
DOI: 10.1007/s00365-005-0603-z

Constr. Approx. (2006) 24: 17–47
CONSTRUCTIVE
APPROXIMATION

© 2005 Springer Science+Business Media, Inc.

Analysis of the Intrinsic Mode Functions

Robert C. Sharpley and Vesselin Vatchev

Abstract. The Empirical Mode Decomposition is a process for signals which produces
Intrinsic Mode Functions from which instantaneous frequencies may be extracted by
simple application of the Hilbert transform. The beauty of this method to generate
redundant representations is in its simplicity and its effectiveness.

Our study has two objectives: first, to provide an alternate characterization of the
Intrinsic Mode components into which the signal is decomposed and, second, to better
understand the resulting polar representations, specifically the ones which are produced
by the Hilbert transform of these intrinsic modes.

1. Introduction

The Empirical Mode Decomposition (EMD) is an iterative process which decomposes
real signals f into simpler signals (modes),

f (t) =
M∑

j=1

ψj (t).(1.1)

Each “monocomponent” signal ψj (see [3]) should be representable in the form

ψ(t) = r(t) cos θ(t),(1.2)

where the amplitude and phase are both physically and mathematically meaningful. Once
a suitable polar parametrization is determined, it is possible to analyze the function f
by processing these individual components. Important information for analysis, such
as the instantaneous frequency and instantaneous bandwidth of the components, are
derived from the particular representation used in (1.2). The most common procedure to
determine a polar representation is the Hilbert transform and this procedure will be an
important part of our discussion.

In this paper we study the monocomponent signalsψ , called Intrinsic Mode Functions
(or IMFs), which are produced by the EMD, and their possible representations (1.2)
as real parts of analytic signals. Our study of IMFs utilizes mathematical analysis to
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characterize requirements in terms of solutions to self-adjoint second-order ordinary
differential equations (ODEs). In principle, this seems quite natural since signal analysis
is often used to study complex vibrational problems and the processes which generate
and superimpose the signal components. Once this characterization is established, we
then focus on the polar representations of IMFs which are typically built using the Hilbert
transform, or more commonly referred to as the analytic method of signal processing.

The difficulty in constructing representations (1.1) is that the expansion must be se-
lected as a linear superposition from a redundant class of signals. Indeed, there are
infinitely many nontrivial ways to construct representations of the type (1.1) even in the
case that the initial signal f is itself a single “monocomponent.” Hence ambiguity of
representation, i.e., redundancy, enters on at least two levels: the first in determining a
suitable decomposition as a superposition of signals, and the second, after settling on
a fixed decomposition, in appropriately determining the amplitude and phase of each
component.

At the second stage, it is common practice to represent the component signal in
complex form

�(t) = r(t) exp iθ(t)(1.3)

and to consider ψ as the real part of the complex signal �, as in (1.2). Obviously, the
choice of amplitude-phase representation (r, θ) in (1.3) is essentially equivalent to the
choice of an imaginary part φ:

r(t) =
√
ψ(t)2 + φ(t)2, θ(t) = arctan

φ(t)

ψ(t)
,(1.4)

once some care is taken to handle the branch cut. An analyzing procedure should produce
for each signal ψ , a properly chosen companion φ for the imaginary part, which is
unambiguously defined and properly encodes information about the component signal,
in this case the IMF. From the class of all redundant representations of a signal, once
a fixed, acceptable representation, with amplitude r and phase θ , is determined, the
instantaneous frequency of ψ with respect to this representation is the derivative of the
phase, i.e., θ ′. In this case, a reasonable definition for the instantaneous bandwidth is r ′/r
(see [3] for additional motivation). The collection of instantaneous phases present at a
given instant (i.e., t = t0) for a signal f is heavily dependent upon both the decomposition
(1.1) and the selection of representations (1.2) for each monocomponent. The full EMD
procedure is obviously a highly nonlinear process, which effectively builds and analyzes
inherent components which are adapted to the scale and location of the signal’s features.

Historically, there have been two methods used to define the imaginary part of suitable
signals, the analytic and quadrature methods. The analytic signal method results in a
complex signal that has its spectrum identical (modulo a constant factor of 2) to that of
the real signal for positive frequencies and zero for the negative frequencies. This can
be achieved in a unique manner by setting the imaginary part to be the Hilbert transform
of the real signal f . The EMD of Huang et al. [4] is a highly successful method used
to generate a decomposition of the form (1.1) where the individual components contain
significant information. These components were named IMFs in [4] since the analytical
signal method applied to each such component normally provides desirable information
inherent in that mode. Analytic signals and the Hilbert transform are powerful tools and
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are well understood in Fourier analysis and signal processing, but in certain common
circumstances the analytic signal method leads to undesirable and “paradoxical” results
in applications which are detailed in [3]. Results of this paper provide further light on
the consequences of using analytic signals, as currently applied, for estimating the phase
and amplitude of a signal. More results along these lines appear in [10].

Section 2 contains a brief description of the EMD method and motivates the concept of
IMFs which are the main focus of this paper. Preliminary results on self-adjoint equations
are reviewed for a background for the results that follow in Section 3. Section 3 contains
one of the main results of the paper, namely, the characterization of IMFs as solutions
to certain self-adjoint ODEs. The proof involves a construction of envelopes which do
not rely on the Hilbert transform. These envelopes are used directly to compute the
coefficients of the differential equations. The differential equations are natural models
for linear vibrational problems and should provide further insight into both the EMD
procedure and its IMF components. Indeed, signals can be decomposed using the EMD
procedure and the resulting IMFs used to identify systems of differential equations
naturally associated with the components. This is the subject of a current study to be
addressed in a later paper.

