectively (10.9), is bounded from C~(Q) 

into C~QRn), 1 ~ p ~~with the norm of E# depending only on a, n, and the 
P a 

Lipschitz constant M. Similiarly, the operators Et are bounded from c;(Q) 

into CkORn) with norm depending only on k, n, and M. 
p 

89 

Proof. Apply an L norm to both sides of the inequality in Theorem 10.4 to 
p 

find 

(10. 26) 

We now estimate ll~fiiL ORn) by considering the cases p = 1,~ and then 
p 

use interpolation. 

When p = ~ and g € L~, we have 

(10.27) Tg(x): = sup (l~la/n+1 J _ lg(y)l[o(y)]ady) ~ c llgiiL (Q) 
Q?Q;~x Shad(Q) · ~ 

where we used the facts that o(y) ~ c IQI 1/n, y € Shad(Q), and 

IShad(Q) I ~ c IQI when Q € Q.. Recall also that Shad(Q) c Q. 

For p = 1, we note that c IQil/n ~ o(y) + lx-yl whenever 

x E Q, y € Shad(Q) and Q E Q.. Using these facts shows that for g € L1 , 

(10.28) Tg(x) ~ c J lg(y)l 
Q 

[o(y)]a dy. 
a+n [o(y)+lx-yl) 

Applying an 11 norm to both sides of (10.28) gives 

IITgll
1 

(lRn) ~ c J lg(y)l o(y)a [Jn(o(y)+lx-yl)-a-ndx]dy 
1 Q 1R 

a -a1 ~ c J lg(y)l o(y) [o(y) dy = c llgll 1 (Q) 
Q 1 

(10.29) 

By virtue of (10.27) and (10.29), the sublinear operator Tis bounded from 

L~(Q) to L~(IRn) and L
1

(Q) to L
1

(IRn). By interpolation T must be bounded 

from L (Q) to L (lRn), 1 ~ p ~ ~. 
p p and so since ~f = Tf:, we have 

# ~ c 11fa11 1 (Q) 1 ~ p ~ ~. 
p 

When this is used back in (10.26), we find 
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(10.30) 

Finally, we wish to estimate 11Efll 1 QRn). It follows from the defini
p 

tion of Ef that 

co 
IIEftli QRn) ~ c; [Jiflli (O) + ll_l PQsf ~J:11 1P(Oc)] 

p p J=1 j p 
(10. 31) 

Since each x € Qc appears in at most N cubes Q~ with N depending only on n 
J 

and M, Holder's inequality gives 

ll P f X *lp ~ Np-l l IP sf X *lp 
j Q; Qj j Qj Qj 

I Over nC S :It ( ) ntegrating .. and using the fact that AQj => Qj .\=4c
0 

+1 , we get by 

Lemma 3.2 

~ c l 
j 

liP sfllt (Q*.) 
Qj p J 

liP sfllt (Q~) 
Qj p J 

~ 

~ 

c l II P sf lit (AQ~) 
j Qj p J 

c l llflli (Q~) 
j p J 

where the last inequality follows from the fact that PQ~ is a bounded operator 
J 

on L (Q~) (see inequality (2.3)). Combining this with equality (10.31) showa 
p J 

that 

co 
II Ef IIi QRn) ~ c [ II f IIi (0) + l II f IIi (Q~) ] . 

p p j=1 p J 

But the Q; coincide for different j at most c
0 

times, hence 

11Efll 1 QRn) ~ c llfll 1 (O)' 
p p 

1 :!l p :!l co . 

Combining this with (10.30) proves the theorem for E:. Similar reasoning 

applies for ~- 0 

Remark. The proof of the extension theorem simplifies considerably for the 

Sobolev spaces wkco), 1 ~ p ~co. First we do not need the cover constructed 
p 

in Lemma 10.1 and may use instead the standard Whitney coverings F, Fe of 

both Q and Oc\30, respectively. We let {Q.} be an enumeration ofF and let 
1 c 

Defining Q~ to be that cube in F containina 
1 
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x~: = x. + 2 6(x.)e where 6(x.): = l~(u.)- v
1
.1, we see immediately that 

1 1 1 n 1 1 

properties (10.1)-(10.3) hold. As before, define the extension operator by 

(10.32) * Ef(x): = l n.(x) ~.(x) + f(x) y_(x) 
. 1 1 .. u 
1 

where n. 
1 

of unity 

is a bestWk_ 1 approximation to f on L 1 (Q~) and~: is a partition 

for the open cover {~i}. For each fixed x € Qc\00 there is a 

neighborhood U of x which intersects at most N = 12n of the supports of the 

~i's. Let i
0 

be the index such that x € Qi and define Q: =A Qi + ~nMAen 
0 0 

2 - s - s -with A large (e.g., A= 3000M ) , Q c n, each Q. c Shad(Q) and R.(Q.) ""R.(Q) 
1 1 

if U n supp ~~ ~ ~- It is not too difficult to prove that for 
1 

Vg: = l ID"gl 
lvl=k 

(10.33) (Ef) ~ c T(Vf) + Vf Xn 
where the operator Tg(x): = sup 1 f lg(y)l6(y)kdy is bounded 

Q;Q;x IQik/n+l Shad Q 

on L1 and L"" (see (10.27) and (10.29)). Here Q: = {Q: dist(Q,aQ) ~ R.(Q)} 

and Shad Q = {(u,v) E 0: 

(10.33) that 

(u , v ) E Q with v ~ v } . It follows at once from 
0 0 

IIEfll __ k ~ c llfll __ k . w··c mn) w-·cn) 
p p 

Two main estimates are needed of the proof of (10.33): if lVI = k, 

then 

(10.34) 

(where n: = P~f, a bestiPk_1 approximation to f on L1(Q)) and 
Q 

(10.35) ll~f- ~*filL (Q) ~ c R.(Q)k-n JQ Vf(y)dy 
o:> 

* * if Q c Q c 4Q with Q € F. 

