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The intrinsic mode functions (IMFs) arise as basic modes from the application of the
empirical mode decomposition (EMD) to functions or signals. In this procedure,
instantaneous frequencies are subsequently extracted from the IMFs by the simple
application of the Hilbert transform, thereby providing a multiscale analysis of the
signal’s nonlinear phases. The beauty of this redundant representation method is in its
simplicity and extraordinary effectiveness in many important and diverse settings.
A fundamental issue in the field is to better understand these demonstrated qualities of
the EMD procedures and the elementary modes they produce. For example, it is easily
observed that when an EMD procedure is applied to the sum of two arbitrary IMFs, the
original modes are rarely reproduced in the generated collection of IMFs. An interesting
question from a representation point of view may be stated as follows: for any given
sufficiently smooth function and fixed n>2, when is it possible to represent the function
as a sum of (at most) n intrinsic modes? A more interesting question is whether such a
decomposition is possible when the extracted modes are constructed from a common
formulation of the intrinsic properties of the function being analysed.

We provide an answer to these questions for a relaxed version of IMFs, called weak
IMFs, which has been shown to be characterized in terms of eigenfunctions of Sturm-—
Liouville operators. The objective of this study is to further extend that analogy to the
relationship between sums of weak IMFs and coupled Sturm-Liouville systems. The
construction of this decomposition also provides a guide to an alternate characterization
of the instantaneous frequency and bandwidth.

Keywords: intrinsic mode function; empirical mode decomposition;

Sturm—Liouville systems; instantaneous frequency; redundant representations;
multiresolution analysis

1. Introduction

The empirical mode decomposition (EMD) method was developed by Huang
et al. (1998) to decompose functions into a superposition of natural modes, each
of which could be easily analysed for their instantaneous frequencies and
bandwidths. These natural modes, which were termed intrinsic mode functions
(IMFs), were generated at each scale, going from fine to coarse, by an iterative
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procedure to locally isolate the modal behaviour. Application of EMD to real
signals f(t) has the purpose of representing these signals as sums of simpler
modes Y, i.e.

M
f(t) = Zw), (1.1)

where each y; (see Cohen 1995) comes with a specific polar representation of
the form )
V;(t) = r;(t) sin 0,(t). (1.2)

These modes generalize the standard real and imaginary parts of Fourier
components, in which it is required that each r;(¢) = f(j) be constant and 6;(t) =t
be linear, but are more suitable for the study of non-stationary phase. A richer
analysis of signals is provided when the amplitudes are allowed to vary and the
phases are permitted nonlinear, or non-stationary, behaviour as in the
representation (1.2). We wish to emphasize that even if one is provided a
decomposition of a signal fin the form (1.1), for each given ¥, the particular polar
representation (1.2) that should be used is ambiguous with many possible
selections of reasonable pairs of amplitudes and phases. The objective of EMD is to
extract the decompositions from among such highly redundant representations so
that the amplitudes 7(¢) and the corresponding phases () at each scale are both
physically and mathematically meaningful. In the case that the signal ¥ is causal,
the polar representation may be recovered by the application of an appropriate
(cf. Sharpley & Vatchev 2006) Hilbert transform. In this case each mode y, after a
phase shift of 7/2, is represented as the real part of a complex signal ¥

W(t) = r(t) expif(t). (1.3)

Obviously, the choice of amplitude—phase (r, ) in the representation (1.3) is
equivalent to the selection of an imaginary part ¢ since

r(t) = \/¥2(t) + ¢*(¢), 6(t) = arctan %, (1.4)

once some care is taken to handle the branch cut.

An alternative to the Hilbert transform method for extracting instantaneous
frequencies is the class of quadrature methods (see Cohen 1995). Whichever
method is to be used should be governed by the context of the phenomena
under study and the analysing procedure should produce, for each signal ¢ within
the signal population, a properly chosen companion ¢ for the imaginary part.
This companion function ¢ should be unambiguously defined and should
properly encode information about the component signal, which is in this
case the IMF. Therefore, the collection of instantaneous phases present at a
given instant (i.e. t=tg) for a signal f(¢) is heavily dependent upon both the
decomposition (1.1) and the selection of representations (1.2) for each mono-
component. A discussion of the application of Hilbert transforms and alternative
quadrature methods to IMF's to obtain instantaneous frequencies are provided in
Sharpley & Vatchev (2006).

A partial sum of IMFs in the representation (1.1) can be considered as an
approximation of a function f by IMFs. The stoppage criteria used in applying
EMDs are numerous, but they could be considered as control of approximation
errors in various metrics.
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According to Huang et al. (1999, p. 423), the EMD method was motivated
‘from the simple assumption that any data consists of different simple intrinsic
mode oscillations’. Three methods of estimating the time scales of f at which
these oscillations occur have been proposed are

—the time between successive zero-crossings;
—the time between successive extrema; and
—the time between successive curvature extrema.

