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Decomposition of functions into pairs of
intrinsic mode functions
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The intrinsic mode functions (IMFs) arise as basic modes from the application of the
empirical mode decomposition (EMD) to functions or signals. In this procedure,
instantaneous frequencies are subsequently extracted from the IMFs by the simple
application of the Hilbert transform, thereby providing a multiscale analysis of the
signal’s nonlinear phases. The beauty of this redundant representation method is in its
simplicity and extraordinary effectiveness in many important and diverse settings.
A fundamental issue in the field is to better understand these demonstrated qualities of
the EMD procedures and the elementary modes they produce. For example, it is easily
observed that when an EMD procedure is applied to the sum of two arbitrary IMFs, the
original modes are rarely reproduced in the generated collection of IMFs. An interesting
question from a representation point of view may be stated as follows: for any given
sufficiently smooth function and fixed nR2, when is it possible to represent the function
as a sum of (at most) n intrinsic modes? A more interesting question is whether such a
decomposition is possible when the extracted modes are constructed from a common
formulation of the intrinsic properties of the function being analysed.
We provide an answer to these questions for a relaxed version of IMFs, called weak

IMFs, which has been shown to be characterized in terms of eigenfunctions of Sturm–
Liouville operators. The objective of this study is to further extend that analogy to the
relationship between sums of weak IMFs and coupled Sturm–Liouville systems. The
construction of this decomposition also provides a guide to an alternate characterization
of the instantaneous frequency and bandwidth.

Keywords: intrinsic mode function; empirical mode decomposition;
Sturm–Liouville systems; instantaneous frequency; redundant representations;

multiresolution analysis
*A

Rec
Acc
1. Introduction

The empirical mode decomposition (EMD) method was developed by Huang
et al. (1998) to decompose functions into a superposition of natural modes, each
of which could be easily analysed for their instantaneous frequencies and
bandwidths. These natural modes, which were termed intrinsic mode functions
(IMFs), were generated at each scale, going from fine to coarse, by an iterative
Proc. R. Soc. A (2008) 464, 2265–2280
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procedure to locally isolate the modal behaviour. Application of EMD to real
signals f(t) has the purpose of representing these signals as sums of simpler
modes j, i.e.

f ðtÞZ
XM
jZ1

jjðtÞ; ð1:1Þ

where each jj (see Cohen 1995) comes with a specific polar representation of
the form

jjðtÞZ rjðt Þ sin qjðtÞ: ð1:2Þ
These modes generalize the standard real and imaginary parts of Fourier
components, in which it is required that each rjðtÞZ f̂ ðjÞ be constant and qj(t)Zjt
be linear, but are more suitable for the study of non-stationary phase. A richer
analysis of signals is provided when the amplitudes are allowed to vary and the
phases are permitted nonlinear, or non-stationary, behaviour as in the
representation (1.2). We wish to emphasize that even if one is provided a
decomposition of a signal f in the form (1.1), for each given jj the particular polar
representation (1.2) that should be used is ambiguous with many possible
selections of reasonable pairs of amplitudes and phases. The objective of EMD is to
extract the decompositions from among such highly redundant representations so
that the amplitudes r(t) and the corresponding phases q(t) at each scale are both
physically and mathematically meaningful. In the case that the signal j is causal,
the polar representation may be recovered by the application of an appropriate
(cf. Sharpley & Vatchev 2006) Hilbert transform. In this case each mode j, after a
phase shift of p/2, is represented as the real part of a complex signal J

JðtÞZ rðtÞ exp iqðtÞ: ð1:3Þ
Obviously, the choice of amplitude–phase (r, q) in the representation (1.3) is
equivalent to the selection of an imaginary part f since

rðtÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ðtÞCf2ðtÞ

q
; qðtÞZ arctan

fðtÞ
jðtÞ ; ð1:4Þ

once some care is taken to handle the branch cut.
An alternative to the Hilbert transform method for extracting instantaneous

frequencies is the class of quadrature methods (see Cohen 1995). Whichever
method is to be used should be governed by the context of the phenomena
under study and the analysing procedure should produce, for each signal j within
the signal population, a properly chosen companion f for the imaginary part.
This companion function f should be unambiguously defined and should
properly encode information about the component signal, which is in this
case the IMF. Therefore, the collection of instantaneous phases present at a
given instant (i.e. tZt0) for a signal f(t) is heavily dependent upon both the
decomposition (1.1) and the selection of representations (1.2) for each mono-
component. A discussion of the application of Hilbert transforms and alternative
quadrature methods to IMFs to obtain instantaneous frequencies are provided in
Sharpley & Vatchev (2006).

A partial sum of IMFs in the representation (1.1) can be considered as an
approximation of a function f by IMFs. The stoppage criteria used in applying
EMDs are numerous, but they could be considered as control of approximation
errors in various metrics.
Proc. R. Soc. A (2008)
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According to Huang et al. (1999, p. 423), the EMD method was motivated
‘from the simple assumption that any data consists of different simple intrinsic
mode oscillations’. Three methods of estimating the time scales of f at which
these oscillations occur have been proposed are

— the time between successive zero-crossings;
— the time between successive extrema; and
— the time between successive curvature extrema.