The first inequality of (10.34) follows by applying Leibnitz' rule while 

the second follows from the facts that n € lPk-1 and n"-~(l~:) = 0 if ~ ~ "· 
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together with Markov's inequality and the estimate IDu-~+~1 ~ c t(Q.)I~I-k. 
1 1 

Inequality (10.35) follows immediately from Theorem 3.4 with p = 1 and 

Finally these two estimates are used with the fact that 

can be written as a telescoping sum of terms of the type 



§11. Extensions for Domains With Minimally Smooth Boundary 

In this section, we piece together the extensions of §10 to give extension 

operators for more general domains. We first discuss the case n > 1 and 

leave the case n = 1 to a remark following Theorem 11.4. The domains of 

§10 were of the form 

n-1 
Q = {(u,v): u elR , v elR; '(u) < v}, '''Lip 1 ~ M. 

We call such a domain: a special Lipschitz domain. Any rotation of such a 

domain is called a special rotated domain. 

Suppose, we are given e
0 

> O, an integer N
0 

> 0, a sequence of open 

sets {Ui}' and a sequence of special rotated domains {Qi} with the properties: 

(11.1) i) if X € an, then Be (x) cu. 
1 

for some i 
0 

ii) Be (x) intersects at most N sets u. 
0 1 

0 

iii) for each i, Q n ui = Qi n ui' 

then we say Q is a domain with minimally smooth boundary. This definition is 

equivalenta) to the usual definition [15, p. 189] which replaces ii) by the 

requirement: ii)' l Xu ~ N'. Indeed, 
• 0 
1 

some (U~, e', N'), then the sets U.: = 
1 0 0 1 

if Q satisfies i), 
2e 

(U~) 0 withe : = 
1 0 

iii), and ii)' for 

satisfy i)-iii) because any sphere Be (x
0

) which intersects Ui satisfies 
0 

We now construct a partition of unity as in [15]. For full details of 

its properties see [15, p. 190-191]. If U is an open set, then uE: = {x e U: 
e 

Be(x) c U}. It follows from (11.1) i) that {Ui0
} is a cover for an. Now, 

fix e1: = e
0
/8 and define 

A.(x): =X 2e * ~e (x) 
1 u. 1 1 

1 

where ~ is a C~ function supported on the unit ball 
e1 

are the dilates of ~- Then A. is supported on U. 
1 1 

and ~ (x): =e-n ~(x/e) 
e 3e 

and A. = 1 on U. 1 
1 1 

a) For the original proof, see R. Sharpley, "Cone conditions and the modulus 

of continuity", to appear in the Proceedings of the Second Edmonton 

Conference on Approximation Theory, CMS Conf. Proc., Vol. 3, AMS, 1983. 
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U
0

: = {x: dist(x,O) < e
1

} 

U+: = {x: dist(x,an) < 2e1} 

U : = {x E: 0: dist(x,an) > 2e1 } 

and let 'A
0

, "'-+ and 'A_ be defined as above with X 2 replaced by Xu , Xu and 
n.el o + 

respectively. The functions 
'A+ 

'\= = AO(A +'A ) 
+ -

satisfy: /\+ + A_ = 1 on Q. 

and 

1 

1\ : 

Since LA~ ~ 1 on 
J 

support of/\+' the functions +i as well as the 'Ai' /\+and A_ have a uniform 

bound for their wLa]+l norms which we denote by L. Finally, define 

where for each i, Ei is the extension operator for Oi guaranteed by Theorem 

10.5. We now proceed to show that Ef is in Ca(IRn) whenever f € Ca(O). 
p p 

Since rotations are involved in the definition of E, we need to examine 

the effect of replacing the cubes Q in the definition of f# by rotated cubes a 

or more general collections of sets. We say that a collectionS of measurablo 

subsets oflRn is admissable if there is a constant c' > 0 such that for each 

standard cube (sides parallel to the axes), there is an S € ~ with c'S c Q c I 

(c'S denotes the set S dilated by c' about its center of gravity) and con-

versely for each S € ~ there is a standard cube Q with c'Q c S c Q. Example• 

of admissable collections are balls, finite cones with fixed angle, etc. For 

our purposes the most important admissable collections are the collection of 

all cubes and the collection of all cubes which are a fixed rotation of 

standard cubes. 

If ~ is an admissable collection and 0 is a domain, let 

(11.2) Fa(x): = sup 
CbS3x 
sd 

1 inf f If - nl, 
n€ lP[a] s 

x € n. 
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Lemma 11.1. If 0 is a special rotated domain, S an admissable collection and 

a> O, then there are constants c1,c2 > 0 depending only on a, n, c', and M 

such that for each 1 ~ p ~ ~. 

c1 I£1Ca(O) ~ IIFaiiLP(O) ~ c2 I£1Ca(O) 
p p 

(11.3) 

Proof. Consider first the case 0 = {(u,v): ~(u) < v}. We will use the 

results of §10 with the following adjustments on the constants appearing 

there. First, in the definition of the cone C, we increase the value of M 

1 so that whenever Q e f then C' Q c 0. This is possible since the effect of 

increasing M is to push the cubes Q € F further away from an. We also 

increase the constant A so that A ~ 2{n/c'. The results of §10 hold with 
0 0 

A
0 

arbitrarily large. 