The use of a particular time scale is application dependent. Following the
development in Huang et al. (1999), we define a specific class of signals with special
properties that make them very well suited for phase and wave band analysis.

Definition 1.1. A function y(¢) is defined to be an intrinsic mode function, or
more briefly an IMF, of a real variable ¢, if it satisfies the following two
characteristic properties:

(i) ¥ has exactly one zero between any two consecutive local extrema and
(ii) ¥ has zero ‘local mean’.

A function that is required to satisfy only condition (i) will be called a weak
IMF and W will be used to designate all such functions. Note that y €W
precisely when the number of zeros and the number of extrema of y on I differ at
most by 1.

In general, the local mean in condition (ii) in the EMD procedure is typically
the pointwise average of the ‘upper’ and ‘lower’ envelopes as determined by the
spline fits of knots consisting of, respectively, the local maxima and the local
minima of y.

The concept of decomposing functions into oscillating modes is the essence of
the Sturm—Liouville theory. In Sharpley & Vatchev (2006) we related the concept
of monocomponents from phase analysis to the Sturm-Liouville theory by
characterizing the weak IMF's as solutions of self-adjoint differential equations.

Theorem 1.2. Let y € C*(I) be a weak IMF with simple zeros and extrema, then
there exist positive continuously differentiable functions P and Q such that  is the
solution of the initial-value problem

(Pf)' +Qf =0, f(r) =w(r), f(7) =¥ (), (1.5)

for some T€ L

From this result, it follows that an instantaneous frequency and bandwidth
pair (0’,7'/r) can be defined implicitly through the Priifer substitution given by

Pf'(t):==r(t) cos 8(t), f(t):=r(t)sin 6(¢). (1.6)

The goal of this paper is to further extend the relationship between weak
IMFs and eigenfunctions of self-adjoint differential operators by the representa-
tion of very general functions by superposition of weak IMFs from a common
framework. Therefore, a natural question arises which must be answered if an

Proc. R. Soc. A (2008)
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EMD procedure, such as Hilbert—Huang transform (Huang et al. 1999), is to be
realized in terms of some nonlinear minimization procedure in the context of
structured dictionaries (e.g. the expository article of DeVore 1998). The question
then becomes

Under what conditions can functions be decomposed into a superposition of at most n IMF's
that are inherently extracted from the function?

Here, n is a fixed number that is set in advance. We prove that any smooth
function can be decomposed into two (or fewer) weak IMFs (see theorem 3.1).
This is not surprising since the two IMFs are unrelated to f other than the one
which should be a sinusoidal with amplitude larger than the uniform norm of f
and frequency higher than any local frequency of f. In this case, there are no
requirements coupling the two corresponding Sturm-Liouville operators for
the ¥;. However, with more care, weak IMF pairs ¥, ¥, can be constructed from
f so that they are solutions correspondlng to different eigenvalues of a Sturm—
Liouville operator (SLO; with coefficients P, @) and f=y;+y». This is the
content of theorem 3.2. The analogy between a decomposition such as EMD and
coupled Sturm—Liouville systems with the same primary coefficients P and @ is
provided in theorem 2.1. We prove that for any sufficiently smooth function f,
there exists a coupled linear system of two differential equations, such that f
represents one of the components of the solution. These coupled equations can be
formulated in terms of a mechanical system of a pair of variable masses and
springs and fthen represents the displacement from equilibrium of the terminal
mass of the system. This formulation gives an indication of a possible deeper
relationship between decompositions of signals into superpositions of IMFs and
concepts from system identification.

We begin by defining a general SLO that acts on sufficiently smooth functions
fand is defined by

if ==—%(Pf’)’, (17)

where P and () are positive continuous functions on some interval I=[a,b]. The
spectrum of L consists of all w for which the equation Ly =wy has a solution on [
that satisfies certain boundary conditions. In a more general situation the
Sturm-Liouville (SL) system is defined as the solutions of the boundary-value

roblem (BVP
problem (BVF) (PY) + (Q—p)¥

¥(a) cos a + P(a)y/(a) sina =0, (1.8)
Y(b) cos B+ P(b)y/(b) sin 8 =0,

for positive functions P and @) and real constants w, « and (.

It is well known (see Birkhoff & Rota 1989) that (1.8) has a solution for a
discrete set of eigenvalues, such that 0 <w;<w,<--- and lim,_,,w, = . The
corresponding eigenfunctions y,, form an orthogonal basis in the weighted

Hilbert space Ly(I)(Q) = {f: [;|f(t)]*Q(t) dt < o} with inner product [;fgQ dt,
and hence any function f&€ Ly(I)(Q) has a decomposition

f=2> a¥; (1.9)
n=1

Proc. R. Soc. A (2008)
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with convergence in Lo(I)(Q). For a fixed SL system, there exists a unique
representation of any f€L, in the form of (1.9) but, in general, requiring
infinitely many terms. This should be contrasted to theorem 3.2.