The use of a particular time scale is application dependent. Following the
development in Huang et al. (1999), we define a specific class of signals with special
properties that make them very well suited for phase and wave band analysis.

Definition 1.1. A function j(t) is defined to be an intrinsic mode function, or
more briefly an IMF, of a real variable t, if it satisfies the following two
characteristic properties:

(i) j has exactly one zero between any two consecutive local extrema and
(ii) j has zero ‘local mean’.

A function that is required to satisfy only condition (i) will be called a weak
IMF and W will be used to designate all such functions. Note that j2W
precisely when the number of zeros and the number of extrema of j on I differ at
most by 1.

In general, the local mean in condition (ii) in the EMD procedure is typically
the pointwise average of the ‘upper’ and ‘lower’ envelopes as determined by the
spline fits of knots consisting of, respectively, the local maxima and the local
minima of j.

The concept of decomposing functions into oscillating modes is the essence of
the Sturm–Liouville theory. In Sharpley & Vatchev (2006) we related the concept
of monocomponents from phase analysis to the Sturm–Liouville theory by
characterizing the weak IMFs as solutions of self-adjoint differential equations.

Theorem 1.2. Let j2C2(I ) be a weak IMF with simple zeros and extrema, then
there exist positive continuously differentiable functions P and Q such that j is the
solution of the initial-value problem

ðPf 0Þ0CQf Z 0; f ðtÞZjðtÞ; f 0ðtÞZj0ðtÞ; ð1:5Þ

for some t2I.

From this result, it follows that an instantaneous frequency and bandwidth
pair ðq 0; r 0=rÞ can be defined implicitly through the Prüfer substitution given by

Pf 0ðtÞdrðtÞ cos qðtÞ; f ðtÞdrðtÞ sin qðtÞ: ð1:6Þ

The goal of this paper is to further extend the relationship between weak
IMFs and eigenfunctions of self-adjoint differential operators by the representa-
tion of very general functions by superposition of weak IMFs from a common
framework. Therefore, a natural question arises which must be answered if an
Proc. R. Soc. A (2008)
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EMD procedure, such as Hilbert–Huang transform (Huang et al. 1999), is to be
realized in terms of some nonlinear minimization procedure in the context of
structured dictionaries (e.g. the expository article of DeVore 1998). The question
then becomes
Proc.
Under what conditions can functions be decomposed into a superposition of at most n IMFs
that are inherently extracted from the function?
Here, n is a fixed number that is set in advance. We prove that any smooth
function can be decomposed into two (or fewer) weak IMFs (see theorem 3.1).
This is not surprising since the two IMFs are unrelated to f other than the one
which should be a sinusoidal with amplitude larger than the uniform norm of f
and frequency higher than any local frequency of f. In this case, there are no
requirements coupling the two corresponding Sturm–Liouville operators for
the jj . However, with more care, weak IMF pairs j1, j2 can be constructed from
f so that they are solutions corresponding to different eigenvalues of a Sturm–
Liouville operator (SLO; with coefficients P, Q) and fZj1Cj2. This is the
content of theorem 3.2. The analogy between a decomposition such as EMD and
coupled Sturm–Liouville systems with the same primary coefficients P and Q is
provided in theorem 2.1. We prove that for any sufficiently smooth function f,
there exists a coupled linear system of two differential equations, such that f
represents one of the components of the solution. These coupled equations can be
formulated in terms of a mechanical system of a pair of variable masses and
springs and f then represents the displacement from equilibrium of the terminal
mass of the system. This formulation gives an indication of a possible deeper
relationship between decompositions of signals into superpositions of IMFs and
concepts from system identification.

We begin by defining a general SLO that acts on sufficiently smooth functions
f and is defined by

Lf dK
1

Q
ðPf 0Þ0; ð1:7Þ

where P and Q are positive continuous functions on some interval IZ[a,b]. The
spectrum of L consists of all u for which the equation LjZuj has a solution on I
that satisfies certain boundary conditions. In a more general situation the
Sturm–Liouville (SL) system is defined as the solutions of the boundary-value
problem (BVP)

ðPj0Þ0CðuQKrÞjZ 0;

jðaÞ cos aCPðaÞj0ðaÞ sin aZ 0;

jðbÞ cos bCPðbÞj0ðbÞ sin bZ 0;

9>>=
>>; ð1:8Þ

for positive functions P and Q and real constants u, a and b.
It is well known (see Birkhoff & Rota 1989) that (1.8) has a solution for a

discrete set of eigenvalues, such that 0!u1!u2!/ and limn/NunZN. The
corresponding eigenfunctions jun

form an orthogonal basis in the weighted

Hilbert space L2ðI ÞðQÞdff :
Ð
I jf ðtÞj2QðtÞ dt!Ng with inner product

Ð
I fgQ dt,

and hence any function f2L2(I )(Q) has a decomposition

f Z
XN
nZ1

ajjj ; ð1:9Þ
R. Soc. A (2008)
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with convergence in L2(I )(Q). For a fixed SL system, there exists a unique
representation of any f2L2 in the form of (1.9) but, in general, requiring
infinitely many terms. This should be contrasted to theorem 3.2.
2. Coupled differential systems for smooth functions

In this section, we prove the main result of this paper for representing a function
as a component of a solution of a linear system of differential equations. In the
proofs of the theorems, we require two technical lemmas. In order not to disturb
the main flow of ideas, we refer the reader to appendix A for their proofs.
Throughout this section assume f is defined on a finite interval IZ[a,b] and has
only simple inflections and set XZfx2 I : f 00ðxÞZ0g has M!N elements.