Now consider the right hand inequality in ( 11. 3) . Suppose x € S c 0 

with S € S and let R be a standard cube with c'R c S cR. If 

A ISI 1/n ~ dist(S,ao), then A c'IRI 1/n ~ dist(S,ao) ~ dist(c'R,aG). Since 
0 0 

A ~ 2{n/c', we have R c 
0 

0 and 

(11.4) 1 inf 
ISI 1+a/n n€lP[a] 

f If - nl ~ c inf f If- nl ~ c f~(x). 
S IRI1+a/n ... n€1P[a] R 

On the other hand, if dist(S,aG) ~ A
0 

ISI 1/n then dist(R,aG) ~ A0~(R) and so 

by Lenna 10.3 

(11.5) 

where E0 is the extension operator for 0. Hence, if T is the operator 

defined by (10.27) then 

(11.6) 1 in£ f 1£ - nl ~ c Tffl(x) 
ISI1+a/n n€1P[a] s a 

when dist(s,ao) ~A ISI 1/n. 
0 

Combining (11.4) and (11.6) gives 

(11.7) F (x) ~ c [f#(x) + Tf#(x)] 
a a a 

X € 0. 

Since T is bounded on L , the right hand inequality in (11.3) follows. 
p 

The left hand inequality follows from the estimate 

(11.8) 
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whose proof is much the same as (11.7). Suppose xis in the standard cube 

R c n and s E ~ satisfies c 1 S c R c s. If A t(R) ~ dist(R,aO), then S c Q 
0 

and 

(11.9) 1 
inf f If- nl ~ c FN(x). 

IRI 1+a/n neJP[a] R .... 

If dist(R, an) ~A t(R),' then we proceed as in Lemma 10.3. Let Q E F 
0 

with Q ·n R 1 +and let R = Q,R 1 , ... ,R1 ,R be as in Lemma 10.3. For each 
m m- o 

j, there is a setS. e ~with c 1 S. cR. c S. and a polynomial n. e lP[ ] which 
J J J J J a 

1 is a best approximation to f in L
1 

(SJ.). Furthermore S. c -, R. c O, 
J c J 

j = O, ... ,m. Hence the same telescoping argument which was used in deriving 

(10.13) together with Lemma 3.2 shows that 
m 

llnm - n
0

IIL (Q) ~ c :L m. IR.Ia/n 
co j=o J J 

with m.: = inf F N and S 1 
: = c 1 S.. Using the same technique as in the 

J s~ .... j J 
J 

derivation of (10.16) shows that 

(11.10) a-n f If - n
0

1 ~ c f _ Fa(y) o(y) ~(y)dy 
R Shad(R) 

~ c f F (y) o(y)ady 
Shad(R) a 

m 
since ~(y): = :L 

QnR1+ 
QeF 

IQI Xr(Q)(y) ~ c o(y)n with T(Q) = U R .. 
j=o J 

From (11.10), it follows that 

inf 1 f If - nl ~ c TFa(x). 
nelP[a] IRil+a/n R 

This together with (11.9) establishes (11.8)' and therefore verifies (11.3) 

for domains n = {(u,v): +(u) < v}. 

It follows from what we have proved that given any two admissable collec• 

tions S and S1 the corresponding maximal functions Fa and F~ have comparabl• 

L norms. Thus given any special rotated domain, (11.3) follows by taking 
p 

an inverse rotation. D 

Remark. In the arguments given above and in §10, we could replaceJP[a) by 

JPj, j ~ [a), and the proofs remain valid for the resulting maximal operator• 
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f ( ) { 1 1· nf I I f I } . x : = sup 1+ I Q - n 
J a Q=>Q::>x IQI a n 71dP. 

J 

.F (x): = sup 
J a Q~::>x 

{ 1 1"nf I If I} 1 I S - n · 
lSI +a n rrelPj 

SES 
In particular, for j ~ [a], there are constants c1 ,c2 > 0 such that 

97 

The following lemma is in essence a version of Lemma 2.3 for admissable 

collections. 

Lemma 11.2. If Q is a special rotated domain, 1 ~ p ~ oo; a~ 0 and j ~ [a] 

then there are c1, c2 > 0 such that for f E L1(0) + L
00

(0) 

(11.12) c1 llfll a~ lljfaiiL (Q) + llfiiL (Q) ~ llfll a· 
c p p c p p 

Proof. By Lemma 11.1 and the remark following it, we can assume that Q is 

a special Lipschitz domain. The right hand inequality is immediate since 

IP[a] c IPj. For the left hand inequality, take~ to be the collection of 

all finite cones {(u,v): v + Mlu-u I < v ~ v + h} of height hand vertex 
0 0 0 

x
0 

= (u
0

,v
0

) and let Fa be as in (11.2). If we use cones 

. -n s = soc sl c ... c SN c n, W1th (Si I = 2 (Si+ll' in place of the cubes Qi 

in the proof Lemma 2.3 then we find 

F ~ c .F . a J a 

Using (11.3) and (11.11),we have 

llfll a ~ c 
c (Q) 

p 

as desired. D 

Remark. The estimate (11.12) holds also for the maximal function .f which 
J a,q 

is defined in the same manner as .f except with L "norms", 0 < q ~ p, in 
J a q 
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place of the L1 norm. For the proof we make modifications similiar to those 

made in the proof of Lemma 4.4. 