The purpose of Section 4 is to further explore the effectiveness of the Hilbert anal-
ysis which is applied to IMFs and to better understand some of the anomalies that are
observed in practice. Examples are constructed, both analytically and numerically, in
order to illustrate that the assumption that an IMF should be the real part of an analytic
signal leads to undesirable results. Well-behaved functions are presented, for which the
instantaneous frequency computed using the Hilbert transform changes sign, i.e., the
phase is nonmonotone and physically unrealistic. In order to clarify the notions and
procedures, we briefly describe both analytical and computational notions of the Hilbert
transform.

2. The Empirical Mode Decomposition Method

The use of the Hilbert transform for decomposing a function into meaningful amplitude
and phase requires some additional conditions on the function. Unfortunately, no clear
description of definition of a signal has been given to judge precisely whether or not a
function is a “monocomponent.” To compensate for this lack of precision, the concept of
“narrow band” has been adopted as a restriction on the data in order that the instantaneous
frequency be well defined and make physical sense. The instantaneous frequency can be
considered as an average of all the frequencies that exist at a given moment, while the
instantaneous bandwidth can be considered as the deviation from that average. The most
common example is considered to be a signal with constant amplitude, that is, r in (1.4)
is a constant. Since the phase is modulated, these are usually referred to as frequency
modulated (or FM) signals.

If no additional conditions are imposed on a given signal, the previously defined
notions could still produce “paradoxes.” To minimize these physically incompatible
artifacts, Huang et al. [4] have developed a method, which they termed the “Hilbert
view,” in order to study nonstationary and nonlinear data in nonlinear mechanics. The
main tools used are the EMD method to decompose signals into IMFs, which are then
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processed by the Hilbert transform to produce corresponding analytic signals for each
of the inherent modes.

In general, EMD may be applied either to sampled data or to functions f of real
variables, by first identifying the appropriate time scales that will reveal the physical
characteristics of the studied system, decompose the function into modes ψ intrinsic to
the function at the determined scales, and then apply the Hilbert transform to each of the
intrinsic components.

In the words of Huang and collaborators, the EMD method was motivated “from the
simple assumption that any data consists of different simple intrinsic mode oscillations.”
Three methods of estimating the time scales of f at which these oscillations occur have
been proposed:

• the time between successive zero-crossings;
• the time between successive extrema; and
• the time between successive curvature extrema.

The use of a particular method depends on the application. Following the development
in [5], we define a particular class of signals with special properties that make them well
suited for analysis.

Definition 2.1. A function ψ of a real variable t is defined to be an Intrinsic Mode
Function or, more briefly, an IMF, if it satisfies two characteristic properties:

(a) ψ has exactly one zero between any two consecutive local extrema.
(b) ψ has zero “local mean.”

A function which is required to satisfy only condition (a) will be called a weak-IMF.

In general, the term local mean in condition (b) may be purposefully ambiguous,
but in the EMD procedure it is typically the pointwise average of the “upper envelope”
(determined by the local maxima) and the “lower envelope” (determined by the local
minima) of ψ .

The EMD procedure of [4] decomposes a function (assumed to be known for all values
of time under consideration) into a function-tailored, fine-to-coarse multiresolution of
IMFs. This procedure is extremely attractive, both for its effectiveness in a wide range
of applications and for its simplicity of implementation. In the latter respect, one first
determines all local extrema (strict changes in monotonicity) and, for an upper envelope,
fits a cubic spline through the local maxima. Similarly, a cubic spline is fitted through
the local minima for a lower envelope and the local mean is the average of these two
envelopes. (It is well understood that these are envelopes in a loose sense.) If the local
mean is not zero, then the current local mean is subtracted leaving a current candidate for
an IMF. This process is continued (accumulating the local means) until the local mean
vanishes or is “sufficiently small.” This process (inner iteration) results in the IMF for
the current scale. The accumulated local means from this inner iteration is the version of
the function scaled-up to the next coarsest scale. The process is repeated (outer iteration)
until the residual is either “sufficiently small” or monotone.

In view of the possible deficiency of the upper and lower envelopes to bound the
iterates and in order to speed convergence in the inner loop, Huang et al. suggest [5] that
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the stopping criterion on the inner loop be changed from the condition that the “resulting
function to be an IMF” to the single condition that “the number of extrema equals zero-
crossings” along with visual assessment of the iterates. This is the motivation for our
definition of weak-IMF. Ideally, in performing the EMD procedure, all stopping and
convergence criteria will be met and f is then represented as

f =
N∑

n=1

ψn + rN+1,

where rN+1 is the residual, or carrier, signal.
A primary purpose of the decomposition [5] is to distill, from a signal, individual

modes whose frequency (and possibly bandwidth) can be extracted and studied by the
methods from the theory of analytic signals. More specifically, quoting from [5],

Having obtained the IMF components, one will have no difficulty in applying
the Hilbert transform to each of these components. Then the original data
can be expressed as the real part (�) in the following form:

f = �
(

N∑
n=1

An exp

(
i
∫
ωn dt

))
.

The residue rN is left on purpose, for it is either a monotonic function or a
constant.

The notation above uses ωn = dθn/dt to refer to the instantaneous frequency, where the
phase of the nth IMF is computed by θn := arctan(Hψn/ψn) and H denotes the Hilbert
transform.

2.1. Initial Observations

The first step in a multiresolution decomposition is to choose a time scale which is
inherent in the function f and has relevant physical meaning. The scales proposed in
[5] are sets of significant points for the given function f . Other possibilities that could
be used are the set of inflection points (also mentioned by the authors), the set of zero
crossings of the function f (t)− cos kt , k-integer, or some other characteristic points.

