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In this article, we consider a single-phase coupled nonlinear Stefan problem of the water-head and concen-
tration equations with nonlinear source and permeance terms and a Dirichlet boundary condition depending
on the free-boundary function. The problem is very important in subsurface contaminant transport and reme-
diation, seawater intrusion and control, and many other applications. While a Landau type transformation is
introduced to immobilize the free boundary, a transformation for the water-head and concentration functions
is defined to deal with the nonhomogeneous Dirichlet boundary condition, which depends on the free bound-
ary function. An H 1-finite element method for the problem is then proposed and analyzed. The existence
of the approximation solution is established, and error estimates are obtained for both the semi-discrete
schemes and the fully discrete schemes. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq
22: 1267–1288, 2006
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I. INTRODUCTION

The objective of numerical simulation for the groundwater contamination flow is to predict,
control, and remediate the contamination in subsurface contaminant transport and remediation,
seawater intrusion and control, and many other applications (see, for example, [1–5]). In this study,
we will consider an H 1-finite element method for the one-dimensional, single-phase coupled
nonlinear Stefan problem arising in groundwater contamination flow.
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LetH(y, τ)denote the water-head function,v(y, τ)denote the Darcy’s velocity of groundwater,
c(y, τ) be the concentration of contaminant, and s(τ ) be the free boundary function. The
one-dimensional mathematical model is a single-phase nonlinear Stefan problem in the following
form.

Problem (P): Find a pair {H(y, τ), c(y, τ)} such that

Ss

∂H

∂τ
− ∂

∂y

(
K

µ

∂H

∂y

)
= f (H), in �(τ) × (0, T0], (1.1)

v = −K

µ

∂H

∂y
, in �(τ) × (0, T0], (1.2)

φ
∂c

∂τ
+ v

∂c

∂y
− ∂

∂y

(
D

∂c

∂y

)
= g(c), in �(τ) × (0, T0], (1.3)

with the initial and boundary conditions

H(0, τ) = α0, H(s(τ), τ) = s(τ ), τ ∈ (0, T0], (1.4)

c(0, τ) = β0, c(s(τ ), τ) = β1, τ ∈ (0, T0], (1.5)

H(y, 0) = H0(y), c(y, 0) = c0(y), y ∈ I , (1.6)

and on the free boundary y = s(τ ), the free boundary function s(τ ) satisfies

ds

dτ
= − K

νµ

∂H

∂y
+ ω(H), τ ∈ (0, T0], (1.7)

with the initial value s(0) = 1.
Where Ss > 0 is the storativity constant, K > 0 is the hydraulic conductivity, µ > 0 is the

fluid viscosity, φ > 0 is the porosity of medium, ν > 0 is the specific yield constant, D > 0
is the diffusion constant, f (H) and g(c) are the flow source functions, ω(H) is the permeance
rate, H0(y) and c0(y) are the initial water-head and concentration functions, and α0, β0, and β1

are the given water-head and concentration values. T0 > 0 is the time period, I = (0, 1) is
the initial domain, and �(τ) = {y : 0 < y < s(τ)}, for τ ∈ (0, T0], is the moving domain.
The mass conservation of fluid incorporated with compressible medium, Darcy’s law and the
mass conservation of contaminant lead to the water-head equation (1.1) and the concentration
equation (1.3). Since the unsteady free surface is a material or liquid surface composed of the
same particles, the free boundary equation (1.7) characterizes that the hydrodynamic derivative
for free boundary is zero from the point of view of an observer moving with particle.

Among numerical methods for free boundary problems, the front fixing methods have been
successful in simulation of single-phase Stefan problems. In a series of articles, Nitsche [6, 7]
proposed a finite element method for a linear free boundary problem with a Dirichlet boundary
condition by straightening the free boundary and established an error analysis for a semi-discrete
scheme. Das and Pani [8–11] extended the method to a single-phase nonlinear Stefan problem
with zero boundary conditions and obtained optimal error estimates for both semi-discrete and
fully discrete Galerkin approximations. Gastaldi in [12] considered the approach of Nitsche for a
linear Stefan-like problem with a generalized free boundary condition. Based on the front fixing
technique, Asaithambi in [13] studied a variable time-step approximation to a one-dimensional
Stefan problem describing the evaporation of droplets. D’Ambra in [14] discussed numerical
simulation of the growth of a crystal from its melt by using a front fixing method. The article [15]
discussed an H 1-Galerkin method for the nonlinear Stefan system of the water-head and free
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boundary equations, derived the global existence of the approximate solution, and obtained optimal
error estimates of the approximation.

For the groundwater contamination flow, the model is a more complex coupled system of
the water-head, concentration, and free boundary equations. The free boundary equation (1.7)
depends on the water-head variable H , the Dirichlet boundary condition (1.4) depends on the
free boundary function s(τ ), and the domain �(τ) depends on the free boundary function s(τ ).
Due to the nonlinearity, the couplings, and the free boundary (free surface or phreatic surface),
solving the system is more difficult. Therefore, there are considerable interests to develop efficient
numerical methods for dealing with these features for the groundwater contamination problem
in porous media. In the article, we propose and analyze an H 1-Galerkin method for the general
single-phase nonlinear Stefan system of water-head, concentration, and free boundary equations
[i.e., Problem (P) (1.1)–(1.7)]. For treating the free boundary, a Landau type transformation is
introduced to transform the problem into one with a fixed domain similarly as in the previous works
(see, [6–15]). For overcoming the difficulty that the water-head boundary condition depends on
the free boundary function s(τ ), a transformation for the water-head and concentration functions
is given to transform the nonhomogeneous Dirichlet condition into a normal homogeneous one.
Because of the nonlinear source termsf (H) andg(c), the nonlinear permeance termω(H), and the
dependence of the Dirichlet boundary value on the free boundary function s(τ ), the transformed
problem becomes a system of two nonlinear parabolic equations and one nonlinear ordinary
differential equation. We make use of the theory of variation methods, the Schauder’s fixed point
theorem and the technique of prior estimates to analyze this numerical procedure. The global
existence of the approximate solution is proved and optimal error estimates are obtained for both
semi-discrete and fully discrete finite element schemes. The theoretical analysis of the proposed
method for the nonlinear coupled Stefan problem in this article is more difficult compared with
that in the previous articles. Thus, the present work has significance in both theoretical analysis
and application for groundwater contamination flows in porous media.

The rest of this article is organized as follows. In Section 2, a continuous time H 1-finite ele-
ment scheme and basic assumptions are presented for groundwater contamination flow. Auxiliary
projections and prior error estimates are given in Section 3. Error estimates for the continuous
time H 1-finite element schemes are derived in Section 4. In Section 5, the global existence of the
approximation solution is proved. Finally, the fully discrete finite element schemes are proposed
and analyzed in Section 6.

II. CONTINUOUS TIME FINITE ELEMENT SCHEMES AND BASIC ASSUMPTIONS

In this section, we will define the continuous approximation schemes for the groundwater contam-
ination problem. Meanwhile, some basic assumptions, notations, and properties will be introduced
in order to analyze the existence and error estimates of the schemes in the following sections.

Let Wr ,p(�) be normal Sobolev spaces on domain � for 1 ≤ p ≤ ∞ and for nonnegative
integer r . For p = 2, we simply write Hr(�) in place of Wr ,p(�) with norm ‖ · ‖r . Let X(τ) be a
Banach space for each τ ≥ 0 with norm ‖·‖X(τ). The following notations are used (see, [6,16], etc.):

‖v‖Lp(0,T ;X(τ)) =
(∫ T

0
‖v(τ)‖p

X(τ)

)1/p

, for 1 ≤ p < ∞, (2.1)

‖v‖L∞(0,T ;X(τ)) = sup
0≤τ≤T

‖v(τ)‖p

X(τ), for p = ∞, (2.2)

where X(τ) is Hr(�) or Hr(I).
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1270 LIANG, WANG, AND SHARPLEY

In order to overcome the difficulty of moving domain, we take the Landau-type trans-
formation

x = [s(τ )]−1y, (2.3)

and the time-scale transformation

t = t(τ ) =
∫ τ

0
[s(τ ′)]−2dτ ′. (2.4)

Using transformations (2.3) and (2.4), Problem (P) can be transformed into a problem with the
fixed domain I × (0, T ], where t = T corresponds to τ = T0. Because the water-head boundary
condition (1.4) depends on the free boundary function s(τ ), which makes it difficult to do the
practical computation and theoretical analysis of numerical methods, we further introduce the
following transformation:

p(x, t) = H(y(x), τ(t)) − xs(τ (t)) − (1 − x)α0, (x, t) ∈ I × (0, T ], (2.5)

b(x, t) = c(y(x), τ(t)) − xβ1 − (1 − x)β0, (x, t) ∈ I × (0, T ]. (2.6)

Let s(τ ) = q(t), px = ∂p/∂x, bx = ∂b/∂x, and px(1) = (∂p/∂x)(1, t), we then obtain the
following transformed problem to Problem (P) by applying transformations (2.3)–(2.6).