Theorem 2.1. For a function f2C2(I ) with simple extrema and for any positive
numbers k1 and k2, there exist continuous and positive functions P and Q,
depending upon f, and twice differentiable function x such that f and x satisfy the
following system of differential equations:

ðPx 0Þ0 ZKk2QxCk1QðfKxÞ;

ðPf 0Þ0 ZKk1QðfKxÞ:

)
ð2:1Þ

Proof. For each point xj2X, suppose IjK1Z[bjK1,aj] contains xj and the initial-
value problem (IVP) considered in lemma A.1 has one solution. Let a 0Za, bMZb
and JjZ[aj,bj]. First assume that a 02J0. The existence of P and Q is shown by
inductively constructing them on I0 and J0 and repeating the same procedure on Ij,
Jj for jO0.

For fixed k1, k2 positive, set

l1dK
1

k1
C

2

k2

� �
ð2:2Þ

and

l2d
1

k1k2
: ð2:3Þ

Since f, f 0 and f 00 are bounded on I, then for any given real number u, it follows

that C1ZjðbKaÞujCðjl1j=jl2jÞðjf 0ðaÞðbKaÞjCjf ðaÞjCkf kNÞ and C2ZððbKaÞ2Þ=
jl2jkff 00kN are finite constants. Pick ~TO max f1;C1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 2

1C4C2

p
g. (We note that

these are the primary constants and parameters in lemma A.2 of the appendix.
Although somewhat redundant, introducing these here aids in motivating the proof
of alternating the successive application of the two lemmas.)

On the interval J0 the function f does not have an inflection, and hence
jf 00jOhO0. By applying lemma A.2 with TZKsignðf 00ða0ÞÞ ~T and f0ða0ÞZu, we
obtain a twice differentiable solution F that does not change sign on J0.
Furthermore, since f 00 does not change its sign on J0 and owing to the choice of
the initial condition for F(a0), it follows that the function Q0dKðP0 f

00=FÞ is

positive and continuous on J0 for any fixed function P0O0. Fix P0 a positive
constant and define xZfK(1/k1)F, then it follows that

P0 f
00 ZKk1Q0ðfKxÞ: ð2:4Þ
Proc. R. Soc. A (2008)
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Twice differentiating the integral equation in lemma A.2, we get F00ZKðl1=l2Þf 00
Kð1=l2Þðff 00=FÞ and after substituting in x 00Z f 00Kð1=k1ÞF00, we obtain the
following differential equation for x:

P0x
00 ZP0f

00 1C
l1

l2k1

� �
C

P0

k1l2
f K

Q0

P0

� �
ZQ0ðKk2xCk1ðfKxÞÞ: ð2:5Þ

By combining (2.4) and (2.5), we have constructed the desired system (2.1) for J0.
Next we construct the functions P and Q on the interval I0, but here the

function f has an inflection point and lemma A.2 cannot be applied. Instead, on
this interval this will be the role of lemma A.1. Note that the system (2.1) is
equivalent to the system

x 00Cpx 0 ZKk2qxCk1qðfKxÞ;
f 00Cpf 0 ZKk1qðfKxÞ;

)
ð2:6Þ

where pd(P 0/P) and qd(Q/P). Let q be the linear function connecting the

points ðb0; ðQ0ðb0Þ=P0ÞÞ and ða1; ðjf 00ða1Þj= ~T ÞÞ. Since f 0RhO0 on I0, then the
second equation can be solved for p

pZK
f 00

f 0
K k1q

f

f 0
K

x

f 0

� �
; ð2:7Þ

and upon substituting in the first equation of (2.6), we obtain the differential
equation in lemma A.2 for x. The initial conditions naturally come from the already
determined values y0Zxðb0Þ; y1Zx 0ðb0Þ. On J0 we have that FZKð1=qÞf 00 and
jFjRð ~T=2Þ including the right endpoint b0, and hence the estimate jqðb0ÞjZ
ðjf 00ðb0Þj=jFðb0ÞjÞ%ð2jf 00ðb0Þj= ~TÞ%2kf 00kN holds true. From the definition of q
it follows that jqða1Þj%ð2kf 00kN=~TÞ and since q is linear on I0 we have that the last
estimate holds on over all of I0. All the conditions in lemma A.1 are met, and hence
there exists a function x that is a solution to the differential equation (A2).
Substituting x in (2.7), we get a continuous function p on J0gI0. The functions P1

and Q1 are determined from the system

P 0
1

P1

Z p;