The second step is to extract some special (with respect to the already chosen time
scale) functions, which in the original EMD method are called IMFs. The definition of
an IMF, although somewhat vague, has two parts:

(a) the number of the extrema equals the number of the zeros; and
(b) the upper and lower envelopes should have the same absolute value.

As is pointed out in [5] if we drop (b) we will have a reasonable (from a practical point
of view) definition but, in the next stage, this will introduce unrecoverable mathematical
ambiguity in determining the modulus and the phase.

Therefore any modification of the definition of IMF must include condition (a). The
practical implementation of the EMD uses cubic splines as upper and lower envelopes,1

1 After this paper was prepared for submission, Sherman Riemenscheider made available to the authors a
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which are denoted by U and L , respectively, where L ≤ f ≤ U . The nodes of these two
splines interlace and do not have points in common. The absolute value of two cubic
splines can be equal if and only if they are the same quadratic polynomial on the whole
data span, i.e., if the modulus of the IMF is of the form at2 + bt + c. To overcome
this restriction, we can either modify the construction of the envelopes or, instead of
requiring U (t) = −L(t) for all t , we can require |U (t)+ L(t)| ≤ ε, for some prescribed
ε > 0.

Recall that we say a continuous function is a weak-IMF if it is only required to satisfy
condition (a) in Definition 2.1 of an IMF. One of the main purposes of this paper is
to provide a complete characterization of the weak-IMFs in terms of solutions to self-
adjoint ODEs. In a sense this is natural, since one of the uses of the EMD procedure is to
study solutions to differential equations, and vibration analysis was a major motivation in
the development of the Sturm–Liouville theory. In the next section, we list some relevant
properties of the solutions of self-adjoint ODEs which will be useful for our analysis.

2.2. Self-Adjoint ODEs and Sturm–Liouville Systems

An ODE is called self-adjoint if can be written in the form

d

dt

(
P

d f

dt

)
+ Q f = 0,(2.1)

for t ∈ (a, b) (a and b finite or infinite), where Q is continuous and P > 0 is continuously
differentiable. More generally, we can consider a Sturm–Liouville equation (λ a real
scalar):

d

dt

(
p

d f

dt

)
+ (λρ − q) f = 0.(2.2)

These equations arose from vibration problems associated with model mechanical sys-
tems and the corresponding wave motion was resolved into simple harmonic waves
(see [2]).

Properties of the solutions of self-adjoint and Sturm–Liouville equations

I. Interlacing zeros and extrema. If Q > 0, then any solution of (2.1) has exactly one
maximum or minimum between successive zeros.

II. The Prüfer substitution. A powerful method for solving the ODE (2.1) utilizes a
transformation of the solution into amplitude and phase. If the substitution P(t) f ′(t) :=
r(t) cos θ(t), f (t) := r(t) sin θ(t) is made, then equation (2.1) is equivalent to the
following nonlinear first-order system of ODEs,

dθ

dt
= Q sin2 θ + 1

P
cos2 θ,(2.3)

recent preprint (A B-spline approach for empirical mode decompositions, by Q. Chen, N. Huang, S. Riemen-
schneider, and Y. Xu, Adv. Comput. Math., 2004) which takes another interesting approach to EMD, namely
to use B-spline representations for local means in the place of the average of the upper and lower cubic spline
envelopes. This method is easily extended to multidimensional data on uniform grids.
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dr

dt
= 1

2

(
1

P
− Q

)
r sin 2θ.(2.4)

Notice that if Q is positive, then the first equation shows that the instantaneous frequency
of the IMFs is always positive and, therefore, the solutions have nondecreasing phase.
The second equation relates the instantaneous bandwidth r ′/r with the functions P , Q,
and θ . The partial decoupling in this form of the equations is useful in studying the
behavior of the phase and amplitude.

III. The Liouville substitution. An ODE of the form (2.2) can be transformed to an ODE
of the type

f ′′ + (λ− q) f = 0.

Moreover, if fn(t) is a sequence of normalized eigenfunctions, then

fn(t) =
√

2

b − a
cos

nπ(t − a)

b − a
+ O(1)

n
.

Additional properties of these solutions (e.g., see [2]) suggest that the description of
IMFs as solutions to self-adjoint ODEs will lead to further insight.

3. IMFs and Solutions of Self-Adjoint ODEs

In this section we characterize weak-IMFs which arise in the EMD algorithm as solutions
of self-adjoint ODEs. The main result may be stated as follows:

Theorem 3.1. Let f be a real-valued function in C2[a, b], the set of twice continuously
differentiable functions on the interval [a, b]. If both f and its derivative f ′ have only
simple zeros, then the following three conditions are equivalent:

(i) The number of the zeros and the number of the extrema of f on [a, b] differ by
at most one.

(ii) There exist positive continuously differentiable functions P and Q such that f
is a solution of the self-adjoint ODE,

(P f ′)′ + Q f = 0.(3.1)

(iii) There exists an associated C2[a, b] function h such that the coupled system

f (t) = 1

Q(t)
h′(t), h(t) = −P(t) f ′(t),(3.2)

holds for some positive continuously differentiable functions P and Q.

Proof. We first prove that condition (i) is equivalent to (ii). That condition (ii) implies (i)
follows immediately since Q is a positive function and Property I of the previous section
holds for solutions of self-adjoint ODEs (see [2]).

The proof in the opposite direction ((i) implies (ii)) requires a preliminary result (see
Lemma 3.1 below) on interpolating piecewise polynomials to be used for envelopes.