Problem (Q): Find {p(x, t), b(x, t), q(t)} such that

Ss

∂p

∂t
− ∂

∂x

(
K

∂p

∂x

)
= − 1

νµ
SsKpx(1)xpx + ϕ1(q)px + 1

νµ
SsKα0xpx(1)

+ ϕ2(q) + q2f (p + xq + (1 − x)α0), (x, t) ∈ I × (0, T ], (2.7)

u = −K

µ

∂p

∂x
, (x, t) ∈ I × (0, T ], (2.8)

φ
∂b

∂t
+ u

∂b

∂x
− ∂

∂x

(
D

∂b

∂x

)
= − 1

νµ
φKpx(1)xbx − 1

νµ
φK(β1 − β0)px(1)x

+ 1

µ
K(β1 − β0)px + ψ1(q)bx + ψ2(q)

+ q2g(b + xβ1 + (1 − x)β0), (x, t) ∈ I × (0, T ], (2.9)

dq

dt
= 1

νµ
K[α0 − px(1)]q + ϕ0(q)q2, t ∈ (0, T ], (2.10)

p(0, t) = p(1, t) = 0, t ∈ (0, T ], (2.11)

b(0, t) = b(1, t) = 0, t ∈ (0, T ], (2.12)

p(x, 0) = H0(x) − x − (1 − x)α0, x ∈ I , (2.13)

b(x, 0) = c0(x) − xβ1 − (1 − x)β0, x ∈ I , (2.14)

q(0) = 1, (2.15)
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where

ϕ1(q) = Ssω(q)qx + − 1

νµ
SsK(α0 − q)x,

ϕ2(q) = − 1

νµ
SsK(α0 − q)xα0 − Ssω(q)qα0x,

ψ1(q) = φω(q)qx +
(

1

µ
− 1

νµ
φKx

)
(q − α0),

ψ2(q) = 2

µ
K(q − α0)(β1 − β0) − 1

νµ
ϕK(q − α0)x(β1 − β0) − φω(q)qx(β1 − β0),

ϕ0(q) = ω(q) − 1

νµ
K .

Remark 2.1. Problem (Q) is a system in a fixed domain of a nonlinear parabolic water-head
equation (2.7), a nonlinear parabolic concentration equation (2.9), and a nonlinear ordinary
differential free boundary equation (2.10). After solving p, b, and q, the original solutions H , c,
and s of Problem (P) can be obtained as follows:

H(y, τ) = p(x, t) + xq(t) + (1 − x)α0, (2.16)

c(y, τ) = b(x, t) + xβ1 + (1 − x)β0, (2.17)

s(τ ) = q(t), (2.18)

where y = qx and τ = τ(t) satisfy equation

dτ

dt
= (q(t))2, 0 < t ≤ T , (2.19)

with the initial value τ(0) = 0.

Remark 2.2. In the groundwater flow, y = s(τ ) is the free surface or phreatic surface, which
satisfies in general that 0 < s0 ≤ s(τ ), τ ∈ (0, T0] for finite time period T0 > 0. If it degenerates
to s(T0) = 0, there would be no flow any more in the subsurface and we will not deal with
this degenerated case here. Actually, with proper source and permeance terms and a certain
initial distribution, the groundwater flow naturally satisfies that 0 < s0 ≤ s(τ ), τ ∈ (0, T0].
Some theoretical results for the solution variables and s(τ ) have been obtained for similar Stefan
problems (see, for example, [17–21]). In this article, we will provide condition 0 < s0 ≤ s(τ ), τ ∈
(0, T0] for a given finite time period T0 > 0. With this condition, the Landau-type transformation
(2.3) was used for some free boundary problems in the previous articles (see [6–15], etc).

In order to carry out our theoretical analysis for Problem (P) and Problem (Q), we
make, throughout this article, the following assumptions, which we call Assumption (A).
Assumption (A):

(i) Problem (P) has a unique smooth solution {H , c, s} for all y ∈ �(τ) and τ ∈ (0, T0]
satisfying that 0 < s0 ≤ s(τ ), τ ∈ (0, T0], and

H ∈ W 1,2(0, T0; Hl+1(�(τ))) ∩ W 1,∞(0, T0; H 2(�(τ))), s ∈ W 1,∞(0, T0),

c ∈ W 1,2(0, T0; Hm+1(�(τ))) ∩ W 1,∞(0, T0; H 2(�(τ))).
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(ii) f , g, ω ∈ C1(R) with locally uniformly bounded derivatives with bound M1.
(iii) The initial function H0 is sufficiently smooth and satisfies the compatibility conditions

H0(0) = 0 and H0(1) = 1.

We further assume that the uniqueness and regularity properties for {H , c, s} can be carried
over to the solution {p, b, q} of Problem (Q), and that

p ∈ W 1,2(0, T ; Hl+1(I )) ∩ W 1,∞(0, T ; H 2(I )), q ∈ W 1,∞(0, T ), (2.20)

b ∈ W 1,2(0, T ; Hm+1(I )) ∩ W 1,∞(0, T ; H 2(I )). (2.21)

Remark 2.3. The nonlinear functions f , g, and ω, and their derivatives are required only to be
locally uniformly bounded, which allows a wide class of problems to be included in our results.
Regarding the existence, uniqueness, and regularity results of the solution, the reader is referred
to [17–21], etc.

In order to derive a weak formulation for Problem (Q), let H 1
0 (I ) = {v ∈ H 1(I ) | v(0) =

v(1) = 0}. Multiplying both sides of (2.7) by −vxx for v ∈ H 2(I ) ∩ H 1
0 (I ) and integrating by

parts the first term with respect to x, we obtain that for t ∈ (0, T ]

(Ssptx , vx) + ((Kpx)x , vxx) = 1

νµ
SsKpx(1)(xpx , vxx) − (ϕ1(q)px , vxx) − (ϕ2(q), vxx)

−
(

1

νµ
SsKα0xpx(1), vxx

)
− (q2f (p + xq + (1 − x)α0), vxx). (2.22)

Similarly, we get from (2.9) by multiplying −wxx for w ∈ H 2(I ) ∩ H 1
0 (I ) that for t ∈ (0, T ]

(φbtx , wx) − (ubx , wxx) + ((Dbx)x , wxx) = 1

νµ
φKpx(1)(xbx , wxx) − (ψ1(q)bx , wxx)

−
(

1

µ
K(β1 − β0)px , wxx

)
−

(
1

νµ
φK(β1 − β0)px(1)x, wxx

)

− (ψ2(q), wxx) − (q2g(b + xβ1 + (1 − x)β0), wxx). (2.23)

The weak formulation for Problem (Q) is obtained as follows: Find p(t) ∈ H 2(I ) ∩ H 1
0 (I ),

b(t) ∈ H 2(I ) ∩ H 1
0 (I ), and q(t) satisfying (2.22) for all v ∈ H 2(I ) ∩ H 1

0 (I ), (2.23) for all
w ∈ H 2(I ) ∩ H 1

0 (I ), and (2.10) as well as initial conditions (2.13), (2.14), and (2.15).
We now propose a continuous time H 1-finite element approximate scheme for Problem (Q).