2. Coupled differential systems for smooth functions

In this section, we prove the main result of this paper for representing a function
as a component of a solution of a linear system of differential equations. In the
proofs of the theorems, we require two technical lemmas. In order not to disturb
the main flow of ideas, we refer the reader to appendix A for their proofs.
Throughout this section assume fis defined on a finite interval I=[a,b] and has
only simple inflections and set E={¢ € I : f"(§) =0} has M< © elements.

Theorem 2.1. For a function f& CZ(I) with simple extrema and for any positive
numbers ki and ko, there exist continuous and positive functions P and @,
depending upon f, and twice differentiable function x such that f and x satisfy the
following system of differential equations:

(Pa')" = —ky Q + k1 Q(f —2), }
(Pf')" ==k Q(f —2).

Proof. For each point £,€ E, suppose I;_1=[b;—1,a; contains &; and the initial-
value problem (IVP) considered in lemma A.1 has one solution. Let ag=a, by,="b
and J;=[a;,b]. First assume that a(€ Jy. The existence of P and @ is shown by
inductively constructing them on I, and .J, and repeating the same procedure on I,
Jj fOI' j> 0.

(2.1)

For fixed kq, ko positive, set

1 2
Ai=— — 4+ — 2.2
(3 k) (22)
and
dg = — (2.3)
2-—k1k2. .

Since f, f" and f” are bounded on I, then for any given real number u, it follows
that Gy = |(b—a)ul+ (|41 |/122))(1f'(a) (b= a)| + |f(a)| + ||fl|=) and Cy=((b—a)?)/
| 22| Iff” || are finite constants. Pick 7> max {1, C; + \/ C? + 4C,}. (We note that
these are the primary constants and parameters in lemma A.2 of the appendix.
Although somewhat redundant, introducing these here aids in motivating the proof
of alternating the successive application of the two lemmas.)

On the interval J; the function f does not have an inflection, and hence
|f”| > n> 0. By applying lemma A.2 with T'=—sign(f"(ag)) T and ¢'(ag) = u, we
obtain a twice differentiable solution @ that does not change sign on J.
Furthermore, since f” does not change its sign on .J; and owing to the choice of
the initial condition for @(ay), it follows that the function @Q,:=—(P,f"/®) is

positive and continuous on Jj for any fixed function Py>0. Fix P, a positive
constant and define = f—(1/k;)®, then it follows that

Pof” =—k1Qy(f — ). (2.4)

Proc. R. Soc. A (2008)
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Twice differentiating the integral equation in lemma A.2, we get ®@" =—(4;/A)f"
—(1/2)(ff"/®) and after substituting in 2" = f"—(1/k;)®", we obtain the
following differential equation for z:

A P,
Po.'lfll = Pof// <1 + A2,114;1> + k122f<_ %2) = Qo(_kQZI} + kl(f_l’)) (25)
By combining (2.4) and (2.5), we have constructed the desired system (2.1) for Jj.

Next we construct the functions P and ) on the interval I,, but here the
function fhas an inflection point and lemma A.2 cannot be applied. Instead, on
this interval this will be the role of lemma A.1. Note that the system (2.1) is
equivalent to the system

2" + pa’ = —kyqr + le(f_x)a}
"+ pof = =kig(f —2),

where p:=(P’/P) and ¢:=(Q/P). Let ¢q be the linear function connecting the

points (by, (Qo(by)/Py)) and (ay, (|f"(ay)|/T)). Since f'>n>0 on I, then the
second equation can be solved for p

" T
and upon substituting in the first equation of (2.6), we obtain the differential
equation in lemma A.2 for x. The initial conditions naturally come from the already
determined values y, = z(by), y; = '(by). On Jy we have that ®=—(1/q)f" and
|®| > (T/2) including the right endpoint by, and hence the estimate |q(by)|=
(" (bo)|/1@(b)]) < (21" (bo)]/ T) < 2|If"||o holds true. From the definition of ¢
it follows that |g(a1)| < (2||f"]|«/T) and since q s linear on I, we have that the last
estimate holds on over all of I,. All the conditions in lemma A.1 are met, and hence
there exists a function z that is a solution to the differential equation (A 2).
Substituting z in (2.7), we get a continuous function p on JyU Iy. The functions P;
and () are determined from the system

(2.6)

and have solutions P,(t)= P, exp(]}fo p(v) dv), @, (t) = Pyq(t) exp(ﬁfo p(v) dv),
where Py= Py(by) and Qu(by)= @Q1(by). We have now constructed the continuous
functions P and @ on the interval J,UI,. Inductively, we can continue the
construction on J; with the same constants A; and A, as on J, and initial conditions
¢(a) =—sign (f"(a1))(1/q(a1)), ¢'(a1) = u, u arbitrary. Note that |¢(a)|=|T|
and hence lemma A.1 provides continuous positive P, and > on J;. Repeating the
same procedure on I; and J;, j>1, we construct continuous functions P, @ and z,
which satisfy the system (2.1). This completes the proof if the partition of I={a,b]
begins with J;.