Q1

P1

Z q;

and have solutions P1ðtÞZP0 expð
Ð t
b0
pðvÞ dvÞ;Q1ðtÞZP0qðtÞ expð

Ð t
b0
pðvÞ dvÞ,

where P0ZP1(b0) and Q0(b0)ZQ1(b0). We have now constructed the continuous
functions P and Q on the interval J0gI0. Inductively, we can continue the
construction on J1 with the same constants l1 and l2 as on J0 and initial conditions
fða1ÞZKsign ðf 00ða1ÞÞð1=qða1ÞÞ;f0ða1ÞZu, u arbitrary. Note that jfða1ÞjZ jT j
and hence lemma A.1 provides continuous positive P2 and Q2 on J1. Repeating the
same procedure on Ij and Jj, jR1, we construct continuous functions P, Q and x,
which satisfy the system (2.1). This completes the proof if the partition of IZ[a,b]
begins with J0.
Proc. R. Soc. A (2008)
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In the case a02I0, we then start by instead using lemma A.1 with appropriate
choice for the initial conditions and the function q. &

In the previous theorem, we showed the existence of continuous positive
coefficients P and Q assuming that the function f has a continuous second
derivative. If f has fourth-order continuous derivatives, i.e. f2C 4(I ), the next
result shows that we can modify our construction to guarantee in addition that
the coefficient P is continuously differentiable, so that the equations (2.1) hold in
the classical sense.

Theorem 2.2. Let f be a real-valued function in C4(I ). If f has only simple
extrema, then for any two positive numbers k1 and k2 there exist positive functions
P and Q such that P, P 0 and Q are continuous on I, and f is a solution to (2.1).

Proof. Following the proof of theorem 2.1, it is clear that the only points
where P 0 could have breaks are the points aj, jZ1, 2,., M. We show that
around these points the construction of P can be adjusted in a way that provides
continuous P 0.

Let k1 and k2 be fixed and l1, l2 and ~T be as in theorem 2.1, and

Lf ZK
1

Q
ðPf 0Þ0 ZKmf 00Ksf 0; ð2:8Þ

where mZ(P/Q) and sZ(P 0/Q). The system (2.1) is equivalent to the fourth-
order equation

f Cl1Lf Cl2L
2f Z 0; ð2:9Þ

where L2fZL(Lf ). After substituting (2.8) into (2.9) and isolating s00 in the
resulting equation we obtain, for the given f, the second-order linear equation
for s

s 00 ZFðt; s; s 0Þ; ð2:10Þ
where

Fðt; s; s 0ÞZK
1

mf 0
f

l2
K

l1

l2
mf 00 Cm2f ð4ÞC2mm 0f ð3ÞCmm 00f 00

� �

K
1

mf 0
K

l1

l2
f 0 C2mf ð3ÞCm 0f 00

� �
sCðsf 0 C2mf 00Þs 0 C f 00s2

� �
:

In the proof of theorem 2.1, the functions P and Q were constructed continuous
and bounded on I, and hence the corresponding p and q are continuous and
bounded on I. Clearly P 0Z(s/m)P, and hence P, P 0, and Q are continuous if and
only if s and m are continuous. On the other hand, qZ(1/m) and pZ(s/m). By
using the existence theorem for a solution of BVP (appendix lemma A.1), we
alter p and q in one-sided neighbourhoods of the points aj in a way that p and q
are continuous on the entire interval I.

For a fixed aj, there exists a neighbourhood in which the function f does not
have extremal points and inflections, and hence the function (f 00/f 0) has a
constant sign on that neighbourhood, say eZsignt!aj ðf

00ðtÞ=f 0ðtÞÞ. We modify q,

obtained from theorem 2.1, on the interval Ij preserving all necessary conditions

required for the proof of theorem 2.1. Let eZð~T=jf 00ðajÞjÞ and rZ(e/4R), where

RO0, then on the interval Ij,rZ[ajKr,aj] the straight linemðxÞZK2eRðxK ajÞCe

is strictly positive and ð1=mÞ%ð2 maxt2I jf 00j=~TÞ. If necessary, R might be
Proc. R. Soc. A (2008)
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increased in order that Ij,r be contained entirely in Ij . By using the previously
constructedP andQ from theorem 2.1, the new q is modified only on the interval Ij.

Namely, on IjK1\Ij,r we define q as the linear function that connects the points

ðbj ; ðQjðbjÞ=PjÞÞ and ðajKr; 1=ðmðajKrÞÞÞ and on Ij,r we define q(t)Z1/m(t).

Similar to the construction in theorem 2.1, we construct the function p on IjK1\Ij,r
and let s0ZsðajKrÞZpðajKrÞmðajKrÞ. By using the already defined p on Jj, let

srZsðajÞZpðajÞmðajÞZpðajÞe. We show that on Ij,r, the BVP (2.10) with
boundary conditions sðajKrÞZs0; sðajÞZsr has a solution sðtÞZpðtÞmðtÞ, and
hence the newly defined q and p are continuous on IjK1gJj .

Without loss of generality, we can consider IrZIj;rZ ½0; r�. Let RO0 be large

enough such that js0j; jsrj%R. Since Fðt; s; s 0Þ is linear with respect to s0 on
E(r, R) (see appendix A 1), then for a fixed R there exists constants g and CO0
depending only on f and R such that gR!1 and jF j%gðs 0Þ2CC on E(r, R).