24 R. C. Sharpley and V. Vatchev

Let us assume then that there is exactly one zero between any two extrema of f . For
simplicity we assume that the number of zeros and extrema of f on [a, b] are both equal
to M . Consider the collection of ordered pairs

{(tj , | f (tj )|)}Mj=1 ∪ {(zj , aj )}Mj=1,(3.3)

which will serve as our knot sequence. The points {tj , zj } satisfy the required interlacing
condition (t1 < z1 < t2 < z2 < · · ·), where tj are the extremal points for f and zj are
its zeros. The data a = {aj } are any positive numbers which satisfy

max{| f (tj )|, | f (tj+1)|} + η ≤ aj(3.4)

for all j = 1, . . . ,M,where η > 0 is fixed. The following lemma provides a continuous
piecewise polynomial envelope for f by Hermite interpolation.

Lemma 3.1. Let f satisfy the conditions of Theorem 3.1 and let the {aj } satisfy the
condition (3.4), then there is a continuous, piecewise quintic polynomial R interpolating
this data with the following properties, for all j :

(a) The extrema of R occur precisely at the points tj , zj .
(b) | f | ≤ R with equality occurring exactly at the points tj .
(c) R is strictly increasing on (tj , zj ) and strictly decreasing on (zj , tj+1).
(d) R′′(tj ) �= (−1) j+1 f ′′(tj ).

Proof. Indeed, let the collection {aj } satisfy (3.4), where η > 0 is fixed. Interpolate
the data specified by (3.3) by a piecewise quintic polynomial R, requiring in addition
that R′(tj ) = R′(zj ) = 0. On each subinterval determined by the points {tj , zj }, this
imposes four conditions on the six coefficients of the local quintic, leaving two degrees
of freedom for each of the polynomial “pieces.” Representing such a polynomial in its
Taylor expansion about the left-hand endpoint of its interval, it is easy to verify that we can
force that condition (c) holds at each of the knots (and therefore on each subinterval), and
that we can require R′′(tj ) > 0. In particular, R has its minima at the maxima of | f | (i.e.,
the tj ) and its maxima at the zeros of f (the zj ). Therefore, R′′(tj ) > 0 ≥ (−1) j+1 f ′′(tj ),
which verifies condition (d).

Remark 3.1. In general, any piecewise function R constructed from functions ϕj (t)
that satisfy the conditions

ϕ(y1) = v1, ϕ(y2) = v2,

ϕ′(y1) = ϕ′(y2) = 0, |ϕ′(t)| > 0 for t ∈ (y1, y2),

will suffice in our construction. In particular, Meyer’s scaling function can be used to
produce an envelope R which satisfies properties (a) and (b) of Lemma 3.1 and can be
used as a basis for a quadrature calculation of instantaneous phase (see [10]). This idea
is implicit in the development that follows.
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Having constructed an envelope R for f , we define the phase-related function S by

S(t) := f (t)

R(t)
.(3.5)

By Lemma 3.1, clearly |S(t)| ≤ 1 for t ∈ [a, b] and |S(t)| = 1 if and only if t = tj for
some j = 1, 2, . . . ,M . Since f has exactly one zero between each pair of consecutive
interior extrema, then f , and hence S, has alternating signs at the tj . Without loss of
generality, we may assume t1 is an interior local maximum, otherwise we could consider
the function − f instead of f . Endpoint extrema are easily handled separately. As we
observed during the proof of Lemma 3.1, the function R was constructed to be strictly
increasing on (tj , zj ) and strictly decreasing on (zj , tj+1). On intervals (tj , tj+1), when j
is odd, the function f decreases, is positive on (tj , zj ), and negative on (zj , tj+1). These
properties imply that S decreases on (tj , tj+1), is positive on (tj , zj ), and negative on
(zj , tj+1). Similar reasoning shows that for j even, S increases on (tj , tj+1), is negative
on (tj , zj ), and positive on (zj , tj+1).

Therefore we can represent S as

S(t) =: sin θ(t)(3.6)

for an implicit function θ which satisfies θ(tj ) = ( j − 1
2 )π and θ(zj ) = jπ . From

these facts, one easily checks that θ is a strictly increasing function. In fact, θ will
be continuously differentiable with strictly positive derivative on [a, b]. To see this,
first recall that the function R has a continuous first derivative on [a, b], so S is also
differentiable and satisfies

S′ = f ′R − f R′

R2
.(3.7)

Therefore S′ is continuous and by an application of the implicit function theorem applied
on each of the intervals (tj , tj+1), θ will be continuously differentiable with positive
derivative on each of these intervals. We will apply L’Hospital’s rule in order to verify
the corresponding statement at the extrema tj . Differentiate formally the relation (3.6)
and square the result to obtain on each interval (tj , tj+1) the identity

θ ′(t)2 =
(

S′(t)
cos θ(t)

)2

= S′(t)2

1− S2(t)
.