Because of the form of the extension operator E, we will have to estimat~ 

(Ag): when A is smooth and g is a general function. Suppose A is supported in 

an open set U and e > 0. Let N : = N (U) denote the e neighborhood of U. e e 

Lemma 11.3. If n is a special rotated domain and 1 ~ p ~ ~. then there is 

a constant c depending only one, M, n, p and flAil (a]+l such that 
w~ 

IIAfll cacm 
p 

~ c llfll a 
C (N nQ) 
P e 

Proof. Clearly, I IAfiiL (Q) ~ 
p 

c I IfilL (N nQ)" 
P e 

Consider first the case 

1 < p ~ ~. According to Lemma 11.2, it suffices to show 

(11.13) II /Af)aiiLP(n) ~ c II £11 a 
C (N nn) 

P e 

forj=2[a]. Suppose then that x E n and Q is a cube satisfying 0 ~ Q 3 x. 

If IQI ~ en, then 

(11.14) inf 
1 I fQ lA£ - nl ~ c M(fXnnu)(x) ~ c M(fXN 00)(x). 

nEIP. IQI 1+a n e 
J 

If IQI ~ en, then we may assume Q n U ~ + since otherwise AfXQ = 0. Let 

n
0 

and nA denote best L1(Q) approximations fromiP[a] to f and A respectively. 

Writing Af - nAno = (f - n
0

)A + n
0
(A- nA), we have 

(11.15) 

~ c [i1(x) + M(fXNnQ)(x)] 
a e 

[a)+1 c N 
where we used the facts that A E W~ , lln

0
IIL (Q) ~ TQT fQ lfl and Q c e" 

~ 

In this inequality f: is taken relative to the domain Ne n Q. Inequality 

(11.13) follows easily from (11.14) and (11.15) because M is bounded on L . 
• p 

a -1 # . # ( When p = 1, we choose (1~) < q < 1 and use f 1n place of f see 
n a,q a 

Theorem 4.3) and M in place of M to derive an analogous inequality to 
q 

(11.13) with .f in place of .f . D 
J a,q J a 
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We can now prove the main result of this section. 

Theorem 11.4. Suppose 0 is a domain with minimally smooth boundary. For 

each a > o, and 1 ~ p ~ ~. 

(11.16) IIEfll ~ c 
Ca0Rn) 
p 

with c depending only on a, n, and 0. 

~- Consider first the case 1 < p < ~. 

g :=Af. 
0 -

Then, 

(11.17) 

llfll a 
c (0) 
p 

Let g.:='· E.(.A..f) and 
l. l. l. l. 
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First, we estimate the term involving ~0 • Since A 

for any cube Q with x E Q and (Q( ~ (&/.[ri)n we have 

£;1 
is supported on n • 

1 
inf IQI 1+a/nfQ (g0 - n( ~ c M(fXQ)(x). 

ndP(a] 

On the other hand if x E Q and (Q( < (t:1/.[ri)n, then we can estimate as in 

(11.15) and obtain 

(11.18) 

because p > 1 . 

[llfll a + 
Cp(O) 

II fll a 
C (O) 

p 

To estimate the term involving Ig. in (11.17), we again consider the 
l. 

case (Q( ~ (t:1/.[ri)n and find 

(11.19) inf 1 
1+a/n JQ ((Igi) - n( ~ c M(Ef- g0 )(x) 

n EP[a] (Q( 

~ c [M(Ef)(x) + M(fXQ)(x)]. 

£;1 
If (Q.( < (t:/./D.)n and x e Q, then Q intersects at most N

0 
of the Ui 

We denote by I: = I(Q) the set of such indices i. For i E I(Q) let ni 

denote a best L1(Q) approximation to gi fromiP[a) and set n: = i!Ini. 

Q c ui and so 

Then, 
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(11.20) 1 I I (lg.) - n I :£ 
IQI1+a/n Q 1 

1 
l+a/ l JQ lg. - n.l 

IQI n iEI 1 1 

:£ l (gi):(x) Xu. (x). 
iEI 1 

This, together with (11.19) gives 

(11.21) (lg. ):(x) :£ c [M(Ef) (x) + M(fXg)(x) + l (g .l (x)XU (x)]. 
1 iEI 1 a i 

Concentrating on the last term, we notice that 

(11.22) 

because lxu (x) :£ N . Using this in (11.21)' gives 
• 0 
1 

(11. 23) II (lgi):ll~ :£ c [ IIM(Ef) II~ + IIM(fXg) If~ + l II (gi):ll~ ] . 
p p p p 

But M is bounded on L for p > 1 and E: L (0) 7 L ¢Rn) and so p p p 

(11.24) IIM(Ef)IJ~ + IIM(fXg)ll~ :£ c llfll~ (0) 
p p p 

For each i, Lemma 11.3 (with 0 =IRn) and Theorem 10.5 give 

II (g.) 11 11 1 :£ c liE. (A.. f) II :£ c IIA..fll 
1 a P 1 1 ca 1 ca(O.) 

p E p 1 

This time applying Lemma 11.3 to A..f with U = U. 1 and using the fact that 

N (U) c Ui, we have 
El 

1 1 

llfll~ 
C (U.nO.) 
p 1 1 

:£ c I 
u.no 

1 

because Ui n Oi = Ui n 0. Since each x appears in at most N
0 

Ui's, substi

tuting this and (11.24) back into (11.23), gives 

Also as noted above 

Jllgi I I 1 :£ I I Ef II 1 + 
p p 

This completes the proof for 1 < p < ~. 