Next we show that the conditions for Fðt;GR; 0Þ hold in limit for R/N. From

the choice of r, it follows that jmj%ð3=2Þe independent of R on Ir. Let m be a
constant with a value either 1 or K1. Since f and its derivatives do not depend on
R and m 00Z0 on Ir, it follows that
sign lim
R/N

Fðt;mR; 0Þ
R2

Z sign lim
R/N

f 00

mf 0
2eRmRKR2

R2
Z sign eð2emK1Þ

Z sign ð2mKeÞZm;
holds uniformly on Ir. Hence we can pick large enough R for which Fðt;R; 0ÞR0
and Fðt;KR; 0Þ%0. With that choice of R, all the necessary conditions in lemma
A.1 are met and the solution to (2.10) with sðajKrÞZs0; sðajÞZsr provides a
solution p.

By repeating the same considerations for all of the aj’s, we can construct
positive coefficients P and Q for the system (2.1) such that P, P 0 and Q are
continuous functions on the entire I.

Remark 2.3. In the previous discussion, we proved that for an appropriate
function f there exists companion function x such that the pair (f, x) is a solution
of a system of type (2.1). The function x was constructed first on neighbourhoods
around the inflections of f and then, starting from the beginning of the interval I,
the pieces were smoothly connected. In order to construct a particular function x,
we need to specify the initial values x(a) and x 0(a). On the other hand, we can
start from any interior point ~t 2 I with initial values xð~t Þ and x 0ð~t Þ and construct
the function on the left and on the right from ~t .

Furthermore, for functions that satisfy the conditions in theorem 2.2, we
considered a method to smoothly connect two disjoint segments of x. Summing
up, we can construct the function x to satisfy boundary–initial conditions (BVP)
by initializing the ‘left’ branch of x at a and the ‘right’ branch of x at b, followed
by connecting smoothly the two branches on an appropriate subinterval of I.

In the next section, the relation between the EMD and the representation of f
as a solution of system of differential equations is discussed.
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3. Decomposition into pairs of weak IMFs

In the current section, we prove that any function f2C2(I ) with simple zeros and
extrema can be decomposed into a sum of two or fewer weak IMFs. The
decomposition is constructive and it is not obtained by applying EMD. Two
types of decompositions are considered. The first one is a more general result
about the existence of only two weak IMFs. In general, the two weak IMFs are
not strongly related to physical properties of the function. The second method for
decomposition can be associated with the displacement from equilibrium of one
of the two masses in a simple mechanical system with time-dependent masses
and forces. Details are given later in this section. In either case, the decomposi-
tions are non-unique. We denote the interval by IZ[a,b].

Theorem 3.1. Let f2C 1(I ), then there exist two weak IMFs j1 and j2, such
that fZj1Cj2 on I.

Proof. Let j1 be any weak IMF such that j0
1 is also a weak IMF and the

extrema of j1 do not coincide with the extrema of f. For example, j1(t) could be
sin(mtCz) for appropriate choices of m and z. Define gaZ fKaj1 for a2R. Since

f is bounded on I, then for any point t2I we have that lima/Nsign ðgaðtÞÞZ
sign ðj1ðtÞÞ and lima/N sign ðg 0aðtÞÞZsign ðj0

1ðtÞÞ. Since f, f 0, j1 and j0
1 are

continuous on I, there exists large enough a1 for which j2Zga1
is a weak IMF

and fZa1j1Cj2 on I. Since a1j1 is a weak IMF the proof is complete. &

From the proof, it is clear that j1 and j2 may not be related in general to the
local properties of the function and further analysis based on that representation
will not reveal any useful local characteristics of f. Another type of decomposition
into weak IMFs, which does admit physical interpretation for a sufficiently
smooth function f, can be obtained from theorem 2.1. That is the content of the
next result.

Theorem 3.2. Let f2C2(I ), then there exist weak IMFs j1 and j2, such that
fZa1j1Ca2j2 on I, and j1 and j2 are solutions of the self-adjoint differential

equations ðPj0
jÞ0ZKujQjj , for some positive continuous functions P and Q and

positive uj ; jZ1; 2.

Proof. Fix k1, k2O0. By applying theorem 2.1 to f, it follows that there exist
functions P, Q and x such that the vector

X Z
x

f

 !
;

is a solution of the system of linear differential equations ðPEX 0Þ0ZQKX , where

K Z
Kðk1Ck2Þ k1

k1 Kk1

 !

and

E Z
1 0

0 1

 !
:
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Direct calculations show that the numbers Ku1 and Ku2, where u1Zð2k1Ck2
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k21Ck22

p
Þ=2O0 andu2Zð2k1Ck2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k21Ck22

p
Þ=2O0 are the two eigenvalues

of thematrixK, andhence there exists an invertiblematrixof real numbersA such that
AK1KAZKU, where

UZ
u2 0

0 u1

 !
:

Define the vector

JZ
j2

j1

 !
ZAK1X :

The functions j1 and j2 are two weak IMFs such that fZa1j1Ca2j2 for some real
a’s. Indeed, we have

ðPEJ0Þ0 Z ðPðAK1XÞ0Þ0 ZAK1ðPEX 0Þ0 ZAK1QKX

ZQAK1KAAK1X ZKQUJ: ð3:1Þ

From (3.1) it follows that the functions j1 and j2 are solutions to the differential
equations ðPj0Þ0ZKuQj for uZu1 and uZu2, respectively. Hence they are
weak IMFs generated by one and the same self-adjoint operator. Adding the
initial conditions from f, and xðaÞZxa; x

0ðaÞZx 0
a, where xa; x

0
a are determined

from the proof of theorem 2.1, we can determine constants a1 and a2 such that
fZa1j1Ca2j2. &

In general, the functions j1 and j2 do not satisfy the same boundary
conditions, and hence they are not part of one and the same Sturm–Liouville
system. In the case f2C 4(I ), we can use remark 2.3 to construct j1 and j2 as
two eigenfunctions of one and the same Sturm–Liouville system.