So, if T denotes the right-hand side of the above relation, that is,

T (t) := S′(t)2

1− S2(t)
,(3.8)

then T is clearly continuous except at the tj where it is undefined. We show, however,
that T has removable singularities at these points. Both the numerator and denominator
are C2 functions and vanish at tj , so an application of L’Hospital’s rule shows

lim
t→tj

T (t) = lim
t→tj

2S′(t)S′′(t)
−2S′(t)S(t)

= − S′′(tj )

S(tj )
.
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On the other hand, from (3.7), S′′(tj ) = [(−1) j+1 f ′′(tj )− R′′(tj )]/ f (tj ), and so prop-
erty (d) of Lemma 3.1 guarantees that this last expression is strictly positive. Hence, θ ′

is a continuous, strictly positive function on the interval [a, b].
If we use relations (3.5) and (3.6) to write f as f = R sin θ , then a natural companion

is the function h defined by

h := −R cos θ.(3.9)

It follows from properties of R and θ that h is strictly decreasing on (zj , zj+1) when j is
odd, is strictly increasing on this interval when j is even, and has its simple zeros at the
points tj . Differentiation of (3.9) provides the identity

h′ = −R′ cos θ + Rθ ′ sin θ,(3.10)

which will be used to complete the proof that condition (ii) of Theorem 3.1 is satisfied.
Indeed, define the functions P, Q appearing in equation (3.1) by

P := − h

f ′
, Q := h′

f
.(3.11)

From the properties of h and f we see that these are well defined, strictly positive, and
with continuous first derivatives on [a, b], except possibly at the set of points {tj } and
{zj }. That these properties persist at these points as well, we can again apply L’Hospital’s
rule and use identity (3.10) together with the fact that θ ′ is positive.

Obviously, equations (3.11) are equivalent to

P f ′ = −h, Q f = h′,(3.12)

which in turn are equivalent to equations (3.2). This establishes condition (ii) of Theo-
rem 3.1 and also shows that this condition is equivalent to condition (iii).

Remark 3.2. Observe that the function h in condition (iii) of Theorem 3.1 satisfies a
related self-adjoint ODE:

(i) (P̃h′)′ + Q̃h = 0,where P̃ := 1/Q and Q̃ := 1/P and P, Q are the coefficients
of Theorem 3.1.

Moreover, the coefficients P, Q satisfy the following conditions:

(ii) P, Q may be represented directly in terms of the amplitude R and phase θ by

1

P
= θ ′ + R′

R
tan θ, Q = θ ′ − R′

R
cot θ.(3.13)

(iii) P, Q satisfy the inequality

1

P
≤ Q,

with equality iff R′ = 0 on [a, b] or, equivalently, if f is an FM signal.
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The only statements in this remark that require justification are equations (3.13). These
follow directly by using the Prüfer substitution in equations (3.13): using (2.3) for θ ′

and (2.4) for R′/R.

Remark 3.3. In the proof of Theorem 3.1, we implicitly used a Prüfer-style repre-
sentation in the construction of the function S, defined in (3.5), which leads to the
corresponding θ in (3.6), and the representations f = r sin θ and h = −r cos θ . If we
define the phase as θA = θ + π/2 (i.e., performing a phase shift of π/2), then we have
the representation f = r cos θA and h = r sin θA which is consistent with the analytic
method and the form (1.2).

Theorem 3.1 provides the desired characterization of weak-IMFs, which we summa-
rize in the following corollary:

Corollary 3.1. A twice differentiable function ψ on [a, b] is a weak-IMF if and only
if it is a solution of the self-adjoint ODE of the type

(Pψ ′)′ + Qψ = 0,

for positive coefficients P, Q, with Q ∈ C[a, b] and P ∈ C1[a, b].

If we adopt the definition of an IMF given in Definition 2.1, then we have a character-
ization embodied in the following statements summarizing the results and observations
of this section.

Theorem 3.2. A function ψ is an IMF if and only if it is a weak-IMF whose spline
envelopes satisfy the condition that the absolute value of the lower spline envelope
is equal to the upper envelope and this common envelope is a quadratic polynomial.
Furthermore, the common spline envelope is constant (i.e., ψ is an FM signal) if and
only if Q = 1/P for the associated self-adjoint differential equation (3.1).

The results of this section indicate that we can find a meaningful mathematical and
physical description of any weak-IMF in terms of solutions of self-adjoint problems.
On the other hand, considering these as the real parts of analytic signals, we show in
the next section that there exist functions ψ that are IMFs satisfying both conditions (a)
and (b) of Definition 2.1, but the phase produced by using the Hilbert transform is not
monotonic, i.e., the instantaneous phase changes sign.

4. Example IMFs and the Hilbert Transform

In this section we analyze several examples that indicate the limitations of the analytic
method (i.e., Hilbert transform) to produce physically realistic instantaneous frequencies
in the context of IMF analysis. The examples presented show that even for some of
the most reasonable definitions for IMFs the Hilbert transform method will result in
instantaneous frequencies which change signs on intervals of positive measure. By a
reasonable IMF we mean that they satisfy all existing definitions, including the IMF of
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Huang et al., narrowband monocomponents, and visual tests. Although our examples are
presented in order to identify possible pitfalls in automatic use of the Hilbert transform,
in the final analysis, practitioners in signal processing will make the decision on when the
use of analyticity is appropriate, and to what extent a nonmonotone phase is necessary.
We mention that the examples, in some sense, also provide a better understanding of
many of the paradoxes concerning instantaneous phase and bandwidth which are detailed
in Cohen [3].

4.1. Hilbert Transforms

In order to clarify the discussion, we begin with a brief description of Hilbert transforms
and analyticity. In using the terminology “Hilbert transform method,” we mean one of
the following:

• the conjugate operator (or periodic Hilbert transform).
The transform which is defined for functions ψ on the circle as the imaginary parts
of analytic functions whose real part coincides withψ , see [6], [11] for details. This
may be identified with modifying the phase of each Fourier frequency component
by a quarter cycle delay, i.e., the sgn Fourier coefficient multiplier.
• the continuous Hilbert transform.