llfll a 
C (O) 

p 

For p =~,we use l (g.)#(x) Xu_(x) :£ N l(g.)#(x) in place of (11.22). 
iEI 1 a 

1 
o 1 a 

Then, the same proof with L~ norms in place of Lp norms gives the desired 
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result. For p = 1, we choose (1~)- 1 < q < 1 and use f# in place of f# 
n a,q a 

and M f in place of Mf with the same proof and the fact that 
q 

llh!,qii
11

(0) ~ c llh!II
11

(0) for any 0 with c independent of 0 (see Theorem 

(4.3)). 0 

Remarks. 

i) The extension theorem holds for the spaces 

a is not an integer, this follows from the 

e:. 1 ~ p ~ ~. When 

fact that ea = ca. 
p p 

When a is an integer, it follows from the argument on page 192 

of [15] and the Remark on Sobolev spaces at the end of §10. The 

k space t 1 must be handled separately using the techniques of this 

section. 

ii) The extension operator E can easily be modified so that for a 

fixed k, E: C~(Q) ~ c:¢Rn), for all a< k. Notice however that 

it is not a total extension operator in the sense of [15]. 

iii) The extension theorem holds for domains Q c lR such that Q = U I. 
. 1 
1 

with the I
1
. intervals satisfying: dist(I.,I.) ~ e , i ¢ j and 

1 J 0 

!(I.) ~ e . Here one simply works with a standard partition of 
1 0 

unity rather than the more complicated partition used for n > 1. 

We can now generalize the results of the previous sections which held 

for special domains to domains with minimally smooth boundary. Maximal 

functions based on admissable collections rather than cubes can be shown to 

give equivalent norms for Ca(Q). 
p 

The interpolation theorems of §8 hold for domains Q with minimally 

smooth boundary. For example, it follows immediately from Theorem 11.4 

together with Corollary 8.3 that Ca(Q) is an interpolation space for Ca (Q) 
P Po 

Going further, one can prove in a similar way to 

Theorem 11.4 and the generalization of Lemma 11.2 that the interpolation 

results (8.10) and (8.19) hold. 
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We also have the following embeddings. 

Corollary 11.5. If 0 is a domain with minimally smooth boundary, 

0 < p ~ q ~ ~. and 0 ~ P ~a+ n(l-l), then we have the continuous embedding& q p 

dl (Q) -+ cP (O) . 
p q 

Proof. Let E be an extension operator for a and 0. For any 0 ~ Q ~ x and 

n €lP[a]' 
1 f If - nl ~ 

IQII+P/n Q 
1 f IEf - nl 

IQI1+P/n Q 

thus, 

(11.25) 

From Theorems 9.6 and 11.4, 

IIE£11 a ~ c IIE£11 a ~ c llfll a· 
C~"(IRn) C (IRn) C (Q) 

q p p 

which together with (11.25) proves the Corollary. 0 

We can also generalize the results of Theorem 7.1. Here, we use the 

fact that 

(11.26) (L co), wkco))6/k = Be,q(o). p p ,q p 

This was proved for domains 0 which satisfy a uniform cone condition in 

[11]. b) 

Corollary 11.6. If 0 is a domain with minimally smooth boundary, then for 

1 < p < ~. we have the continuous embeddings 

Ba'p(O) -+ Ca(O)-+ Ba'~(O). 
p p p 

Proof. Let k > a. For the right hand embedding, let E be the extension 

operator fork and 0, then using Theorem 7.1 and the Remark ii), we have 

b) 

llfll a~ 
B ' (Q) p 

~ IIEfll,. ~ n 
B"' OR ) p 

llfll a 
c (Q) 
p 

Ibid. This condition is actually equivalent to requiring 0 to have a 

minimally smooth boundary. 



MAXIMAL FUNCTIONS MEASURING SMOOTHNESS 103 

For left hand embedding, we use the fact that E: Ba'p{Q) ~ Ba'pORn) because 
p p 

of (11.26). Using Theorem 7.1, we h~ve 

llfll a 
c (Q) 

p 

ll.t:fll a P n 
B , QR ) 
p 

llfll 
Ba,p(Q) 

p 

0 



§12. The case 0 < p < 1 

We want now to define spaces Ca and ~ when 0 < p < 1. We have purposep 
p p 

fully postponed the discussion of this case in order to avoid certain 

technicalities which would only have obscured the development. As we shall 

see, many of the results of the previous sections hold for this range of p 

as well. 

If 0 < p < 1 and a > O, 

ta: = ~a(O): = {f € L (0): 

let Ca: = Ca(O): = {f € L (O):f/1 € 
P P P a,p 

p p p fb € L (O)} and define 
a,p P 

1£1 ca 
p 

= II £11 II a,p L 
p 

1£1 ta =II£~ Pll 1 
' p 

11£11 a:= 11£11 1 c p 
p 

+ lfl ca 
p 

p 

11£11 a 
eP 

It follows that d(f,g) a 
c 
p 

= 11£-gllp is a metric on Ca and 
ca P 

d(f,g) : = ea 
p 

11£-gllp is a metric 
ta 

p 

p 

on ea. 
p 

L (0)} and 
p 

These spaces are F-spaces with respect to their topologies. For exampl~, 

the proof of the completeness of Ca is the same as in the case p ;?; 1 describ~>;l 
p 

in Lemma 6.1. In this case, the inequality 

h# (x) ~ lim (h )# (x) 
a,p ~ m a,p 

whenever hm -+ h in LP follows from the fact that PQhm -+ P Qh' which in turn h 

a consequence of the continuity of PQ on Lp. 