Corollary 3.1. Let f2C 4(I ) and have simple zeros, extrema and inflections. If
u1 and u2 are as in theorem 3.2, then there exists a Sturm–Liouville system of
type (1.8), such that f is a linear combination of two, or fewer, of its eigenfunctions.

Proof. We modify P and Q in such a way that the functions j1 and j2

constructed in theorem 3.2 satisfy the same boundary condition of type (1.8).
From the proof of theorem 3.2, it follows that

j2

j1

 !
ZAK1

x

f

 !
;

where AK1 is a non-singular matrix, and hence j1 and j2 satisfy the same
boundary conditions if and only if f and x satisfy the same boundary conditions.
Since the function f is given, the parameters in the boundary condition

f ðaÞ cos aCPðaÞf 0ðaÞ sin aZ 0; ð3:2Þ

f ðbÞ cos bCPðbÞf 0ðbÞ sin bZ 0; ð3:3Þ
should be chosen appropriately. The function P is coupled with the function x
but a and b could be arbitrary.
Proc. R. Soc. A (2008)

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


2275Decomposition of functions into IMFs

 on December 9, 2013rspa.royalsocietypublishing.orgDownloaded from 
Let xl denote a function x that is constructed in theorem 2.2 by starting from
the end point a. We show that xl can be constructed to satisfy (3.2). Depending
on the values of f and f 0 at a, we consider the following three possible cases.

—Case (i). The function f does not have both a zero and an extrema at a. Then,
(3.2) is equivalent to f ðaÞKf ðaÞ=f 0ðaÞf 0ðaÞZ0, and so x must satisfy
xlðaÞKf 0ðaÞ=f ðaÞx 0

lðaÞZ0.
In the case a2J0, from theorem 2.1, it follows that xl constructed as

xlðtÞ Z f ðtÞKð1=k1ÞFðtÞ satisfies xlðaÞKðf ðaÞ=f 0ðaÞÞx 0
lðaÞZ0, if F is the

solution of the initial-value integral equation (A 11) with initial condition
F(a)ZT and F0ðaÞZðf 0ðaÞ=f ðaÞÞT .
In the case a2I0, from theorem 2.1, it follows that the function xl,

constructed as the solution of the IVP (A 2) with initial conditions
xl(a)Zf(a) and x 0

lZf 0(a), satisfies (3.2).
—Case (ii). The function f does not have zero at a, but f 0(a)Z0. By choosing

aZp/2 in (3.2), the initial condition for f becomes f 0(a)Z0 and the same
considerations as in case (i) lead to a construction of xl with x 0

lZ0 and any
choice of xl(a).

—Case (iii). The function f does not have extrema at a, but f(a)Z0. In that
case, we construct P with zero at a and positive elsewhere. Choosing aZp/2
in (3.2), we have a singular Sturm–Liouville system. Since f has simple zeros
and extrema, it follows that f 0(a)s0 and a2I0. Furthermore, by repeating
the same construction of p and q as in theorem 2.2 with boundary values
s(a)Z0 and s(r)Zv, for an appropriate r and v, we obtain a continuously
differentiable non-negative function P with its only zero value at the point a.
The corresponding Q is a continuous positive function.

In a similar way, starting from b, a function xr can be constructed that satisfies
the boundary conditions (3.3). Finally, xl and xr can be connected smoothly on an
appropriate interval as in theorem 2.2 to construct a function x that satisfies
(3.1) and (3.2). The resulting weak IMFs j1 and j2 are eigenfunctions of a
Sturm–Liouville system of type (1.8) with corresponding eigenvalues u1 and u2.
One immediate consequence is that j1 and j2 are orthogonal on I with a weight
function Q. &

The main purpose of the EMD method is to decompose a function into a
sequence of IMFs in order to extract important physical characteristics from
each component by the application of the Hilbert transform. Next we discuss
possible physical interpretations of the decompositions considered in theorems
3.1 and 3.2.

Let SL(P, Q) denote the set of all the eigenfunctions of Sturm–Liouville
operators defined in (1.7). It is clear that SL(P, Q) contains the eigenfunctions of
any Sturm–Liouville system. For any fixed boundary conditions, the system
of corresponding eigenfunctions is complete in L2(I, Q) and it follows that the
set of functions SL(P, Q) is complete and redundant in L2(I, Q). Furthermore,
since the weight function Q is strictly positive, continuous on the finite interval I,
then the space L2(I, Q) is norm equivalent to the space L2(I ). Varying P and Q
over all continuous positive functions on I, we observe from theorem 1.2 that
WZfj : j2SLðP;QÞ;P;Q positive continuous functions on Ig.
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Self-adjoint differential equations describe many physical processes and have
embedded physical characteristics. A typical example is the periodic BVP

j00 Cu2jZ 0;

jð0ÞZjð2pÞ;j0ð0ÞZj0ð2pÞ;
that defines the trigonometric system fcos nt; sin ntgNnZ0 on the interval [0,2p).