The transform for functions ψ defined on the real line which is defined as the
restriction to � of the imaginary part of analytic functions in the upper half-plane
whose real part on � is ψ . This is well defined and understood, for example, on
Lebesgue, Sobolev, Hardy, and Besov spaces (1 ≤ p < ∞ and in certain cases
when p = ∞). This transform may be realized both as a principal value singular
integral operator and as a (continuous) Fourier multiplier. For details, see [1], [11].
• the discrete Hilbert transform.

A transform on discrete groups which is applied to signals through a multiplier
operator of its discrete Fourier transform. The operator is computed by multiplying
the FFT coefficients of a signal by sgn and then inverting. The multiplier may
possibly invoke side conditions such as those as implemented in the built-in version
of “hilbert” in Matlab [7]. We also note that the m-file “hilbert.m” computes the
discrete analytic signal itself and not just the imaginary part.

In each of these cases it is clear that the imaginary part (in the case of continuous
functions) is uniquely defined up to an arbitrary numerical constant C . In Fourier and
harmonic analysis the choice is usually made based on consideration of the multiplier
operator as a bounded isometry on L2. In some of our examples, we will consider func-
tions on� and sample them in order to apply the discrete Hilbert transform. For periodic
functions and appropriate classes of functions defined on �, careful selection of the
sampling resolution (e.g., Shannon Sampling Theorem [8] in the case of analyzing func-
tions of exponential type) will guarantee that sampling the continuous Hilbert transform
of the functions will be equivalent (at least to machine precision) to application of the
discrete Hilbert transform to the sampled function. In other words, these numerical op-
erations, when carefully applied, will “numerically commute.” It will be clear if there is
a distinction between these transforms and, from the context, which one is intended.
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One possible remedy in order to try to avoid nonphysical artifacts of the “analytic”
method of computing the instantaneous frequency is to require additional constraints in
the definition of an IMF. One such condition which immediately comes to mind would
be to also require an IMF to have at most one inflection point between its extrema. We
show in Example 4.2, however, that even stronger conditions are still not sufficient to
prevent sign changes of the instantaneous frequency when Hilbert transforms are used
to construct the phase and amplitude for a signal, that is, if one considers an IMF as
the real part of an analytic signal. In Propositions 4.1–4.3 we consider the analytical
properties of these examples and show that they are members of large classes of signals
that behave similarly when processed by the Hilbert transform, or by the computational
Hilbert transform, no matter how finely resolved. Finally, we conclude this section by
describing a general procedure that adds a “smooth perturbation” to well-behaved signals
and leads to undesirable behavior in estimating the instantaneous phase. This indicates
the need for the possible consideration of careful denoising of acquired signals before
processing IMFs by the Hilbert method.

Before proceeding it is useful to briefly discuss computational aspects of the Hilbert
transform and therefore of the corresponding analytic signal. There are several versions
of the discrete Hilbert transform, all using the Discrete Fourier Transform (DFT). In the
study of monocomponent signals which are Fourier-based and use least squares norms,
the choice of the free parameter C is normally chosen so that ‖ψ‖�2 = ‖Hψ‖�2 , which
mimics the corresponding property for transforms on the line and circle. As implemented
by Matlab, however, it seems that for many signal processing operations it is preferable
to choose the free imaginary constant so that the constant (DC) term of the signal is split
between the constant and middle (Nyquist) terms of the DFT of the Hilbert transform.
This appears natural since the Nyquist coefficient is aliased to the constant term, see
Marple [7] for details. An additional side benefit of this choice of C is that it ensures that
the discrete Hilbert transform will be orthogonal to the original signal, which emulates
the corresponding property for the Hilbert transform for the line and circle. We note that
the discretization process does not permit one to maintain all properties of continuous
versions of the transform and some choice on which properties are most important must
be made based on the application area.

One serious numerical artifact of the computational Hilbert transform, which typi-
cally arises when it is applied to noncontinuous periodic functions, is a Gibbs effect.
Some care must be taken to insure continuity of the (implicitly assumed) periodic sig-
nal, otherwise severe oscillations will occur which often mask the true behavior of the
instantaneous frequency. In the examples considered in this section the functions are
continuous, although in some cases (see Example 4.2) the higher derivatives are not. In
this case, however, the oscillations due to this lack of smoothness are minor, of lower
order, and do not measurably affect the computations. Typically, we apply the compu-
tational Hilbert transform after the supports of our functions are rescaled and translated
to the interval [−π, π).

Since it may rightly be argued that other choices of the free parameter C in the discrete
Hilbert transform may possibly alleviate the problem of the nonmonotone phase, we
focus, for the most part, on examples for which any choice of the imaginary constant in the
analytic signal (and, consequently, in the definition of the discrete Hilbert transform) will
result in undesirable behavior of the instantaneous frequencies obtained by the Hilbert
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method. Another concern in computational phase estimation is how one numerically
“unwraps” Cartesian expressions to extract phases for polar representations. We offer a
technique to avoid ambiguous unwrapping of inverse trigonometric functions by instead
computing the “analytic” instantaneous frequency through the formula

θ ′C(t) := ψ(t)Hψ ′(t)− (Hψ(t)+ C)ψ ′(t)
(Hψ(t)+ C)2 + ψ(t)2 ,(4.1)

where θC is the phase corresponding to a given choice of the constant C . We use this iden-
tity throughout to compute instantaneous frequencies for explicitly defined functions ψ
which are either periodic or defined on the line. Discrete versions using first-order differ-
ences are also suitable for computing instantaneous phase for discretely sampled signals.
Identity (4.1) follows by implicitly differentiating the expression tan θC = (Hψ+C)/ψ
and using the fact that the Hilbert transform is translation-invariant.