Let 0 < hp < 1 and 0 < hb < 1 be the spatial step size for pressure and the spatial step size
for concentration, respectively. Let Vhp ⊂ H 2(I ) ∩ H 1

0 (I ) be C1-finite element space with index
l ≥ 1 and Whb

⊂ H 2(I ) ∩ H 1
0 (I ) be C1-finite element space with index m ≥ 1, which satisfy the

following properties (see [7] and [16]):

(i) Approximation property: for 2 ≤ r ≤ l + 1 and 2 ≤ k ≤ m + 1, it holds that for some
constants C1 and C2

inf
vh∈Vhp

‖v − vh‖j ≤ C1h
r−j
p ‖v‖r , for j = 0, 1, 2; v ∈ Hr(I) ∩ H 1

0 (I ), (2.24)

inf
wh∈Whb

‖v − wh‖j ≤ C1h
k−j

b ‖w‖k , for j = 0, 1, 2; w ∈ Hk(I) ∩ H 1
0 (I ). (2.25)
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(ii) Inverse property: for vh ∈ Vhp , wh ∈ Whb
and some constants C3 and C4 independent of

vh and wh, it holds that

‖vh‖2 ≤ C3h
−1
p ‖vh‖1, (2.26)

‖wh‖2 ≤ C4h
−1
b ‖wh‖1. (2.27)

The continuous time finite element scheme for Problem (Q) is defined as follows: Find ph(t) ∈
Vhp , bh(t) ∈ Whb

, and qh such that for t ∈ (0, T ]

(Ssp
h
tx , vx) + ((Kph

x )x , vxx) = 1

νµ
SsKph

x (1)(xph
x , vxx) − (ϕ1(q

h)ph
x , vxx) − (ϕ2(q

h), vxx)

−
(

1

νµ
SsKα0xp

h
x (1), vxx

)
− ((qh)2f (ph + xqh + (1 − x)α0), vxx), v(t) ∈ Vhp , (2.28)

(φbh
tx , wx) − (uhbh

x , wxx) + ((Dbh
x)x , wxx) = 1

νµ
φKph

x(1)(xbh
x , wxx)

− (ψ1(q
h)bh

x , wxx) −
(

1

µ
K(β1 − β0)p

h
x , wxx

)
−

(
1

νµ
φK(β1 − β0)p

h
x (1)x, wxx

)

− (ψ2(q
h), wxx) − ((qh)2g(bh + xβ1 + (1 − x)β0), wxx), w(t) ∈ Whb

, (2.29)

dqh

dt
= 1

νµ
K[β − ph

x (1)]qh + ϕ0(q
h)(qh)2, (2.30)

with uh = −(1/µ)Kph
x , and the initial values qh(0) = 1, ph(x, 0) = �hp(H0(x)−x−(1−x)α0),

and bh(x, 0) = �hb
(c0(x) − xβ1 − (1 − x)β0), where �hp and �hb

are appropriate projection
operators onto Vhp and Whb

to be defined later.

Remark 2.4. Once we get ph, bh, and qh by solving (2.28)–(2.30) for Problem (Q), an
approximate solution {Hh, ch, sh} to Problem (P) can be obtained as follows:

Hh(y, τ) = ph(x, t) + xqh(t) + (1 − x)α0, (2.31)

ch(y, τ) = bh(x, t) + xβ1 + (1 − x)β0, (2.32)

sh(τ ) = qh(t), (2.33)

where y = qhx and τ = τ h(t) satisfy the equation

dτh(t)

dt
= (qh(t))2, t > 0, (2.34)

with initial value τ h(0) = 0.

III. AUXILIARY PROJECTIONS AND PRIOR ESTIMATES

For establishing the existence of the approximation solutions and analyzing the errors of the
approximation schemes, respectively, we will define the auxiliary elliptic projections associated
with solution {p, b, q} and estimate the related errors of the projections.
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For p, v, w ∈ H 2(I ), define

Aρ(p, q; v, w) =
((

K

µ
vx

)
x

, wxx

)
− 1

νµ
SsKpx(1)(xvx , wxx)

+ (ϕ1(q)vx , wxx) + ρ1(vx , wx), (3.1)

Bρ(p, q; v, w) = ((Dvx)x , wxx) + (uvx , wxx) − 1

νµ
φKpx(1)(xvx , wxx)

+ (ψ1(q)vx , wxx) + ρ2(vx , wx), (3.2)

where u = −(1/µ)Kpx , and ρ1 > 0 and ρ2 > 0 are sufficiently large constants so that there are
constants γ1 > 0 and γ2 > 0 such that

Aρ(p, q; v, v) ≥ γ1‖v‖2
2, ∀v ∈ H 2(I ) ∩ H 1

0 (I ), (3.3)

Bρ(p, q; w, w) ≥ γ2‖w‖2
2, ∀w ∈ H 2(I ) ∩ H 1

0 (I ). (3.4)

In addition, we can easily show that Aρ(p, q; v, w) and Bρ(p, q; v, w) are bounded in H 2(I )∩
H 1

0 (I ), that is,

|Aρ(p, q; v, w)| ≤ M2‖v‖2‖w‖2, ∀v, w ∈ H 2(I ) ∩ H 1
0 (I ), (3.5)

|Bρ(p, q; v, w)| ≤ M3‖v‖2‖w‖2, ∀v, w ∈ H 2(I ) ∩ H 1
0 (I ), (3.6)

for some positive constants M2 and M3, depending only on ‖p‖2, ‖b‖1, and q.
For t ∈ (0, T ], the auxiliary elliptic projections of p(x, t) and b(x, t) onto Vhp with respect to

Aρ and onto Whb
with respect to Bρ are defined as follows: Find p̃(x, t) ∈ Vhp and b̃(x, t) ∈ Whb

such that
Aρ(p, q; p − p̃, v) = 0, ∀v ∈ Vhp , (3.7)

Bρ(p, q; b − b̃, w) = 0, ∀w ∈ Whb
. (3.8)

Noting the properties (3.3)–(3.6), the existence of unique p̃(x, t) and b̃(x, t) in (3.7) and (3.8)
follows from the Lax-Milgram theorem. Moreover, the prior error estimates for η = p − p̃ and
θ = b − b̃, and a superconvergence estimate for ηx(1, t) in Lemma 3.1 and Lemma 3.2 can be
obtained similarly as in [8–10].

Lemma 3.1. For t ∈ (0, T ], the errors η = p − p̃ and θ = b − b̃ satisfy

‖η‖j ≤ Chr−j
p ‖p‖r , ‖ηt‖j ≤ Chr−j

p (‖pt‖r + ‖p‖r ), (3.9)

‖θ‖j ≤ Ch
k−j

b ‖p‖k , ‖θt‖j ≤ Ch
k−j

b (‖pt‖k + ‖p‖k), (3.10)

for j = 0, 1, 2, and 2 ≤ r ≤ l + 1, 2 ≤ k ≤ m + 1, where C is a positive constant independent
of hp and hb.

Lemma 3.2. There exists a constant C such that

|ηx(1, t)| ≤ Ch2(r−2)
p ‖p‖r , 2 ≤ r ≤ l + 1. (3.11)
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Proof. Let χ ∈ H 4(I ) ∩ H 1
0 (I ) be a solution of the following elliptic problem:

L∗(p, q)χxx = 0, x ∈ I , χxx(0) = 0, χxx(1) = 1, (3.12)

where L∗(p, q) is the elliptic operator defined by

L∗(p, q)χ = ∂

∂x

(
K

∂χ

∂x

)
+ 1

µν
Kpx(1)

∂

∂x
(xχ) − ∂

∂x
(ϕ1(q)χ) − ρ1χ .

Multiplying both sides of Equation (3.12) by η, and integrating by parts with respect to x, we
get from Equation (3.7) and relations (3.5) (2.24) that

|Kηx(1, t)| = |Aρ(p, q; η, χ)| = inf
vh∈Vh

|Aρ(p, q; η, χ − vh)|

≤ M2‖η‖2 inf
vh∈Vhp

‖χ − vh‖2 ≤ C1M2h
r−2
p ‖η‖2‖χ‖r . (3.13)

By the elliptic regularity, ‖χ‖m is bounded above with a bound depending only on q and p.
The required estimate (3.11) then follows from (3.13) and (3.9) for j = 2.

IV. ERROR ESTIMATES FOR CONTINUOUS TIME SCHEMES

In this part we will focus on error estimates of the continuous time finite element scheme (2.28)–
(2.30). We first assume that the finite element approximation {ph, bh, qh} exists, then we will prove
the existence and uniqueness of solution in next section. Let ep = p−ph, ξ = p̃−ph, η = p− p̃,
eb = b − bh, π = b̃ − bh, θ = b − p̃, and eq = q − qh, we have that ep = ξ + η, eb = π + θ . For
simplicity, we choose the initial approximations �hpp(x, 0) = p̃(x, 0) and �hb

b(x, 0) = b̃(x, 0)

in (2.28)–(2.30), where p̃(x, 0) and b̃(x, 0) are the elliptic projections of p(x, 0) and b(x, 0) onto
Vhp and Whb

defined in (3.7) and (3.8), respectively. Thus, ξ(x, 0) = 0 and π(x, 0) = 0.
For obtaining error estimates conveniently, we assume that there exist two positive constants

M∗ and 0 < h0 < 1 independent of hp and hb, such that, for 0 < hp, hb ≤ h0,

‖ph‖L∞(0,T ;H2(I )) + ‖bh‖L∞(0,T ;H2(I )) + ‖qh‖L∞(0,T ) ≤ M∗. (4.1)

The condition (4.1) is actually true, which will be proved in Theorem 4.1.