Proc. R. Soc. A (2008)
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In the case ag € I, we then start by instead using lemma A.1 with appropriate
choice for the initial conditions and the function g¢. [ ]

In the previous theorem, we showed the existence of continuous positive
coefficients P and () assuming that the function f has a continuous second
derivative. If f has fourth-order continuous derivatives, i.e. f&€ C*(I), the next
result shows that we can modify our construction to guarantee in addition that
the coefficient P is continuously differentiable, so that the equations (2.1) hold in
the classical sense.

Theorem 2.2. Let f be a real-valued function in C*(I). If f has only simple
extrema, then for any two positive numbers ki and ko there exist positive functions
P and Q such that P, P' and Q are continuous on I, and fis a solution to (2.1).

Proof. Following the proof of theorem 2.1, it is clear that the only points
where P’ could have breaks are the points a;, j=1, 2, ..., M. We show that
around these points the construction of P can be adjusted in a way that provides
continuous P’. 3

Let k; and k, be fixed and A;, A, and T be as in theorem 2.1, and

%(Pf’)’ S — (2.8)

where m=(P/Q) and s=(P'/Q). The system (2.1) is equivalent to the fourth-
order equation

Lf =—

fH+AMLf+ AL =0, (2.9)

where L*f=L(Lf). After substituting (2.8) into (2.9) and isolating s” in the
resulting equation we obtain, for the given f, the second-order linear equation
for s

' = F(t,s,5), (2.10)
where
F(t S SI) =— 1 i—ﬁmf” + m?f(4) +2mm/f(3) + mm”f”
9 9y mf’ AQ AQ
1

-—— <<— ﬁf’ +2mf® + m/f”> s+ (sf +2mf")s —I—f//52>.
mf Ay
In the proof of theorem 2.1, the functions P and () were constructed continuous
and bounded on I, and hence the corresponding p and ¢ are continuous and
bounded on I. Clearly P'=(s/m)P, and hence P, P’, and @ are continuous if and
only if s and m are continuous. On the other hand, ¢=(1/m) and p=(s/m). By
using the existence theorem for a solution of BVP (appendix lemma A.1), we
alter p and ¢ in one-sided neighbourhoods of the points a; in a way that p and ¢
are continuous on the entire interval I

For a fixed aj, there exists a neighbourhood in which the function f does not
have extremal points and inflections, and hence the function (f”/f’) has a
constant sign on that neighbourhood, say €= sign;<, (f"(¢)/f'(t)). We modify g,

obtained from theorem 2.1, on the interval I; preserving all necessary conditions
required for the proof of theorem 2.1. Let e= (T/|f”(aj)|) and p=(e/4R), where
R>0, then on the interval I; ,=[a;— p,a;] the straight line m(z) = —2eR(z — a;) + ¢
is strictly positive and (1/m)< (2 max,c;|f"|/T). If necessary, R might be

Proc. R. Soc. A (2008)
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increased in order that I; , be contained entirely in I;. By using the previously
constructed Pand @ from theorem 2.1, the new ¢is modified only on the interval I;.

Namely, on I;_1\I;, we define g as the linear function that connects the points
(b, (Q;(b))/ Py)) and (a;—p,1/(m(a;—p))) and on I, we define g(t)=1/m(t).
Similar to the construction in theorem 2.1, we construct the function pon I;_;\I; ,
and let sy = s(a; —p) = p(a; —p)m(a; — p). By using the already defined p on Jj, let
s, = s(a;) = p(a;)m(a;) = p(a;)e. We show that on I, the BVP (2.10) with

boundary conditions s(a; —p) = 5y, s(a;) = s, has a solution s(t) = p(t)m(t), and

hence the newly defined g and p are continuous on [;_; U J;.