We end this subsection with an general observation concerning the application of the
Hilbert transform to IMFs, which follows from Theorem 3.1.

Corollary 4.1. Suppose that ψ is a periodic, weak-IMF and � is the corresponding
analytic function with imaginary part the conjugate operator Hψ . If (r, θ) are the corre-
sponding analytic amplitude and phase for the pair (ψ, Hψ), then the coefficients (P, Q)
of an associated differential equation (2.1) determined by a Prüfer relationship (3.13)
must satisfy

Q = Hψ ′

ψ
, P = −Hψ

ψ ′
,(4.2)

whenever these two expressions make sense. In particular, a necessary and sufficient
condition that the coefficients (P, Q) of the ODE be positive (i.e., a physcially reasonable
vibrational system), is that Hψ should be positive exactly where ψ decreases, and ψ
should be positive exactly where Hψ is increasing.

Proof. This follows immediately from Theorem 3.1 and the Prüfer representation of
the coefficients which is given in equation (3.13).

4.2. Example IMFs

The first examples of IMFs we wish to consider are a family of 2π -periodic functions
which have the property that the conjugate operator and the discrete Hilbert transform
(applied to a sufficiently refined sampling) differ only by the addition of an imaginary
constant.

Example 4.1. Let ε be a real parameter. We consider the family of continuous 2π
periodic functions

ψε(t) := eε cos(t) sin(ε sin(t)).(4.3)

Observe that the Hilbert transform ofψε is Hψε(t) = −eε cos(t) cos(ε sin(t))+C , where
the constant C is a free parameter that one may choose. In fact, the analytic signal �
with real part ψε is unique up to a constant and may be written as

�ε(t) = −ieεe
it + iC.
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Fig. 1. ψε , an IMF with poor Hilbert transform.

For particular values of ε the function can be used as a model of signals with interesting
behavior. For example, ψε for ε ≤ 2.9716 is an FM function and on any finite interval
the number of the zeros differs from the number of extrema by a count of at most one.

As one particular example of the Hilbert method for computing instantaneous phase
for IMFs, we fix in (4.3) the special choice of ε0 = 2.97 and set

ψ(t) := ψε0(t).(4.4)

The graph of ψ is shown in Figure 1. In Proposition 4.1 below, we show that ψ is an
IMF according to the definition in [4], but for any choice of the constant C in the Hilbert
transform, the instantaneous frequency obtained from the corresponding analytic signal
�ε0 changes sign.

We first verify the corresponding fact in the case of discrete signals. We sample ψ
uniformly with increment� = π/128 (vector length = 1024) on the interval [−4π, 4π−
�]. The graph of the Hilbert transform and corresponding instantaneous frequency of ψ
obtained by using Matlab’s built-in “hilbert.m” function are shown in Figure 2(a) and (b),
respectively. We mention that for this data the choice of constant chosen by Matlab to
meet its criteria is C = 1. Although other choices for C may decrease the intervals of
nonmonotonicity of the phase, the artifact will persist for all choices.

The next proposition shows that the computational observation using the discrete
Hilbert transform is a consequence of the continuous transform and cannot be corrected
by other choices of the imaginary constant or by a finer sampling rate.

Proposition 4.1. The functionψ defined by (4.4) is an IMF in the sense of [4], but its in-
stantaneous frequency computed by the Hilbert transform (with any choice of imaginary
constant C) changes its sign on any interval of length at least π .

Proof. We first show that ψ is a weak-IMF. Clearly ψ is 2π -periodic and an odd
function and so we only need to consider it on the interval [0, π). The first derivative of
ψ is

ψ ′(t) = ε0eε0 cos(t) cos(t + ε0 sin(t))(4.5)
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Fig. 2. The Hilbert method for ψε : (a) Imaginary part of discrete analytic signal; and (b) instantaneous
frequency.

and is zero iff ν(t) := t + ε0 sin(t) = (k + 1
2 )π for some integer k. Since ν ′(t) =

1+ε0 cos(t) has exactly one zero z0 in [0, π) (cosine is monotone in [0, π)), the function
ν is increasing on [0, z0), decreasing on (z0, π), with end values ν(0) = 0 and ν(π) = π .
To show that ψ has only one extremum on [0, π), it suffices to show that

ν(z0) <
3
2π,(4.6)

since then the only extremum of ψ on [0, π) will be the point eM where ν(eM) = π/2.
At the point z0 we have cos(z0) = −1/ε0, which implies both π/2 < z0 < π and

sin(z0) =
√

1− (1/ε0)2.

Hence from the definition of ν it follows that

ν(z0) = z0 +
√
ε2

0 − 1.

This implies that the condition (4.6) is equivalent to z0 <
3
2π −

√
ε2

0 − 1. But cosine
is negative and decreasing on [π/2, π ], so we see that the desired relationship (4.6)
just means that cos(z0) > cos( 3

2π −
√
ε2

0 − 1) should hold. The numerical value of the
expression on the right is smaller than −0.3382, while cos(z0) = −1/ε0 > −0.3368,
hence the condition (4.6) holds and ψ has exactly one local extremum in [0, π). Finally,
since ε0 < π , the only zeros of ψ are clearly at the endpoints 0 and π , which verifies
that ψ is a weak-IMF.