The definitions of C~ and t~ for 0 < p < 1 are consistent with the case 

p ;?; 1. Indeed, as we have observed earlier, when 1 ~ p ~ ~, Theorem 4.3 showe 

that 

f# s rl1 ~ Ma(f!) a: = (!+!!)-I 
a - a,p p n 

Since M is bounded on Lp, a 

lli111 ~ II £11 II ~ c llrl111 a L a,p LP a L p p 

104 
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and therefore Ca could have equivalently been defined as the set of f € L 
p p 

such that f# € L · in addition, a,p p' 11lf IlL is equivalent to lfl • 
a,p P ca 

p 

Suppose now that 0 = lRn. We want to give embeddings between Ca, 
p 

0 < p < 1, and other smoothness spaces. Recall that when f € Lp, 

lim PQf(x) = f(x), a.e. (Lemma 4.1), and (see (4.10)) 
Q.j.{x} 

(12. 1) 

Here PQf a the best Lp(Q) approximation to f fromiP[a]· It follows from 

(12.1) that if r > [a], 
r 

~ (f,x) ~ c ha L f# (x + jh). 
j=l a,p 

Raising both sides to the p-th power and integrating gives the continuous 

embeddings 

(12.2) 

with Ba,q the Besov spaces as defined in §3. 
p 

The embeddings 

(12.3) a > 0, 

also hold for 0 < p < 1 but their proof requires a litte more care. Let us 

first consider the case 0 <a < 1, where there is a simple proof that encom-

passes the main,ideas of the general case. Using Corollary 5.4 and Remark 

(2.14) i), we 

(12.4) 

have for Qp: 

rPa (x) ~ c ,p 

00 

~ c L 2-ja(2-jn I lf(x+s) - f(x)lpds) 1/p 
j=-oo Q2j 

because I is increasing with p. 
Qp 

Recall that for 0 < p < 1, (IA.)p ~ L(h.)P. 
J J 

Hence (12.4) gives 
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ri rP 
00 

(12.5) In ::! c l 2-jap (2-jn I f lf(x+s) - f(x)lpdxds) 
lR a,p j=-oo Q . mil-

2J 

~ c ~ [p-a w(f,p) ]P ~ 
p p 

and (12.3) readily follows since fb = f# for 0 < a < 1. 
a,p a,p 

The case a ~ 1 is more in~olved. Let Q be a cube inlRn with the same 

notation as above, we define for T > 0, 

wr(f,T)L (Q}: = (T-n I I IA~(f,x)lpdsdx) 1/P . 
p Q QT 

(12.6) 

For our next lemma, we fix Q = Q0 as the unit cube iniRn and define Sa 

as the set of functions in L (IRn) such that 
p 

-a 
llfiiL (a Q) +sup T wr(f,T)L (a Q)::! 1 

p r T:i!l p r 

where r: =[a]+ 1 and a.:= 1 + ... + j for each postive integer j. 
J 

Lemma 12.1. For each a> 0, Sa is a compact subset of Lp(Q}. 

Proof. Consider first the case 0 < a < 1. If m is any postive integer, 

take t = 1/m and subdivide Q into mn cubes (Q.) which have pairwise disjoint 
J 

interiors and each Qj has side length T. If f € Sa, 

l I I lf(x+s) - f(x)lpdsdx::! Tpa+n. 
j Qj QT 

It follows that for each j there is a constant c. (for example c. = f(x.) with 
J J J 

appropriately chosen x. € Q.) such that the function + : = l c.~ satisfies 
J J T J""\lj 

I If - +TIP ::! Tpa+n . 
Q 

It is clear that the c. can be chosen as best constants of approximation to 
J 

f in L (Q.) and therefore we also .have 
p J 

Since the span {~_} is a finite dimensional space and T can be made arbitrarilV 
J 

small, the set Sa is compact. 

The case a ~ 1 can be reduced to the case just proved. We start with tho 

identity [19, p. 105] 
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k -k k k- 1 k k k+1 . 
~ (f,x) = 2 [~2 (f,x) - I I (.)~ (f,x+js)] 

s s j=O i=j+1 1 s 1 

With the abbreviated notation wj(•): = wj(f,•)L (a.Q)' we have for • < 1 
p J 

(12.7) wk(•)p ~ 2-kp wk(2t)p + c wk+
1
(t)P. 

Since tnwk(•)p is increasing with • and wk(1) ~ c I IfilL (a Q)' a repeated 
p k+1 

application of (12.7) gives 

(12.8) w (t)P ~ c tkp [J1 t-kp w (t)P dt + llfliLP (a Q)] k - t k+1 t p k+1 

with c depending only on k and p. 