This differential equation models the frictionless displacement from equilibrium
of a unit mass attached to a spring with a spring constant u2. If the ‘periodic’
boundary condition is replaced with an initial condition, then the SL operator
LfZKf 00 generates trigonometric functions cos ut, sin ut that still obey the
physical relation with mass–spring system, but is a redundant system. One
method to decompose a function into a linear combination of elements from a
redundant system is by using ‘greedy’-type algorithms (for reference see DeVore
1998 and Temlyakov 1999). Generally, the resulting representation consists of
infinitely many terms.

In analogy with the trigonometric system, the characteristic equation for a
weak IMF ðPj0Þ0ZKQj can be interpreted as the physical model according to
which a variable mass P(t) is attached to a spring with a variable spring constant
Q(t) and vibrates frictionlessly around its equilibrium position j(0). The solution
j(t) is the displacement of the mass at the instant t. An equivalent form of the
characteristic differential equation is

j00 Cpj0CqjZ 0; ð3:4Þ
where qO0 and p is an arbitrary function. In that form the mass–spring
interpretation could be that j(t) is the displacement of a unit mass attached to a
spring with a variable spring constant q if the motion is subjected to a frictional

force Kpj 0. In both interpretations,
ffiffiffiffi
Q

p
or

ffiffiffi
q

p
is considered the frequency of the

motion. In the second case, p can be considered as the instantaneous bandwidth
of j. The instantaneous quantities of j can be defined by using the Prüfer
substitution (1.6).

Summarizing the results of this section, theorems 3.1 and 3.2 not only show
the existence of the decomposition of a function f into finitely many weak IMFs,
but they also provide an additional analytical resource to the Hilbert transform
method in order to define instantaneous frequency and bandwidth by using the
physical interpretation from a model system of differential equations.

This work was supported in part by the AFRL and AFOSR MURI grant no. F49620-03-1-0381 and
by the ARO grant no. W911NF-05-1-0227.
Appendix A. Technical lemmas on differential and integral equations

In this appendix, we gather several results about the existence of solutions and
continuity with respect to the parameters of certain types of integral and
differential equations. We have isolated these to an appendix in order not to
distract from the main ideas of the decomposition theorems of §2. These results
are included in order to verify that the stated dependence of the solutions upon
the adjustable parameters, which are used in the constructions of the Sturm–
Liouville operators, is possible.
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Throughout this section, the function f is assumed to be twice continuously
differentiable on an interval J0Z[c,d ] with a finite number of inflections and with
the property that all its zeros and extrema are simple. We need controlled
solutions to two types of specialized problems that are dependent upon
properties of f, in order to complete the constructions of §2. The first type
provides a neighbourhood about the simple inflection points of f where a
controlled solution to a differential equation of a certain form exists. The second
type of problem is an integral equation that is used for subintervals that are free
of inflection points of f. The constructions in §2 require these two lemmas to be
used in tandem to produce second-order systems with the desired properties.
(a ) Differential system

We denote the finite collection of inflection points of f by

XZ fx : f 00ðxÞZ 0; x2 Ig:

In the next results, it is assumed that f, p, q, k1 and k2 are given, and in order to
simplify the notation we set

Gðt; x; zÞZ k1qfKðk1Ck2ÞqxC k1q
f

f 0
C

f 00

f 0

� �
zK

k1q

f 0
xz: ðA 1Þ

In this case, we have the following result for the solution of the differential
equation with coefficients depending upon f as in expression (A 1).

Lemma A.1. Suppose k1 and k2 are positive real numbers and that q is
continuous on J0 with kqkN!2kf 00kN. Suppose further that x is an inflection
point of the twice continuously differentiable function f, such that f 0(x)s0, then
there exists a subinterval JZ[a,b]3J0 containing x in its interior, such that
the IVP

x 00 ZGðt; xðtÞ; x 0ðtÞÞ; ðA 2Þ

xðaÞZ y0; x 0ðaÞZ y1; ðA 3Þ
has a solution on J for any real y0, y1.

Proof. Without loss of generality, we may assume from the hypothesis that f 0

does not vanish on J0 and by compactness that jf 0ðtÞjRsO0, for all t2J0.
Denote, respectively, the constants

m 0d2k1kf 00kNkf kN; ðA 4Þ

m 1d2ðk1Ck2Þkf 00kN; ðA 5Þ

m 2dk2k1jf jC1kN
kf 00kN
s

; ðA 6Þ

m 3d2k1
kf 00kN
s

: ðA 7Þ
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Further, select positive cm such that

c3mOmax 1;
���m 0K3

m 1m 2

m 3

���; m 3c
2
m Cðm 1 Cm 2Þcm Cm 1

� �
: ðA 8Þ

J is then set to the interval centred at x with length ddð1=c2mÞ. If necessary, cm
can be increased to ensure d!1 and J3J0. We show that J is the interval whose
existence is stated in the lemma.