Lemma 4.1. Suppose that Assumption (A) and (2.20), (2.21) hold. Let {p, b, q} be the solution
of Problem (Q), and let {ph, bh, qh} be the finite element approximation defined in (2.28)–(2.30).
Assume that condition (4.1) holds. Then there are two positive constants 0 < h0 < 1 and C

independent of hp and hb, such that, for l ≥ 2, m ≥ 2 and 0 < hp, hb ≤ h0,

‖ξx‖2(t) + ‖πx‖2(t) + ‖eq‖2(t) + ‖ξxx‖2
L2(0,T ;L2(I ))

+ ‖πxx‖2
L2(0,T ;L2(I ))

≤ C
(
h2l

p (‖p‖2
L2(0,T ;Hl+1(I ))

+ ‖pt‖2
L2(0,T ;Hl+1(I ))

) + h2m
b (‖b‖2

L2(0,T ;Hm+1(I ))
+ ‖bt‖2

L2(0,T ;Hm+1(I ))
)
)
,

(4.2)

for 0 < t ≤ T .
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Proof. First, we consider the free-boundary error equation. It follows from (2.10) and (2.30)
that

dπ

dt
= 1

νµ
K[ph

x (1)qh − px(1)q] + 1

νµ
α0K(q − qh)

+ [ϕ0(q)q2 − ϕ0(q
h)(qh)2] ≡ G1 + G2 + G3. (4.3)

Using Assumption (A), (2.20), (4.1), and the definition of ϕ0(q), we can obtain the estimates

|G1| ≤ C0(|ηx(1)| + |ξx(1)| + |eq |), |G2 + G3| ≤ C0|eq |,
for constant C0 = C0(M

∗).
Multiplying (4.3) by eq and making use of Cauchy-Schwarz’s inequality, we get that for

arbitrary ε > 0,
d

dt
|eq |2 ≤ Cε(M

∗)(|ηx(1)|2 + |eq |2) + ε‖ξxx‖2
0. (4.4)

Next, we turn to the derivation of a corresponding evolution inequality for ξ . Using (2.22),
(2.28), (3.7), and (3.1), we get the following water-head error equation:

(Ssξtx , vx) + Aρ(p, q; ξ , v) = −(Ssηtx , vx) + ρ1((ep)x , vx)

+ 1

µν
SsK((px(1) − ph

x (1))xph
x , vxx) + 1

νµ
SsKα0((p

h
x (1) − px(1))x, vxx)

+ ((ϕ1(q
h) − ϕ1(q))ph

x , vxx) + (ϕ2(q
h) − ϕ2(q), vxx))

+ ((qh)2f (ph + xqh + (1 − x)α0) − q2f (p + xq + (1 − x)α0), vxx)

≡ G4 + G5 + · · · + G10, (4.5)

for v ∈ Vhp . We take v = ξ in (4.5) and estimate each term on both sides of (4.5). Along with the
fact that ηt(0) = ηt(1) = e(0) = e(1) = 0, integrating by parts leads to that

|G4 + G5| ≤ (Ss‖ηt‖0 + ρ1‖e‖0)‖ξxx‖0. (4.6)

Since ξ ∈ Vh ⊂ H 1
0 (I ), the inequality ‖ξx‖L∞(I ) ≤ √

2‖ξ‖1/2
0 ‖ξxx‖1/2

0 (Ladyzhenskaya et al.
[22]) and Poincare’s inequality, it implies that

|ξx(1)| ≤ √
2‖ξx‖1/2

0 ‖ξxx‖1/2
0 . (4.7)

Applying (4.7) to G6 and G7, we can get that

|G6 + G7| ≤ √
2

1

µν
SsK(C1(M

∗) + α0)(|ηx(1)|‖ξxx‖0 + |ξx(1)|1/2‖ξxx‖3/2
0 ), (4.8)

where C1(M
∗) independent of hp and hb. Similarly, we estimate G8, G9, and G10. Substituting

the estimates of Gj (j = 4, . . . , 10) into (4.5), and using (3.3), we obtain the inequality

Ss

2

d

dt
‖ξx‖2

0 + γ1‖ξxx‖2
0 ≤ Cε[‖ηt‖2

0 + ‖η‖2
0 + |ηx(1)|2 + (‖ξx‖2

0 + |eq |2)] + ε‖ξxx‖2
0, (4.9)

for arbitrary ε > 0.
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Finally, from (2.23), (2.29), (3.2), and (3.8), we obtain the concentration error equation as
follows:

(φπtx , wx) + Bρ(p, q; π , w) = −(φθtx , wx) + ρ2((eb)x , wx) + (ubh
x − uhbh

x , wxx)

+ 1

µν
φK((px(1) − ph

x (1))xbh
x , wxx) + 1

νµ
φK(β1 − β0)((p

h
x (1) − px(1))x, wxx)

+ 1

µ
K(β1 − β0)(p

h
x − px , wxx) + ((ψ1(q

h) − ψ1(q))bh
x , wxx) + (ψ2(q

h) − ψ2(q), wxx)

+ ((qh)2g(bh + xβ1 + (1 − x)β0) − q2g(b + xβ1 + (1 − x)β0), wxx)

≡ G11 + G12 + · · · + G19. (4.10)

Setting w = π in (4.10), we estimate the terms on the right-hand side of (4.10). Noting the
definitions of u and uh, we get by using condition (4.1) that

|G13| ≤
∣∣∣∣
(

−K

µ
(px − ph

x )b
h
x , wxx

)∣∣∣∣ ≤ C2(M
∗)

K

µ
(‖ηx‖0 + ‖ξx‖0)‖πxx‖0, (4.11)

and

|G19| ≤ |((qh)2 − q2)g(bh + xβ1 + (1 − x)β0)

+ q2(g(bh + xβ1 + (1 − x)β0) − g(b + xβ1 + (1 − x)β0)), wxx)|
≤ C3(M

∗)(|eq |0 + ‖eb‖0)‖πxx‖0, (4.12)

where C2(M
∗) and C3(M

∗) are independent of hp and hb.
Other G′s terms are estimated similarly. Notice that ep = η + ξ , and eb = θ + π , we obtain

that

φ

2

d

dt
‖πx‖2

0 + γ2‖πxx‖2
0 ≤ Cε[‖θt‖2

0 + ‖θ‖2
0 + ‖ηx‖2

0 + +|ηx(1)|2

+ (‖ξx‖2
0 + ‖πx‖2

0 + |eq |2)] + ε(‖ξxx‖2
0 + ‖πxx‖2

0). (4.13)

Taking ε sufficiently small in (4.4), (4.9), and (4.13) yields

d

dt
(‖ξx‖2

0 + ‖πx‖2
0 + |eq |2) + (‖ξxx‖2

0 + ‖πxx‖2
0)

≤ C6(M
∗)[‖ηt‖2

0 + ‖η‖2
0 + ‖ηx‖2

0 + ‖θt‖2
0 + ‖θ‖2

0 + |ηx(1)|2 + (‖ξx‖2
0 + ‖πx‖2 + |eq |2)].

An application of the Gronwall’s inequality to the above inequality gives

‖ξx(t)‖2
0 + ‖π(t)‖2

0 + |eq(t)|2 +
∫ t

0
(‖ξxx(τ )‖2

0 + ‖πxx(τ )‖2
0)dτ ≤ C5(M

∗, T )

∫ t

0
[‖ηt(τ )‖2

0

+ ‖η(τ)‖2
0 + ‖ηx(τ )‖2

0 + |ηx(1, τ)|2 + ‖θt (τ )‖2
0 + ‖θ(τ )‖2

0]dτ .

The required estimate (4.2) with C depending on M∗ under condition (4.1) is obtained from
(4.13) by using Lemma 3.1 and Lemma 3.2. This ends the proof.
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Theorem 4.2. Suppose that Assumption (A) and (2.20), (2.21) hold. Let {p, b, q} be the solution
of Problem (Q), and let {ph, bh, qh} be the finite element approximation in (2.28)–(2.30). There
exist constants 0 < h0 < 1 and C > 0 independent of hp and hb, such that, for 0 < hp, hb ≤
h0, l ≥ 2 and m ≥ 2, and

h−1
p hm

b → 0, h−1
b hl

p → 0, f or hp, hb → 0, (4.14)

it holds that
‖ph‖L∞(0,T ;H2(I )) + ‖bh‖L∞(0,T ;H2(I )) + ‖qh‖L∞(0,T ) ≤ M∗, (4.15)

and the following error estimates:

‖p − ph‖L∞(0,T ;H1(I )) + hp‖p − ph‖L∞(0,T ;H2(I )) ≤ C(hl
p + hm

b ), (4.16)

‖b − bh‖L∞(0,T ;H1(I )) + hb‖b − bh‖L∞(0,T ;H2(I )) ≤ C(hl
p + hm

b ), (4.17)

‖q − qh‖L∞(0,T ) ≤ C(hl
p + hm

b ). (4.18)

Proof. If (4.15) is true, the error estimates can be easily derived from Lemma 4.1, Lemma 3.1,
and Lemma 3.2 together with the approximation properties (2.24), (2.25), and the inverse
properties (2.26), (2.27). So we only need to show that (4.15) is actually true.