Now suppose f E Sa with r-1 ~ a < r. Let r-2 ~ ~ < r-1 and use (12.8) 

with k = r-1 to find 

Hence for an appropriate constant A, we have ASa c S~. Repeated application 

of this result shows that ASa c s112 for an appropriate A. Since s112 is 

compact and Sa is closed, we have Sa compact. 0 

Lemma 12.2. Let a> 0; p > 0, and r = [a] + 1. If f E: L ( lRn) , then for 
p 

each cube Q of side length p there is a polynomial nQ E IPr_1 
a -a 

(12.9) llf-nQIIL (Q) ~ c P sup t wr(f,•)L (a Q) 
P •~P p r 

with a 
r 

1 = 2r(r+l). 

such that 

Proof. The proof is similar to the proofs of Theorem 3.4 and 3.5. It is 

enough to prove (12.9) for the unit cube since the case of general cubes 

then follows by scaling. Now, suppose (12,9) does not hold for Q = Q0. It 

follows that there is a sequence of functions (fm) such that 

(12.10) i) dist(fm, IPr_1)L (Q) = llfmllt (Q) = 1 
p p 

ii) m -+ oo. 
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By Lemma 12.1, (f ) is precompact in L (Q). Hence, we can also assume m p 

that f ~ f in L (Q) for some f. For each 0 < t < 1, we have from (12.10) m p 

ii)' 

(12.11) IAr(f,x)lpdsdx ~lim 
s ~ 

Hence it follows that f = P a.e. for some P€ IPr_
1

. On the other hand, 

(12.10) i) shows that dist(f, IP 1) = 1 which is the desired contradition. 0 r-

Actually when p < 1 in the above proof, it may not be so clear that 

(12.11) implies that f = P a.e. with P € lPr_1 . However, this can be proved 

by induction on r. The case r = 1 is obvious. If r > 1 and (12.11) holds, 

then for all sufficiently small s we have Ar(f,x) = 0 a.e. x. Now we can 
s 

write (see [11]c)) a general difference At ... At in terms of pure differenc~• 
1 r 

{A~i}; hence for all sufficiently small (t1 , ... tr)' At
1 
•.. Atr (f,x) = 0 a.e. 

in x. Our induction hypothesis then gives that for small t, At(f,x) is a.e. 

a polynomial inlPr_2 , and therefore it is not difficult to see that 

(12.12) f(x+t) = f(x) + " .L a"(t)x a.e. x 
lvl~r-2 

with a" continuous. Applying now an arbitrary r-th difference Ar to (12.12) 
s 

as a function of t gives that each a"(t) is a polynomial of degree at most 

r- 1. Taking finally x = x such that both (4.7) and (12.12) hold shows 
0 

that f = P a . e . with P € lP r-1 . 

The following are embedding theorems for Besov spaces and Ca when p < 1. 
p 

Theorem 12.3. If a,p > 0, we have the continuous embeddings 

Ba ,p ( lRn) -+ Ca( lRn) -+ Ba ,oo( lRn). 
p p p 

c) See also Theorem 1 in B. Baishanski, "The asymptotic behavior of 

the n-th order difference", Enseignement Mathematique 15 (1969), 

29-41. 

l 
1 
l 
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Proof. We have shown the right hand embedding in (12. 2). The left hand 

embedding has been shown for 0 < a < 1 and all p > 0 and also for all a > 0 

provided p ~ 1. Consider now the case a > 0; 0 < p < 1. Choose any 

r-2 ~ ~ < r-1 (recall r = [a] + 1) and let 

~(p,x): =sup .-~ w (f,t)1 ( + Q )" 
t~p r p x ar p 

From Lemma 12.2 and Remark (2.14) 

f# (x) ~ c sup p(~-a-n/p) +Cp,x) 
a,p p>O 

i), we have 

~ c ~0 p(~-a-n/p) +Cp,x)~ - p 

Integrating this inequality gives (cf. (12.4-5)) 

(12.13) 

Now, 

where we used the fact that w (f,~t) ~ c w (f,t) . Returning to (12.13), r p r p 

we have from Hardy's inequality 

f If# IP ~ c ~ p<~-a)p ~ t-~p w (f t)P dt ~ 
mn a ,p 0 0 r ' p 1: p 

as desired. D 

The spaces Ca, 0 < p ~ ®, form an interpolation scale as is contained 
p 

in the following generalization of Theorem 8.2. 

Theorem 12.4. If a > 0 and 0 < p < ®, 
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In addition, if 1/r = (1-6)/p + 6/q with 0 < 6 < 1, then 

(Ca Ca) = Ca (ta ta) ea 
p' q 6,r r p' q 6,r = r 

Proof. The proof of this theorem is much the same as the proof of the case 

p = 1 given in §8. We indicate only the basic changes that have to be made. 

The projections PQ are replaced by PQ so that PQf is a best Lp(Q) approximant 

to f of degree [a] in the case of f:,p and of degree (a) in the case of f~,p 
The extension g of Lemma 8.1 is now defined as 

l f(x), 

g(x): = ~ P f(x)~~(x), 
. Q. J 
J J 

X € F 

The role of the Hardy-Littlewood maximal operator M is replaced by M 
p 

and of course fa is replaced by f which is either f# or fb as appro-a,p a,p a,p 

priate. Lemma 8.1 then reads: If Mpf ~ m0 and fa,p ~ m1 on F then i) g = f 

on F; ii) g ~ c m0 onJRn; and iii) ga,p ~ c m1 onJRn. 

The proofs of Lemma 8.1 and Theorem 8.2 require estimates for PQf- PQ*f 

* when Q c Q. We have from (5.5) 

(12.14) IID"(P.Qf- P.Q*f)IIL (Q*) ~ c IQI(a-lvl)/n inf f (u). 
oo uEQ* a,p 

This is used in (8.5) with"= 0 and in the derivation of (8.8) and (8.9). 