Without loss of generality, we can consider I,=I; ,= [0, p]. Let >0 be large
enough such that |s|,[s,| < R. Since F(t,s,s') is linear with respect to s’ on
E(p, R) (see appendix A 1), then for a fixed R there exists constants vy and C'>0
depending only on f and R such that yR<1 and |F|<y(s))*+ C on E(p, R).
Next we show that the conditions for F(¢,£R,0) hold in limit for R— o . From
the choice of p, it follows that |m|<(3/2)e independent of R on I,. Let u be a
constant with a value either 1 or —1. Since fand its derivatives do not depend on
R and m"=0 on I, it follows that

... F(t,uR,0) . . f" 2¢RuR—R?
sign lim ————= =sign lim
R—x R2 R—oo M ! R2

= sign €(2eu — 1)
— sign (2u—€) =

holds uniformly on I,. Hence we can pick large enough R for which F(¢, R,0)>0
and F(t,—R,0) < 0. With that choice of R, all the necessary conditions in lemma
A.1 are met and the solution to (2.10) with s(a; —p) = 5y, s(a;) = s, provides a
solution p.

By repeating the same considerations for all of the ajs, we can construct
positive coefficients P and @ for the system (2.1) such that P, P’ and Q are
continuous functions on the entire I.

Remark 2.3. In the previous discussion, we proved that for an appropriate
function fthere exists companion function x such that the pair (f, z) is a solution
of a system of type (2.1). The function z was constructed first on neighbourhoods
around the inflections of f and then, starting from the beginning of the interval I,
the pieces were smoothly connected. In order to construct a particular function «,
we need to specify the initial values z(a) and 2'(a). On the other hand, we can
start from any interior point ¢ € I with initial values z(¢) and z'(¢) and construct
the function on the left and on the right from ¢.

Furthermore, for functions that satisfy the conditions in theorem 2.2, we
considered a method to smoothly connect two disjoint segments of z. Summing
up, we can construct the function x to satisfy boundary—initial conditions (BVP)
by initializing the ‘left’ branch of z at a and the ‘right’ branch of z at b, followed
by connecting smoothly the two branches on an appropriate subinterval of I.

In the next section, the relation between the EMD and the representation of f
as a solution of system of differential equations is discussed.

Proc. R. Soc. A (2008)
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3. Decomposition into pairs of weak IMF's

In the current section, we prove that any function f€ C*(I) with simple zeros and
extrema can be decomposed into a sum of two or fewer weak IMFs. The
decomposition is constructive and it is not obtained by applying EMD. Two
types of decompositions are considered. The first one is a more general result
about the existence of only two weak IMFs. In general, the two weak IMFs are
not strongly related to physical properties of the function. The second method for
decomposition can be associated with the displacement from equilibrium of one
of the two masses in a simple mechanical system with time-dependent masses
and forces. Details are given later in this section. In either case, the decomposi-
tions are non-unique. We denote the interval by I=[a,b].

Theorem 3.1. Let f€ C'(I), then there exist two weak IMFs Wy and Vs, such
that f=y1+y5 on L

Proof. Let ¥, be any weak IMF such that ¢/ is also a weak IMF and the
extrema of y; do not coincide with the extrema of f. For example, y;(t) could be
sin(ut+¢) for appropriate choices of u and ¢. Define g, = f —ay; for € R. Since
f is bounded on I, then for any point t€1 we have that lim,_,qsign (g,(t))=
sign (¥1(t)) and lim,_, sign (g, (t)) =sign (¥1(t)). Since f, f', ¢; and y, are
continuous on I, there exists large enough «a; for which ¥, =g, is a weak IMF
and f= o) + ¥, on I Since a1y, is a weak IMF the proof is complete. [ |

From the proof, it is clear that ¢, and s may not be related in general to the
local properties of the function and further analysis based on that representation
will not reveal any useful local characteristics of f. Another type of decomposition
into weak IMFs, which does admit physical interpretation for a sufficiently
smooth function f, can be obtained from theorem 2.1. That is the content of the
next result.

Theorem 3.2. Let f€ C*(I), then there exist weak IMFs y; and s, such that
=¥+ oy on I, and ¥, and Yo are solutions of the self-adjoint differential

equations (Pzp]/-)’ =—w,;QY;, for some positive continuous functions P and Q) and
positive w;,j=1,2.

Proof. Fix ky, ko> 0. By applying theorem 2.1 to f, it follows that there exist
functions P, @ and z such that the vector

is a solution of the system of linear differential equations (PEX") = QKX, where

K= —(k1 + ko) Ky
ky —ky

“(22)

and
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Direct calculations show that the numbers —w; and —ws, where w; = (2k; + k,

—\4k2 4+ k3) /2> 0and wy = (2k; + ko + \/4k? + k3) /2> 0 are the two eigenvalues
of the matrix K, and hence there exists an invertible matrix of real numbers A such that

AT 'KA=—Q, where
0 (05 0
0 (O] .