Let
M0 = ‖p‖L∞(0,T ;H2(I )) + ‖b‖L∞(0,T ;H2(I )) + ‖q‖L∞(0,T ),

then, we may assume without loss of generality that M∗ ≥ 3M0. Noting that ph(x, 0) = p̃(x, 0),
bh(x, 0) = b̃(x, 0), and qh(0) = 1, we have from Lemma 3.1 that

‖ph(0) − p(0)‖2 + ‖bh(0) − b(0)‖2 + |qh(0)| = ‖p̃(0) − p(0)‖2

+ ‖b̃(0) − b(0)‖2 + 1 ≤ Chl−1
p ‖p(0)‖l+1 + Chm−1

b ‖b(0)‖m+1 + 1,

for constant C > 0, so that

‖ph(0)‖2 + ‖bh(0)‖2 + |qh(0)| ≤ ‖p(0)‖2 + ‖b(0)‖2

+ Chl−1
p ‖p(0)‖l+1 + Chm−1

b ‖b(0)‖m+1 + 1 ≤ 2M0, (4.19)

for sufficiently small hp and hb. If (4.15) were false, by (4.19) and the continuity in t of ‖ph(t)‖2 +
‖bh(t)‖2 + |qh(t)|, there would be a t1 independent of hp and hb such that t1 < T and

‖ph(t)‖2 + ‖bh(t)‖2 + |qh(t)| ≤ M∗, t ∈ [0, t1), (4.20)

‖ph(t1)‖2 + ‖bh(t1)‖2 + |qh(t1)| > M∗, (4.21)

for sufficiently small hp and hb. Since p − ph = η + ξ and b − bh = θ + π , using (4.2) to ξ and
π for t ∈ (0, t1], Lemma 3.1 to η and θ , and the inverse properties (2.26), (2.27), we obtain that
for l ≥ 2 and m ≥ 2,

hp‖p − ph‖L∞(0,t1;H2(I )) + hb‖b − bh‖L∞(0,t1;H2(I )) + ‖q − qh‖L∞(0,t1)

≤ Chl
p(‖p‖L2(0,T ;Hl+1(I )) + ‖pt‖L2(0,T ;Hl+1(I )))

+ Chm
b (‖b‖L2(0,T ;Hm+1(I )) + ‖bt‖L2(0,T ;Hm+1(I ))) ≡ Chl

pF1 + Chm
b F2.
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So, for sufficiently small hp and hb,

‖ph(t1)‖2 + ‖bh(t1)‖2 + |qh(t1)| ≤ ‖p(t1)‖2 + ‖b(t1)‖ + |q(t1)|
+ C[(hl−1

p + h−1
b hl

p)F1 + (hm−1
b + h−1

p hm
b )F2]

≤ M0 + C[(hl−1
p + h−1

b hl
p)F1 + (hm−1

b + h−1
p hm

b )F2].
Taking hp and hb sufficiently small such that

C[(hl−1
p + h−1

b hm
p )F1 + (hm−1

b + h−1
p hl

b)F2] < M0,

we have
‖ph(t1)‖2 + ‖bh(t1)‖2 + |qh(t1)| < 2M0 < M∗,

which contradicts (4.21). Here use has been made of the facts l ≥ 2, m ≥ 2, and (4.14). The proof
is thus complete.

Further, noting formulas (2.16)–(2.18), definitions (2.31)–(2.33), and relations (2.19) and
(2.34), and using Theorem 4.1, we can easily obtain the following error estimates for the finite
element approximation {Hh, ch, sh} of the solution {H , c, s} to Problem (P).

Theorem 4.3. Suppose that Assumption (A) is satisfied. Let {H , c, s} be the solution of Problem
(P ). Let {Hh, ch, sh} be the finite element approximation defined through {ph, bh, qh} in (2.31)–
(2.33). Then, if l ≥ 2, m ≥ 2, and (4.14) holds, we have the following error estimates:

‖s − sh‖L∞(0,T0) + ‖τ − τ h‖L∞(0,T0) = O(hl
p + hm

b ), (4.22)

‖H − Hh‖L∞(0,T0;H1(�̃(τ ))) + hp‖H − Hh‖L∞(0,T0;H2(�̃(τ ))) = O(hl
p + hm

b ), (4.23)

‖c − ch‖L∞(0,T0;H1(�̃(τ ))) + hb‖c − ch‖L∞(0,T0;H2(�̃(τ ))) = O(hl
p + hm

b ), (4.24)

where �̃(τ ) = (0, min[s(τ ), sh(τ )]) for τ ∈ (0, T0].

V. GLOBAL EXISTENCE OF THE APPROXIMATE SOLUTION

Now, we consider existence and uniqueness of the finite element approximation {ph, bh, qh}
by employing Schauder’s fixed point theorem. To do this, we recall the system of equa-
tions (4.3), (4.5), and (4.10), which is a system of nonlinear ordinary differential equations in
ξ , π , and eq . For using Schauder’s fixed point theorem we need to linearize equations (4.3), (4.5),
and (4.10).

In Equation (4.5), noting ep = η + ξ and the fact that for all v ∈ Vhp

ρ(ex , vx) = −ρ(η + ξ , vxx), −(µηtx , vx) = (µηt , vxx),

and replacing ph = p − ep in terms G6 and G7, we get that

G6 = 1

µν
SsK((ηx(1) + ξx(1))x(p − ep)x , vxx), (5.1)

G7 = 1

µν
SsKα0(−(ηx(1) + ξx(1))x, vxx). (5.2)
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And since

ϕ1(q
h) − ϕ1(q) = −(q − qh)

∫ 1

0
ϕ

′
1(q − t

′
(q − qh))dt

′
, (5.3)

we thus have for G8 that

G8 =
(

−(q − qh)

∫ 1

0
ϕ

′
1(q − t

′
(q − qh))dt

′
(px − (ep)x), vxx

)
. (5.4)

Similarly, treat G9 and G10. Substituting ep by Ep(x, t) and eq by Eq(t) for some functions
Ep ∈ L∞(0, T ; H 2(I ) ∩ H 1

0 (I )) and Eq ∈ L∞(0, T ), we obtain a linearized formulation for
Equation (4.5):

(Ssξtx , vx) + Aρ(p, q; ξ , v) = (Ssηt , vxx) + ρ1(η + ξ , vxx)

+ 1

µν
SsK((ηx(1) + ξx(1))x(px − (Ep)x), vxx) + 1

νµ
SsKα0(−(ηx(1) + ξx(1))x, vxx)

+
(

−eq

∫ 1

0
ϕ

′
1(q − t

′
Eq)dt

′
(px − (Ep)x), vxx

)
+

(
−eq

∫ 1

0
ϕ

′
2(q − t

′
Eq)dt

′
, vxx

)

+ (eq(Eq − 2q)f ((p − Ep) + xEq + (1 − x)α0)

− q2(η + ξ − eq)

∫ 1

0
f

′
(p + xq + (1 − x)α0 − t

′
(Ep + xEq))dt

′
, vxx). (5.5)

To treat terms Gj (j = 11, . . . , 19) in Equation (4.10) in the same way as above by using
ep = η + ξ , eb = θ + π , ph = p − ep, bh = b − eb, and qh = q − eq , and substituting ep by
Ep(x, t), eq by Eq(t), and eb by Eb(x, t), it turns out for the linearized concentration formulation
that

(φπtx , wx) + Bρ(p, q; π , v) = (φθt , wxx) + ρ2(θ + π , wxx)

+
(

−K

µ
(ηx + ξx)(bx − (Eb)x), wxx

)
+ 1

µν
φK((ηx(1) + ξx(1))x(bx − (Eb)x), wxx)

+ 1

νµ
φK(β1 − β0)(−(ηx(1) + ξx(1))x, wxx) + 1

µ
K(β1 − β0)(−(ηx + ξx), wxx)

+
(

−eq

∫ 1

0
ψ

′
1(q − Eqt

′
)dt

′
)

(b − Eb)x , wxx) +
(

−eq

∫ 1

0
ψ

′
2(q − Eqt

′
), wxx

)

+ (eq(Eq − 2q)g((b − Eb) + xβ1 + (1 − x)β0)

− q2(θ + π)