In the proof of Theorem 8.2, the set E is now defined by 

E: = {f# > f#* (tp)} u {M f > (M f)*(tp)} 
a,p a,p p p 

so that lEI ~ c tP. Then, (8.12) becomes 

t llgll ~ ~ c CJ
0
tP[f* + f#* ]P) 11P. 

... a,p 
coo 

OnE, the estimate (8.15) becomes 

artd on F (8.17) becomes, 

h
fl (x) ffl* p ( IQ.I1+ap/n )1/p 

~ c (t ) ~ + 
a,p a,p j dist(x,Q.)n ap 

J 

X € F 
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and so 

This combines with the above inequality for g to give 

a a 
K(f,t,C ,C)~ l[hJJ ~ + t flgll ~ 

p ~ cu cu 
p ~ 

~ c utp rl + ftP< Jp)l/p. 
0 a,p 

This inequality can be reversed by using the subadditivity of 

0 

Remark: One can also characterize the K functional for the pair 

(C~,C~) = (Lp,BMO), see (2]. 

The embedding theorems of §9 also hold when p < 1. 

Theorem 12.5. If o < p ~ q ~ ~; o ~ p ~a+ n/p ~ n/q, then Ca ~ cP. 
p q 
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Proof. This is the extension of Theorem 9.6 to p < 1 with essentially the 

same proof. To begin with, let us note that Lemma 6. 6 remains valid for 

p < 1. Indeed the same argument given in th.e proof of this lemma shows that 

for any r > 0, 

with 6: 

fll (x) 
p,r 

= P/a. 

~ c [M f(x)] 1-6 [f# (x)] 6 ~ c [M f(x) + f# (x)] 
r a,r r a,r 

We take (! + ~)- 1 < r < p and use Theorem 4.3 to 
p n 

(12.15) I I r! I I L ~ c I I f! r I I L ~ c [ I I f I I L + I I f: P I I L l · 
..... p p ..... p p ' p 

find 

Now suppose p = a + n/p - n/q. Let PQf denote a best Lq(Q) approxi

mation to f of degree [a]. From Lemma 4.4, 

£! (x) ~ c sup - 1-- (-1- f If- P. f I p) l/p 
.... ,p Q3x IQIP/n. IQI Q Q 

~ c sup 
Q3X 

:!> c {I - y 

withy: = (a-p)r and r chosen so that 0 < r <min (n/(a-p),p). 
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As in Theorem 9.3, the mapping properties 

(12.16) lfln~c11i1 II ~c cP ~.p Lq 
q 

of Iy and Theorem 4.3 give 

lfl a 
c 
p 

provided q < ~. This inequality also holds for q = ~ as can be seen from the 

argument in Corollary 9.4 with f! in place of f! and f# in place of f~. p,p P a,p ... 

In view of (12.16), to complete the case ~=a+ n/p - n/q we are left 

with showing that Ca ~ L . For this purpose we note that Theorem 6.8 can 
p q 

be extended to the case p ~ 1 by replacing f~ by f~,r with 0 < r < p. If 

1/q
0

: = 1/p - a/n is nonnegative, then it follows from (12.16) that 

llfll a 
c p 

and hence Ca ~ L n L ~ L . 
p qo p q 

of Theorem 9.1. Namely, (9.2) 

If 1/p - a/n is negative, we use an analogue 

holds with f~ replaced by f# with the same ... a,p 

proof. Arguing as in Theorem 9.6, we find 

llfll a 
c p 

and hence f E C n L c L . Thus, we have completed the case 
p q 

~ = a + n/p - n/q. 

If ~ < a + n/p - n/q, 

and the case ~ = a + n/p -

then the embedding ca ~ c~ 
p q 

n/q proved above. D 

follows from (12.15) 

The extension theorems of §10 and §11 hold for p < 1 as well. In the 

definition of the extension operator E for special Lipschitz domains the 

polynomial p f is replaced by p f a polynomial of best L approximation to 
Qs Qs p 

k k 
s 

f on Qk. Again let E: denote the extension operator when polynomials of 

degree [a] are used and E~ the operator when polynomials of degree (a) are 

used. We then have the following analogue of Theorem 10.5. 

Theorem 12.6. If 0 is a special Lipschitz domain and p > 0 then the exten-

sion operator E: is bounded 

from Ca(O) into Ca(IRn). 
p p 

Similarly E~ is bounded 
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Proof. In the proof, the obvious changes are made. We replace f# by f# 
a a,p 

and L1 estimates by Lp estimates. 0 

We also have the analogue of Theorem 11.4. 

Theorem 12.7. If 0 is a domain with minimally smooth boundary and a,p > 0, 

there is an extension operator E and a constant c > 0 such that 

Proof. 

proof. 

II Ef II a n ~ c 
CPOR ) 

II fll a 
c (Q) 
p 

Lemmas 11.1 and 11.2 hold for p < 1 with no essential change in the 

In Lemma 11.3, we use f# with (~ + !)-1 < q < p in place of f~ and a,q n p .. 

analogous maximal functions .f in place of .f . Also the Hardy-Littlewood 
J a,q J a 

maximal function M is replaced by Mq. These changes are used then in the 

proof of Theorem 11.4. 0 

Using Theorem 12.7, various results formn can be proven for domains 0 

with minimally smooth boundaries. Most notably the embeddings of Theorem 12.3 

follow for these Q and it still holds that Ca(Q) is an interpolation space 
p 

between Ca (0) and Ca (Q) provided 0 < p
0 

< P < P1 ~ ~. Po P1 
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