W= (‘h) = A'X.
21

The functions ¥, and ¥, are two weak IMFs such that f = oy, + sy, for some real
o’s. Indeed, we have

(PEW'Y = (P(A'X)) = A~Y(PEX") = A" QKX

Define the vector

= QAT KAATIX = —QQw. (3.1)

From (3.1) it follows that the functions v, and s are solutions to the differential
equations (Py')'=—wQy for w=w,; and w=w,, respectively. Hence they are
weak IMFs generated by one and the same self-adjoint operator. Adding the
initial conditions from f, and z(a)= z,,7'(a) =z}, where z,,z, are determined
from the proof of theorem 2.1, we can determine constants «; and ay such that

f=ay + as. [ |

In general, the functions y; and s do not satisfy the same boundary
conditions, and hence they are not part of one and the same Sturm—Liouville
system. In the case f€ 04(1 ), we can use remark 2.3 to construct y; and y» as
two eigenfunctions of one and the same Sturm—Liouville system.

Corollary 3.1. Let fe 04(1) and have simple zeros, extrema and inflections. If
wy and wy are as in theorem 3.2, then there exists a Sturm—Liouville system of
type (1.8), such that fis a linear combination of two, or fewer, of its eigenfunctions.

Proof. We modify P and @ in such a way that the functions y; and y»
constructed in theorem 3.2 satisfy the same boundary condition of type (1.8).
From the proof of theorem 3.2, it follows that

() =()

where A™' is a non-singular matrix, and hence ¥, and ¥, satisfy the same
boundary conditions if and only if f and z satisfy the same boundary conditions.
Since the function fis given, the parameters in the boundary condition

f(a) cos a+ P(a)f'(a) sina =0, (3.2)

f(b) cos B+ P(b)f'(b) sin g =0, (3.3)

should be chosen appropriately. The function P is coupled with the function x
but a and § could be arbitrary.
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Let x; denote a function z that is constructed in theorem 2.2 by starting from
the end point a. We show that z; can be constructed to satisfy (3.2). Depending
on the values of fand f’ at a, we consider the following three possible cases.

— Case (1). The function fdoes not have both a zero and an extrema at a. Then,
(3.2) is equivalent to f(a)—f(a)/f'(a)f'(a)=0, and so z must satisfy
n(a) —f'(a)/f(a)w}(a) = 0.

In the case a€Jy, from theorem 2.1, it follows that z; constructed as
z(t) = f(t)—(1/k)®(t) satisfies zy(a)—(f(a)/f'(a))z)(a)=0, if & is the
solution of the initial-value integral equation (A 11) with initial condition
®(a)= T and @'(a) = (f'(a)/f(a))T.

In the case a€l,, from theorem 2.1, it follows that the function
constructed as the solution of the IVP (A2) with initial conditions
z(a)=f(a) and z;=f"(a), satisfies (3.2).

— Case (11). The function fdoes not have zero at a, but f'(a)=0. By choosing
a=m/2 in (3.2), the initial condition for f becomes f’(a)=0 and the same
considerations as in case (i) lead to a construction of z; with z;=0 and any
choice of z)(a).

— Case (111). The function f does not have extrema at a, but f(a)=0. In that
case, we construct P with zero at a and positive elsewhere. Choosing a=m/2
in (3.2), we have a singular Sturm-Liouville system. Since fhas simple zeros
and extrema, it follows that f'(a)#0 and a€ I,. Furthermore, by repeating
the same construction of p and ¢ as in theorem 2.2 with boundary values
s(a)=0 and s(p)=wv, for an appropriate p and v, we obtain a continuously
differentiable non-negative function P with its only zero value at the point a.
The corresponding @ is a continuous positive function.

In a similar way, starting from b, a function z, can be constructed that satisfies
the boundary conditions (3.3). Finally, z; and z, can be connected smoothly on an
appropriate interval as in theorem 2.2 to construct a function z that satisfies
(3.1) and (3.2). The resulting weak IMFs y; and y» are eigenfunctions of a
Sturm-Liouville system of type (1.8) with corresponding eigenvalues w; and ws.
One immediate consequence is that ¥, and ¥, are orthogonal on I with a weight
function Q. [ |

The main purpose of the EMD method is to decompose a function into a
sequence of IMFs in order to extract important physical characteristics from
each component by the application of the Hilbert transform. Next we discuss
possible physical interpretations of the decompositions considered in theorems
3.1 and 3.2.

Let SL(P, )) denote the set of all the eigenfunctions of Sturm-Liouville
operators defined in (1.7). It is clear that SL(P, @) contains the eigenfunctions of
any Sturm-Liouville system. For any fixed boundary conditions, the system
of corresponding eigenfunctions is complete in Ly(I, @) and it follows that the
set of functions SL(P, @) is complete and redundant in Ly(1, Q). Furthermore,
since the weight function @ is strictly positive, continuous on the finite interval I,
then the space Lo(I, () is norm equivalent to the space Ly([). Varying P and @
over all continuous positive functions on I, we observe from theorem 1.2 that
W={y:y € SL(P, Q), P, Q positive continuous functions on /}.
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Self-adjoint differential equations describe many physical processes and have
embedded physical characteristics. A typical example is the periodic BVP

Y+ oy =0,
Y(0) = y(2m),y'(0) = y'(27),

that defines the trigonometric system {cos nt,sin nt};_, on the interval [0,2m).