∫ 1

0
g

′
(b + xβ1 + (1 − x)β0 − t

′
Eb)dt

′
, wxx). (5.6)

Similarly, from (4.3) we obtain the linearized free-boundary equation:

deq

dt
= 1

νµ
K(−(ηx(1) + ξx(1))(q − Eq) − px(1)eq) + 1

νµ
α0Keq

+ eqϕ0(q − Eq)(2q − Eq) + eqq
2

∫ 1

0
ϕ

′
0(q − t

′
Eq)dt

′
. (5.7)
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Then, rearranging the right-hand side of (5.5), (5.6), and (5.7), we obtain a coupled system
of three linear ordinary differential equations in ξ , π , and eq for giving Ep ∈ L∞(0, T ; H 2(I ) ∩
H 1

0 (I )), Eb ∈ L∞(0, T ; H 2(I ) ∩ H 1
0 (I )), and Eq ∈ L∞(0, T ),

(Ssξtx , vx) + Aρ(p, q; ξ , v) = (χ1(Ep, Eq)ξ + χ2(Ep)ξx(1) + χ3(Ep, Eq)eq

+ χ4(Ep, Eq)η + χ5(Ep)ηx(1) + Ssηt , vxx), ∀v ∈ Vhp , (5.8)

(φπtx , wx) + Bρ(p, q; π , w) = (χ6(Eb)π + χ7(Eb)ξx + χ8(Eb1)ξx(1) + χ9(Eb, Eq)eq

+ χ10(Eb)θ + χ11(Eb)ηx + χ12(Eb)ηx(1) + φθt , wxx), ∀w ∈ Whb
, (5.9)

deq

dt
= χ13(Eq)eq + χ14(Eq)ξx(1) + χ15(Eq)ηx(1), (5.10)

with initial values ξ(0) = 0, π(0) = 0, and eq(0) = 0, where χi(Ep, Eq), χi(Eb, Eq),
χi(Eq), χi(Ep), and χi(Eb) are functions independent of h, ξ , and π . Since the system of Equa-
tions (5.8), (5.9), and (5.10) is a linear ordinary differential system in ξ , π , and eq as functions of
t for any given functions Ep = Ep(x, t), Eb = Eb(x, t), and Eq = Eq(t), there exists a unique
solution {ξ , π , eq} of system (5.8), (5.9), and (5.10) in the interval (0, T ].

Let U and Uh represent the spaces:

U := L∞(0, T ; H 2(I ) ∩ H 1
0 (I )) × L∞(0, T ; H 2(I ) ∩ H 1

0 (I )) × L∞(0, T ), (5.11)

Uh := L∞(0, T ; Vhp) × L∞(0, T ; Whb
) × L∞(0, T ). (5.12)

Thus, the linear system of Equations (5.8), (5.9), and (5.10) defines an operator T from U into
Uh such that

{ξ , π , eq} = T {Ep, Eb, Eq}, (5.13)

for each {Ep, Eb, Eq} ∈ U . Since ep = η + ξ , eb = η + ξ , then {ep, eb, eq} = {η, θ , 0} +
T {Ep, Eb, Eq} for each {Ep, Eb, Eq} ∈ U . Now, define operator D : U → U by

D{Ep, Eb, Eq} = {η, θ , 0} + T {Ep, Eb, Eq}. (5.14)

Thus, by employing Schauder’s fixed point theorem, to show the existence of a solution
{ph, bh, qh} to problem (2.28)–(2.30), we only need to show that operator D has a fixed point
{Ep, Eb, Eq} in U , that is,

D{Ep, Eb, Eq} = {Ep, Eb, Eq}. (5.15)

Theorem 5.1. Suppose that Assumption (A) and (2.20), (2.21) are satisfied. Let {p, b, q} be the
solution of Problem (Q). If (4.14) holds and 0 < δ ≤ 1, l ≥ 2 and m ≥ 2, then for sufficiently
small hp and hb, there exists a unique finite element solution {ph, bh, qh} ∈ L∞(0, T ; Vhp) ×
L∞(0, T ; Whb

) × L∞(0, T ) to problem (2.28)–(2.30) such that

‖p − ph‖L∞(0,T ;H2(I )) + ‖b − bh‖L∞(0,T ;H2(I )) + ‖q − qh‖L∞(0,T ) ≤ δ. (5.16)

Proof. First, we consider Equation (5.8). Let v = ξ in (5.8) and use (3.3) and (3.5) to obtain
that

Ss

2

d

dt
‖ξx‖2

0 + γ1‖ξ‖2
2 ≤ ‖ξxx‖0{Ss‖ηt‖0 + C[(1 + |q|2)(‖η‖0 + ‖ξ‖0)

+ (1 + ‖px‖0 + ‖(Ep)x‖0)(|ηx(1)| + |ξx(1)|)
+ (1 + |q| + |q|2 + ‖px‖0 + |Eq | + ‖(Ep)x‖0)|eq |)]‖ξxx‖,
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for positive constant C. Applying Cauchy-Schwarz’s inequality to the above inequality, we obtain
that for arbitrary ε > 0,

Ss

2

d

dt
‖ξx‖2

0 + γ1‖ξ‖2
2 ≤ ε‖ξxx‖2 + Cε{‖ηt‖2

0 + ‖η‖2
0

+ (1 + ‖(Ep)x‖2
0)|ηx(1)|2 + (1 + ‖(Ep)x‖4

0 + |Eq |2)(‖ξx‖2
0 + |eq |2)]}. (5.17)

Second, choosing w = π in (5.9) and making use of (3.4) and (3.6), we get that

φ

2

d

dt
‖πx‖2

0 + γ2‖π‖2
2 ≤ ‖πxx‖0{φ‖θt‖0 + C[(1 + |q|2)(‖θ‖0 + ‖π‖0)

+ (1 + ‖bx‖L∞(I ) + ‖(Eb)x‖L∞(I ))(‖ηx‖0 + ‖ξx‖0) + (1 + ‖bx‖0

+ ‖(Eb)x‖0)(|ηx(1)| + |ξx(1)|) + (1 + |q| + ‖bx‖0 + |Eq | + ‖(Eb)x‖0)|eq |)]‖πxx‖.

It yields that for arbitrary ε > 0,

φ

2

d

dt
‖πx‖2

0 + γ2‖π‖2
2 ≤ ε(‖πxx‖2

0 + ‖ξxx‖2
0) + Cε{‖θt‖2

0 + ‖θ‖2
0

+ (1 + ‖(Eb)x‖2
L∞(I ))‖ηx‖2 + (1 + ‖(Eb)x‖2

0)|ηx(1)|2
+ (1 + ‖(Eb)x‖4

0 + ‖(Eb)x‖2
L∞(I ) + |(Eq)|2)(‖πx‖2

0 + ‖ξx‖2
0 + |eq |2)}. (5.18)

Finally, multiplying (5.10) by eq and applying Cauchy-Schwarz’s inequality give

1

2

d|eq |2
dt

≤ ε‖ξxx‖2 + Cε(1 + |Eq |2)(|eq |2 + |ηx(1)|2). (5.19)

Now, combining (5.17)–(5.19) and taking ε sufficiently small, we have that

d

dt
(‖ξx‖2

0 + ‖πx‖2
0 + |eq |2) ≤ C2{‖ηt‖2

0 + ‖θt‖2
0 + ‖η‖2

0 + ‖θ‖2
0

+ (1 + ‖(Eb)x‖2
L∞(I ))‖ηx‖2

0 + (1 + ‖(Ep)x‖2
0 + ‖(Eb)x‖2

0 + |Eq |2)|ηx(1)|2}
+ C2(1 + |Eq |2 + ‖(Eb)x‖2

L∞(I ) + ‖(Ep)x‖4
0 + ‖(Eb)x‖4

0)(‖ξx‖2
0 + ‖πx‖2 + |eq |2), (5.20)

for constant C2 > 0 independent of hp, hb, Ep, Eb, and Eq . Taking the supremum over (0, T ] with
respect to t and making use of Lemma 3.1–3.2, we obtain by applying the Gronwall’s inequality
to (5.20) and the inverse properties (2.26) and (2.27) that

h2
p‖ξ‖2

L∞(0,T ;H2(I ))
+ h2

b‖eq‖2
L∞(0,T ;H2(I ))

+ ‖π‖2
L∞(0,T ) ≤ C4(h

2l
p + h2m

b ), (5.21)

with some C4 > 0 independent of hp and hb but depending on Ep, Eb, and Eq .
Now, we introduce the notation

| ‖{v, w, q}‖ | := ‖v‖L∞(0,T ;H2(I )) + ‖w‖L∞(0,T ;H2(I )) + ‖q‖L∞(0,T ),
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for {v, w, q} ∈ U . Let {Ep, Eb, Eq} satisfy

|‖{Ep, Eb, Eq}‖| ≤ δ ≤ 1.