Write the second-order equation (A 2) as its equivalent first-order system in
integral form,

xðtÞZ y0C

ðt
a
zðtÞ dt;

zðtÞZ y1C

ðt
a
Gðt; xðtÞ; zðtÞÞ dt;

9>>>=
>>>;

ðA 9Þ

where G(t,x,z) is as in expression (A 1). A standard technique to show the
existence of solutions of differential equations is the method of successive
approximations. In particular, we may, without loss of generality, assume that
y0Zy1Z0 and let x 0Z0, z0Z0, then inductively construct the sequence pairs

xnC1ðtÞZ y0 C

ðt
a
znðtÞ dt;

znC1ðtÞZ y1 C

ðt
a
Gðt; xnðtÞ; znðtÞÞ dt:

9>>>=
>>>;

ðA 10Þ

If we show jxnj%cm and jznj%cm for nZ0,1,2,., we can use a standard
argument to then establish that the limit functions x and z exist and the
convergence is uniform. Using the inductive assumption jxnj%cm and jznj%cm,
we show that jxnC1j%cm and jznC1j%cm. For xnC1, we have jxnC1j% jznjd%
jznj%cm, since d!1. For znC1, using the bound jq j%2kf 00kN, we have

jznC1j%dðm 0 Cm 1jxnjCm 2jznjCm 3jxnjjznjÞ:
The polynomial function bðx; zÞZm 0Cm 1xCm 2zCm 3xz has only one local

extremum and the value at that extremum is mZ jm 0K3ðm 1m 2=m 3Þj!c3m,

from the choice of cm. The global maxima of b(x,z) on the square jxj%cm; jzj%cm
are either the value at the extremum or a value from the boundary. It is easy to
see that the maximum value on the boundary is bðcm; cmÞZm 0Cðm 1Cm 2ÞcmC
m 3c

2
m!c3m, from the choice of cm. Hence jznC1j%dmax jbðjxj; jzjÞj%ð1=c2mÞc3mZcm

and the limit functions xZ limn/Nxn, and zZ limn/Nzn is the solution pair of (A 9).
Hence x is a solution of the IVP (A 2) and (A 3) on the interval [a,aCd] that
contains the point x. &
(b ) Integral equation

One additional technical lemma is required for the proof of theorem 2.1. The
result establishes the existence of positive solutions of an integral equation on
intervals that avoid inflections of f and will be used on subintervals
complementary to those handled by lemma A.1.
Proc. R. Soc. A (2008)

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


2279Decomposition of functions into IMFs

 on December 9, 2013rspa.royalsocietypublishing.orgDownloaded from 
Lemma A.2. Let f 2C2ðI Þ with simple zeros and extrema. Let ~t 2 I . Then for
any non-zero l1 and l2 and any u, there exists a positive real number T0,
depending only on I and f, such that for each T, jT jRT0, the integral equation,

fðtÞZT CðtK~t ÞuC l1

l2
ðf ð~t ÞC f 0ð~t ÞðtK~t ÞKf ðtÞÞK 1

l2

ðt
~t

ðt
~t

f ðvÞf 00ðvÞ
fðvÞ dv dt;

ðA 11Þ
has a solution F, such that jFjOðjT j=2Þ on I, with fð~t ÞZT , f0ð~t ÞZu.

Proof. We prove the lemma in the case ~tZa, where IZ[a,b]. The case
~t 2 ða; b� is similar. Let c1Z jðbKaÞujCðjl1j=jl2jÞðjf 0ðaÞðbKaÞjC jf ðaÞjCkf kNÞ
and c2ZðjI j2=jl2jÞkff 00kN. Since f, f 0 and f 00 are bounded on I, it follows that c1
and c2 are finite constants. Then pick T0 positive such that jT jRT0 implies

jT jOc1 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 C4c2

q
: ðA 12Þ

Substituting fCT for f in (A 11) and applying the method of successive
approximations, we consider a sequence of functions fn that satisfy the initial
conditions fn(a)Z0, f0

nðaÞZu. Initialize f0Z0 and inductively define

fnC1ðtÞZ uðtKaÞC l1

l2
ðf ðaÞC f 0ðaÞðtKaÞKf ðtÞÞK 1

l2

ðt
a

ðt
a

f ðvÞf 00ðvÞ
fnðvÞCT

dv dt:

ðA 13Þ
By construction jf0jZ0!ðjT j=2Þ. Assume jfnj!ðjT j=2Þ, then jfnCT jR
ðjT j=2Þ. Estimating the r.h.s. of (A13), it follows from the selection of T in
(A 12) that

jfnC1j%c1C
2c2
jT j!

jT j
2

: ðA 14Þ

Hence the limit function FZTC limn/Nfn satisfies (A 11) with Fð~t ÞZT ,
F0ð~t ÞZu and jFjRðjT j=2Þ on I. &

Finally, we include a necessary condition for the existence of a solution of a
second-order BVP, the details of which may be found in Hartman (1964).

Proposition A.3. Suppose F(t, x, x) is continuous on the tube domain Eðr;RÞZ
fðt; x; xÞ : 0% t%r; jxj%R; x realg and that F satisfies the condition that both

F(t, R, 0) is non-negative and F(t, KR, 0) is non-positive for all 0%t%r. Assume
further that there exist positive numbers C, g with g!1/R so that jFj%gx2CC,
then there exists a solution to the BVP

x 00 ZFðt; x; x 0Þ
xð0ÞZ x 0; xðrÞZ xr; jx0j; jxrj%R:

)
ðA 15Þ
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