This differential equation models the frictionless displacement from equilibrium
of a unit mass attached to a spring with a spring constant w?. If the ‘periodic’
boundary condition is replaced with an initial condition, then the SL operator
Lf=—f" generates trigonometric functions cos wt, sin wt that still obey the
physical relation with mass—spring system, but is a redundant system. One
method to decompose a function into a linear combination of elements from a
redundant system is by using ‘greedy’-type algorithms (for reference see DeVore
1998 and Temlyakov 1999). Generally, the resulting representation consists of
infinitely many terms.

In analogy with the trigonometric system, the characteristic equation for a
weak IMF (Py')’ =—Qy can be interpreted as the physical model according to
which a variable mass P(t) is attached to a spring with a variable spring constant
Q(t) and vibrates frictionlessly around its equilibrium position y(0). The solution
Y(t) is the displacement of the mass at the instant ¢. An equivalent form of the
characteristic differential equation is

v+ +ay =0, (3.4)
where ¢>0 and p is an arbitrary function. In that form the mass—spring
interpretation could be that ¥/(t) is the displacement of a unit mass attached to a
spring with a variable spring constant ¢ if the motion is subjected to a frictional
force —py/'. In both interpretations, /@ or /¢ is considered the frequency of the
motion. In the second case, p can be considered as the instantaneous bandwidth
of . The instantaneous quantities of ¥ can be defined by using the Priifer
substitution (1.6).

Summarizing the results of this section, theorems 3.1 and 3.2 not only show
the existence of the decomposition of a function finto finitely many weak IMFs,
but they also provide an additional analytical resource to the Hilbert transform
method in order to define instantaneous frequency and bandwidth by using the
physical interpretation from a model system of differential equations.

This work was supported in part by the AFRL and AFOSR MURI grant no. F49620-03-1-0381 and
by the ARO grant no. W911NF-05-1-0227.

Appendix A. Technical lemmas on differential and integral equations

In this appendix, we gather several results about the existence of solutions and
continuity with respect to the parameters of certain types of integral and
differential equations. We have isolated these to an appendix in order not to
distract from the main ideas of the decomposition theorems of §2. These results
are included in order to verify that the stated dependence of the solutions upon
the adjustable parameters, which are used in the constructions of the Sturm-—
Liouville operators, is possible.
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Throughout this section, the function fis assumed to be twice continuously
differentiable on an interval Jy=[c,d] with a finite number of inflections and with
the property that all its zeros and extrema are simple. We need controlled
solutions to two types of specialized problems that are dependent upon
properties of f, in order to complete the constructions of §2. The first type
provides a neighbourhood about the simple inflection points of f where a
controlled solution to a differential equation of a certain form exists. The second
type of problem is an integral equation that is used for subintervals that are free
of inflection points of f. The constructions in §2 require these two lemmas to be
used in tandem to produce second-order systems with the desired properties.

(a) Differential system
We denote the finite collection of inflection points of f by

E={: &) =0T}

In the next results, it is assumed that f, p, ¢, k1 and ks are given, and in order to
simplify the notation we set

f kyiq
G(t,m,z)=k1qf—(l€1+k2)qx+<k1q?+7 z—%xz. (A1)
In this case, we have the following result for the solution of the differential
equation with coefficients depending upon f as in expression (A 1).

Lemma A.l. Suppose ki and ky are positive real numbers and that q is
continuous on Jy with ||q|le <2||f"||le. Suppose further that & is an inflection
point of the twice continuously differentiable function f, such that f'(§)#0, then
there exists a subinterval J=[a,b]CJy containing & in its interior, such that
the IVP

' = G(t,2(t),2'(t)), (A 2)

z(a) =y, '(a) =y, (A 3)
has a solution on J for any real vy, ;.

Proof. Without loss of generality, we may assume from the hypothesis that f’
does not vanish on Jy and by compactness that |f'(t)]> o> 0, for all t&.J,.
Denote, respectively, the constants

mg = 2k ||| 1 /]|, (A4)

my =2(ky + k)|If" ||, (AD)

. 17 N

ma = 2k 17] + 1)1 (A0)
1

ms = 2k1 % (A 7)
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Further, select positive ¢, such that

myimy

¢2 > max (1, ‘m0—3 . myct, + (my +m2)cm+m1>. (A8)

ms
Jis then set to the interval centred at £ with length 6 := (1/c%). If necessary, c,,
can be increased to ensure 6 <1 and JC J,. We show that Jis the interval whose
existence is stated in the lemma.