Then, using Lemma 3.1 and the definition of D, and noting that l ≥ 2 and m ≥ 2, we get from
(5.21) that for 0 < hp, hb ≤ 1,

|‖D{Ep, Eb, Eq}‖| ≤ ‖η‖L∞(0,T ;H2(I )) + ‖θ‖L∞(0,T ;H2(I )) + ‖ξ‖L∞(0,T ;H2(I ))

+ ‖π‖L∞(0,T ;H2(I )) + ‖eq‖L∞(0,T ) ≤ C5(h
l−1
p + h−1

b hm
p + hl−1

b + h−1
b hl

p),

where C5 > 0 is independent of hp, hb, Ep, Eb, and Eq . Noting (4.14), there thus exists an
0 < h0 < 1 such that for all 0 < hp, hb ≤ h0, it holds that |‖D{Ep, Eb, Eq}‖| ≤ δ. So, operator
D maps the sphere

Bδ := {{Ep, Eb, Eq} ∈ U : |‖{Ep, Eb, Eq}‖| ≤ δ}, (0 < δ ≤ 1)

into itself for 0 < hp, hb ≤ h0. Clearly, D is continuous and compact. Therefore, by applying the
Schauder’s fixed point theorem, there exits a solution {Ep, Eb, Eq} inBδ such thatD{Ep, Eb, Eq} =
{Ep, Eb, Eq}. The proof of the existence of the approximation solution is complete. The uniqueness
of the solution can be easily obtained from the theory of ordinary differential equations.

VI. FULLY DISCRETE FINITE ELEMENT SCHEMES

In this section, we first define a fully discrete finite element scheme for Problem (Q) as well as
a fully discrete approximation to Problem (P). We then analyze the error estimates for the fully
discrete schemes. Finally, we describe briefly how to implement the schemes and how to extend
the methods to multidimensional problems at the end of this section.

Let �t > 0, N = T /�t ∈ Z, and tn = n�t ,n = 0, 1, . . . , N . Letpn = p(x, tn), bn = b(x, tn),
and dtp

n = (pn − pn−1)/�t , dtb
n = (bn − bn−1)/�t . Denote the approximation of pn by P n in

Vhp , the approximation of bn by Bn in Whb
, and the approximation of qn by Qn. Assuming that

P n−1, Bn−1, and Qn−1 are known, we determine P n, Bn, and Qn by the following fully discrete
finite element scheme: Find P n ∈ Vhp , Bn ∈ Whp , and Qn such that

(SsdtP
n
x , vx) + ((KP n

x )x , vxx) = 1

νµ
SsKP n−1

x (1)(xP n
x , vxx)

− (ϕ1(Q
n−1)P n

x , vxx) − (ϕ2(Q
n−1), vxx) −

(
1

νµ
SsKα0xP n

x (1), vxx

)

− ((Qn−1)2f (P n−1 + xQn−1 + (1 − x)α0), vxx), v ∈ Vhp , (6.1)

dtQ
n = 1

νµ
K[α0 − P n

x (1)]Qn + ϕ0(Qn−1)(Q
n−1)2, (6.2)

(φdtB
n
x , wx) − (UnBn

x , wxx) + ((DBn
x )x , wxx) = 1

νµ
φKP n

x (1)(xBn
x , wxx)

− (ψ1(Q
n)Bn−1

x , wxx) −
(

1

µ
K(β1 − β0)P

n
x , wxx

)
−

(
1

νµ
φK(β1 − β0)P

n
x (1)x, wxx

)

− (ψ2(Q
n), wxx) − ((Qn)2g(Bn−1 + xβ1 + (1 − x)β0), wxx), w ∈ Whb

, (6.3)
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for n = 1, 2, . . . , N , and with Un = −(1/µ)KP n
x , the initial values P 0 = �hpp(x, 0), B0 =

�hb
b(x, 0) and Q0 = 1, where �hp and �hb

are appropriate projection operators onto Vhp

and Whb
, respectively. Since scheme (6.1)–(6.3) leads to a system of linear algebraic equations

for P n, Bn, and Qn, which has a solution for sufficiently small �t for any given initial values
{P 0, B0, Q0}. In the rest of this section, we shall derive error estimates for the fully discrete scheme
(6.1)–(6.3). In order to do this, we make the following additional smoothness assumptions for the
solutions {H , c, s} and {p, b, q}, and functions f and ω, which we call Assumption (B).

Assumption (B): In addition to Assumption (A), we assume further that {H , c, s} and {p, b, q}
satisfy

H ∈ W 1,2(0, T0; Hl+1(�(τ))) ∩ W 2,2(0, T0; H 2(�(τ))), s ∈ W 2,2(0, T0), (6.4)

c ∈ W 1,2(0, T0; Hm+1(�(τ))) ∩ W 2,2(0, T0; H 2(�(τ))), (6.5)

and

p ∈ W 1,2(0, T ; Hl+1(I )) ∩ W 2,2(0, T ; H 2(I ))), q ∈ W 2,2(0, T ), (6.6)

b ∈ W 1,2(0, T ; Hm+1(I )) ∩ W 2,2(0, T ; H 2(I ))), (6.7)

and f , ω ∈ C2(R) with locally uniformly bounded derivatives.
Let en

p = pn − P n, ηn = pn − p̃n, ξn = p̃n − P n, en
b = bn − Bn, θn = bn − B̃n, πn = b̃n − Bn,

and en
q = qn − Qn, from (2.22), (3.7), and (6.1), it follows that for v ∈ Vhp ,

(Ssdtξ
n
x , vx) + Aρ(p

n, qn; ξn, v) = −(Ssdtη + Ss[pn
t − dtp

n], vxx) + ρ1((ep)
n
x , vx)

+ 1

µν
SsK((pn

x(1) − P n−1
x (1))xP n

x , vxx) + 1

νµ
SsKα0((P

n
x (1) − pn

x(1))x, vxx)

+ ((ϕ1(Q
n−1)P n−1

x − ϕ1(q
n)pn

x , vxx) + (ϕ2(Q
n−1) − ϕ2(qn), vxx))

+ ((Qn−1)2f (P n−1 + xQn−1 + (1 − x)α0) − (qn)2f (pn + xqn + (1 − x)α0), vxx), (6.8)

and for w ∈ Whb
,

(φdtπ
n
x , wx) + Bρ(p

n, qn; πn, w) = −(φdtθ
n
x + φ[bn

t − dtb
n], wxx) + ρ2((eb)

n
x , wx)

+ ((un − Un)Bn
x , wxx) + 1

µν
φK((pn

x(1) − P n
x (1))xBn

x , wxx)

+ 1

νµ
φK(β1 − β0)((P

n
x (1) − pn

x(1))x, wxx) + 1

µ
K(β1 − β0)(P

n
x − pn

x , wxx)

+ ((ψ1(Q
n) − ψ1(q

n))Bn−1
x , wxx) + (ψ2(Q

n) − ψ2(q
n), wxx))

+ ((Qn)2g(Bn + xβ1 + (1 − x)β0) − (qn)2g(pn + xβ1 + (1 − x)β0), wxx), (6.9)

and

dte
n
q = 1

ν
K[P n

x (1)Qn − pn
x(1)qn] + [dtq

n − qn
t ] + [ϕ(qn)(qn)2 − ϕ(Qn−1)(Qn−1)2]. (6.10)

Then, we have the following results.
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Lemma 6.1. Suppose that Assumption (B) holds. Let {p, b, q} be the solution of Problem (Q),
and let {P n, Bn, Qn} be the solution of the fully discrete scheme (6.1)–(6.3) with initial values
P 0 = p̃(x, 0), B0 = b̃(x, 0), and Q0 = 1. Then, there exist constants 0 < h0 < 1, 0 < �0 < 1,
and C > 0 independent of hp, hb and �t , for 0 < hp, hb ≤ h0, 0 < �t ≤ �0, l ≥ 2, m ≥ 2,
�t = o(hp, hb), and

h−1
p hm

b + h−1
b hl

p → 0, f or hp, hb → 0, (6.11)

such that

‖ξn
x ‖2

0 + ‖πn
x ‖2

0 + |en
q |2 +

n∑
k=0

(‖ξ k‖2
2 + ‖πk‖2

2)�t ≤ C[(�t)2 + h2l
p + h2m

b ], (6.12)

for n = 0, 1, . . . , N .