Write the second-order equation (A 2) as its equivalent first-order system in
integral form,

¢
o(t) =+ | #(r)ar

, (A9)

t

2(t) =y +J G(r,x(7), 2(1)) dr,

a
where G(t,z,z) is as in expression (A 1). A standard technique to show the
existence of solutions of differential equations is the method of successive
approximations. In particular, we may, without loss of generality, assume that
Yo=y1=0 and let x;=0, 2o=0, then inductively construct the sequence pairs

B () = o + j () .
¢ (A 10)

t

fen(t) = 1 + j G(r, ,(7), 2a(7)) dr.

a

If we show |z,|<c,, and |z,|<c¢,, for n=0,1,2,..., we can use a standard
argument to then establish that the limit functions x and z exist and the
convergence is uniform. Using the inductive assumption |z,|<¢,, and |z,| < ¢,
we show that |z,1/<c¢, and |z,+1|<c¢,. For z,,q, we have |z,;,|<]|2,[0<
|2, < ¢, since 6<1. For z,, 1, using the bound |g| < 2||f"||«, we have

‘zn-i-l‘ < 6(m0 + ml’xn’ + m2|zn| + m3‘anan'

The polynomial function b(z,z) = my+ miz+ mqyz+ mszz has only one local
extremum and the value at that extremum is m=|mg—3(mymy/ms)| < c3,
from the choice of ¢,,. The global maxima of b(z,2) on the square |z| < ¢, |2| < ¢,,

are either the value at the extremum or a value from the boundary. It is easy to
see that the maximum value on the boundary is b(c,,, ¢,,) = my+ (m + my)c,, +
myct, < c3,, from the choice of ¢,,,. Hence |z,,1| < 6 max |b(|z|, |2])| < (1/c2) ¢S, = ¢,
and the limit functions z = lim,,_,,,, and z= lim,,_, 4z, is the solution pair of (A 9).
Hence z is a solution of the IVP (A 2) and (A 3) on the interval [a,a+3d] that
contains the point £. [ |

(b) Integral equation

One additional technical lemma is required for the proof of theorem 2.1. The
result establishes the existence of positive solutions of an integral equation on
intervals that avoid inflections of f and will be used on subintervals
complementary to those handled by lemma A.1.
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Lemma A.2. Let f € C*(I) with simple zeros and evtrema. Lett € I. Then for
any non-zero Ay and Ay and any u, there exists a positive real number Ty,
depending only on I and f, such that for each T, |T|> Ty, the integral equation,

t

NS W (G L
00 = T+ (1= Dt 50D + 1D =D 1)~ - | [ £55 avar,

(A11)
has a solution ®, such that |®|> (|T|/2) on I, with ¢(t)= T, ¢'(t)= u.
_ Proof. We prove the lemma in the case {=a, where I=[a,b]. The case
t € (a,b] is similar. Let ¢; =|(b—a)ul + (|A]/[A2])(If'(a)(b—a)| + |f(a)[ + [|f]|)

and ¢y = (|I]*/|A2])||ff"||l- Since f, f’ and f” are bounded on I, it follows that ¢
and ¢, are finite constants. Then pick T, positive such that |T|> T}, implies

|T|> ¢, + 1/ +4c,. (A 12)

Substituting ¢+ T for ¢ in (A11) and applying the method of successive
approximations, we consider a sequence of functions ¢, that satisfy the initial
conditions ¢,(a) =0, ¢,(a)=wu. Initialize ¢y=0 and inductively define

_ A , L[ ) ()
Busa(t) = ult=a) +5-(0) + £ (@)(t= ) () = 5- j jm dv dr.
(A 13)

By construction |¢pg|=0<(|T]/2). Assume |¢,|<(|T|/2), then |¢p,+ T|>
(|T|/2). Estimating the r.h.s. of (A13), it follows from the selection of T in
(A 12) that

2¢p _|T]|

|¢n+1|§01+m<7- (A 14)
Hence the limit function ®= T+ lim, ¢, satisfies (A1l) with &(f)= T,
?'(t)=w and |®|> (|T]/2) on L [ ]

Finally, we include a necessary condition for the existence of a solution of a
second-order BVP, the details of which may be found in Hartman (1964).

Proposition A.3. Suppose F(t, x, ) is continuous on the tube domain E(p, R) =
{(t,2,8) : 0< t<p,|z| < R,Ereal} and that F satisfies the condition that both
F(t, R, 0) is non-negative and F(t, — R, 0) is non-positive for all 0<t<p. Assume
further that there exist positive numbers C, v with y<1/R so that |F| < v&>+ C,
then there exists a solution to the BVP

" = F(t,z,2)

A
#(0) = 2y, 2(p) =xp,|xo|,|xprSR.} (419
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