Proof. Make an induction hypothesis similar to the one in Section 4. Let

M0 = N
max
n=0

(‖pn‖2 + ‖bn‖2 + |qn|),

and assume that there are constants 0 < h0 < 1, 0 < �0 < 1 and M∗ (M∗ > 3M0) such that for
0 < hp, hq ≤ h0, 0 < �t ≤ �0,

N
max
n=0

(‖P n‖2 + ‖Bn‖2 + |Qn|) ≤ M∗. (6.13)

Choosing v = ξn and w = πn in (6.8) and (6.9), and multiplying (6.10) by en
q we get

by similar arguments as in deriving (4.4)–(4.9) and the definition of (3.1) and (3.2) that, for
arbitrary ε > 0,

1

�t
(‖ξn

x ‖2
0 − ‖ξn−1

x ‖2
0) + γ1‖ξn

xx‖2
0 ≤ ε(‖ξn

xx‖2
0 + ‖ξn−1

xx ‖2
0)

+ Cε[(�t)2 + ‖dtη
n‖2

0 + ‖ηn‖2
0 + ‖ηn−1‖2

0 + ‖ηn−1
x ‖2

0 + |ηn
x(1)|2

+ |ηn−1
x (1)|2 + (‖ξn

x ‖2
0 + ‖ξn−1

x ‖2
0 + |en

q |2 + |en−1
q |2)], (6.14)

1

�t
(‖πn

x ‖2
0 − ‖πn−1

x ‖2
0) + γ2‖πn

xx‖2
0 ≤ ε(‖πn

xx‖2
0 + ‖ξn

xx‖2
0)

+ Cε[(�t)2 + ‖dtθ
n‖2

0 + ‖θn‖2
0 + ‖θn−1‖2

0 + ‖ηn
x‖2

0 + |ηn
x(1)|2

+ (‖πn
x ‖2

0 + ‖πn−1
x ‖2

0 + ‖ξn
x ‖2

0 + |en
q |2], (6.15)

1

�t
(|en

q |2 − |en−1
q |2) ≤ ε‖ξn

xx‖2
0 + Cε(|ηn

x(1)|2 + (�t)2 + ‖ξn
x ‖2

0 + |en
q |2 + |en−1

q |2), (6.16)

where Cε is a positive constant independent of hp, hq , and �t . Multiplying both sides of (6.14)–
(6.16) by �t , combining these three inequalities together, summing in time 1 ≤ n ≤ N and
choosing ε sufficiently small, we are able to obtain the required estimate (6.12) by applying the
discrete Gronwall’s inequality, Lemma 3.1 and Lemma 3.2. It remains to check the induction
hypothesis (6.13). Using (6.12) and a similar argument as in the proof of Theorem 4.2, it can be
easily shown that (6.13) actually holds. Thus, the proof is complete.

Further, from Lemma 6.1 and Lemma 3.1 together with the inverse properties (2.26) and (2.27),
we easily get the following theorem.
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Theorem 6.2. Suppose that the conditions of Lemma 6.1 are satisfied. Then, there exist constants
0 < h0 < 1, 0 < �0 < 1 and C > 0 independent of hp, hb, and �t , for 0 < hp, hq ≤ h0,
0 < �t ≤ �0, and �t = o(hp, hb), (6.11) with l ≥ 2, m ≥ 2, such that

N
max
n=0

(‖pn − P n‖2
1 + ‖bn − Bn‖2

1 + |qn − Qn|2) +
N∑

n=0

(‖pn − P n‖2
2hp + ‖bn − Bn‖2

2hb)�t

≤ C[(�t)2 + h2l
p + h2m

b ]. (6.17)

Finally, we define the fully discrete finite element approximation {Hn
h , cn

h, sn
h} to the original

Problem (P) as follows:

Hn
h := Hh(y

n, τ n
h ) = P n(x) + xQn + (1 − x)β, sn

h := sh(τ
n
h ) = Qn, (6.18)

cn
h := ch(y

n, τ n
h ) = Bn(x) + xβ1 + (1 − x)β0, (6.19)

where yn = xQn and τ n
h is given via

dtτ
n
h = (Qn)2, (6.20)

with initial value τ 0
h = 0. Then, from formulas (2.5), (2.6), and (2.19), and the definitions (6.18)–

(6.20), and utilizing Theorem 6.1, one can easily obtain the following error estimates for the
fully discrete finite element approximation {Hn

h , cn
h, Sn

h} of the solution {H , c, s} to the original
Problem (P).

Theorem 6.3. Suppose that the conditions of Theorem 6.1 are satisfied. Let {H , c, s} be the
solution of Problem (P), Let {Hn

h , cn
h, Sn

h} be the fully discrete finite element approximation to Prob-
lem (P). Assume that �t = o(hp, hq) and (6.11) hold. Then, we have that for l ≥ 2 and m ≥ 2,

N
max
n=0

(‖Hn − Hn
h ‖H1(�̃n) + ‖cn − cn

h‖H1(�̃n)) ≤ C[�t + hl
p + hm

b ], (6.21)

N
max
n=0

(|sn − sn
h | + |τ n − τ n

h |) ≤ C[�t + hl
p + hm

b ], (6.22)

where Hn = H(y, τ n) and sn = s(τ n) with τ n given by (2.19), �̃n = (0, min[sn, Sn
h ]), and C > 0

is independent of hp, hb, and �t .

Remark 6.1. The analysis results in the article express that the front fixing finite element method
has not only the error estimates for both pressure and concentration with O(�t + hl

p + hm
b ) but

also the same order estimates for the free boundary. This guarantees that the proposed method
can obtain very good approximation to the fluid flow with free surface in porous media. The
condition �t = o(hp, hq) in Lemma 6.1 and Theorem 6.1–6.2 is provided only to obtain the high
order estimate of error O(�t + hl

p + hm
b ) since the inverse property of finite element spaces is

used to derive the boundness of the approximation solutions in high-order H 2-norm for treating
a nonlinear term in analysis. Since the indices of two H 1-finite element spaces are l ≥ 2 and
m ≥ 2, it would be natural to choose �t = o(hp, hq) in order to reach the high accuracy of
O(hl

p + hm
b ) from the estimates.

Remark 6.2. The fully discrete scheme (6.1)–(6.3) is a linearization iteration scheme of
{P n, Qn, Bn}. The procedure can be described as follow: Step 1. Input the initial values P 0, Q0
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andB0, which are the approximations ofp(x, 0), s(0) = 1, andb(x, 0). Step 2. Forn = 1, 2, . . . , N
do: (a) find P n using (6.1), (b) find Qn using (6.2), (c) find Bn using (6.3). At steps (a) and (c),
we only need to solve a triangular linear system of equations by using the Crout’s factorization
algorithm. Moreover, Step (b) is only a two-step scheme, which can be easily solved. From Theo-
rem 6.1 and Theorem 6.2, we knew that the fully discrete scheme is of first order in �t . We may
construct some implicit schemes to increase the accuracy with respect to the time step size �t ,
but they will increase the computational complexity of finding P n, Qn, and Bn. Once we obtain
{P n, Qn, Bn}, we can easily get {Hn, sn

h , cn
h} by using (6.18) and (6.19).

Remark 6.3. The proposed method can be extended to two-dimensional (and multidimensional)
contamination flows. One extension of the method is to split the two-dimensional problem into two
one-dimensional problems in the x-direction and the y-direction using the splitting technique.
The y-directional univariate problem is a free boundary problem similar to the above one but the
other in the x-direction is a normal one-dimensional partial differential equation. The front fixing
finite element method can be used to solve the one-dimensional free boundary problem in the
y-direction at each time step as well as the other can be used by using the standard finite element
methods in the x-direction at each time step. The alternative iterating scheme can be used to
simulate the two-dimensional free boundary problem in the subsurface. Article [23] has used this
technique to successfully solve the subsurface flow problem with free boundary in two dimensions.
Since the free boundary is only on the top surface (free surface) of flow domain, the front fixing
finite element method joint with the splitting technique can efficiently simulate high-dimensional
free-surface fluid flows in porous media. A rigorous analysis will be performed in the future work.
Some numerical experiments related to the front fixing methods were also taken in [13] and [14].

Remark 6.4. On the other aspect, since the surface of fluid flow is only on the top surface
of moving fluid, it means that the free boundary curve for the two-dimensional problem can be
expressed as y = s(x, t) at fixed time t . We can also expect to directly introduce the front fixing
method for solving this kind of free boundary problem of fluid flow in two dimensions (or in
multidimensions). Some additional analyses will be discussed in the further study.

D.L. thanks the Department of Mathematics at Fudan University for support during his visit. The
authors thank the referees for their invaluable comments and suggestions, which helped improve
the article greatly.
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