To see thatψ is in fact an IMF, we need to verify the condition on the upper and lower
envelopes. Recall that it is 2π periodic and odd, therefore it has exactly one minimum
in the interval [−π, 0]. The cubic spline fit of the maxima (upper envelope) will be the
constant function identically equal to ψ(t0). Similarly, the cubic spline interpolant of
the minima (lower envelope) will have constant value −ψ(t0). This persists even for
sufficiently large intervals if one wishes to take finitely supported functions. Hence the
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functionψ satisfies the envelope condition for an IMF from [4]. We note that the general
proof to show that, for each 0 < ε < ε̃, ψε is an IMF follows in a similar manner, where
ε̃ is the solution to the transcendental equation 1/ε̃ = sin(

√
ε̃2 − 1) which arises in the

limiting cases above. We observe that ε̃ ≈ 2.9716.
Next we prove that for any selection of constant C , the corresponding instantaneous

frequency θ ′C for ψ which is derived from an analytic method through (4.1) will have
nontrivial sign changes. The denominator in formula (4.1) is always positive so it will
suffice to prove that the numerator of θ ′C changes sign for any choice of C . Using
(4.3), (4.5), and the fact that the Hilbert transform is a translation-invariant operator, we
have

Hψ ′(t) = (Hψ)′ (t) = ε0eε0 cos(t) sin(t + ε0 sin(t)).

We can simplify the numerator of θ ′C to the expression

ε0eε0 cos(t)(eε0 cos(t) cos(t)− C cos(t + ε0 sin(t))),

and so the sign of the term inside the parentheses

Nt (C) := eε0 cos(t) cos(t)− C cos(t + ε0 sin(t))

determines the sign of θ ′C(t) at each point t ∈ [0, π). First observe that Nt (C) is a linear
function of C for fixed t . For each value of C there is a point in [0, π) at which θ ′C
is negative, in fact, N1.9(C) < −0.04 for C < 40 while N0.1(C) < −8 for C > 30.
Similarly, for any value of C , there is a point at which θ ′C is positive since N0.1(C) > 4
for C < 13 and N1(C) > 2 for C > 0. By continuity we see that for each value of the
constant C the instantaneous frequency θ ′C obtained via the Hilbert transform is positive
and negative on sets of positive measure.

Finally, we mention that the L2 bandwidth of the analytic signal � corresponding to
a signal ψ also depends on the choice of the imaginary constant C . If � is written in
polar coordinates as � = reiθ , the average frequency 〈ω〉 and the bandwidth ν2 have
been defined in [3] as the quantities

〈ω〉 =
∫
ω
|S(ω)|2
‖S‖2

2

dω =
∫
θ ′(t)

r2(t)

‖r‖2
2

dt,(4.7)

ν2 := 1

〈ω〉2
∫
(ω − 〈ω〉)2 |S(ω)|

2

‖S‖2
2

dω(4.8)

= 1

〈ω〉2
∫ ((

r ′(t)
r(t)

)2

+ (θ ′(t)− 〈ω〉)2
)

r2(t)

‖r‖2
2

dt

= 1

〈ω〉2
∫ ((

r ′(t)
r(t)

)2

+ (θ ′(t))2
)

r(t)2

‖r‖2
2

dt − 1,
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where S(ω) is the spectrum (Fourier transform) of ψ . The second equation in the dis-
played sequence (4.8) follows immediately from Plancherel’s theorem along with stan-
dard properties of the Fourier transform. If one chooses the constant C in the Hilbert
transform so that ‖ψ‖2 = ‖Hψ‖2, then the computed bandwidth is ν2 = 0.1933 with
mean frequency 〈ω〉 = 2.7301. The discrete Hilbert transform computed by matlab for
the sampled ψ has the same L2 bandwidth and mean frequency.

Summarizing, we observe that the example ψ given in (4.4) is a function which is:

(i) an IMF in the sense of [4];
(ii) a monocomponent in the sense of [3], i.e., its L2 bandwidth is small;

(iii) “visually nice”;

but the analytic method fails to produce a monotone phase function.

Remark 4.1. The example considered in Proposition 4.1 also shows that adding the
requirement that the Hilbert transform (with a choice of the additive constant C = 3) of
an IMF must also be a weak-IMF, will not be sufficient to guarantee monotone phase.

A possible natural refinement of the definition of an IMF that would exclude these
functions from the class of IMFs would be to require in addition that the first derivative
of an IMF would also be an IMF, or at least that the number of the inflection points
equals the number of extrema to within a count of one (i.e., a weak-IMF). The next
example of a damped sinusoidal signal (i.e., an amplitude modulated signal) shows that
restrictions along these lines will not be able to avoid the same problem with instantaneous
frequencies. We note that this particular signalψ is considered in [4], but for the range of
t from 1–512 s. Since the function is not continuous periodic over this range, the expected
Gibb’s effect at the points t = 1 and 512 appears in that example, but is absent here.

Example 4.2. Letψ(t) = exp(−0.01t) cos 2
32π t , 8 ≤ t ≤ 520, thenψ is a continuous

function (of period 32) with a discontiniuty in the first derivative at t = 8. The signal ψ
and all its derivatives are weak-IMFs. Both the conjugate operator and the computational
Hilbert transform (applied to the sampled function with�t = 1) result in a sign changing
instantaneous frequency for any choice of the constant C . In Figure 3, we have provided a
plot ofψ and the optimal instantaneous frequency (over all possible C) which is computed
by the Hilbert transform method. The values of both the continuous and computational
results are to within machine precision at the plotted vertices.

In order to verify the properties of this example, we proceed as earlier in Example 4.1
by first verifying the corresponding fact in the case of discrete signals. We sample ψ
uniformly with increment � = 0.1 (vector length = 5121) on the interval [8, 520].
The graph of the Hilbert transform and the corresponding instantaneous frequency of ψ
obtained by using Matlab’s built-in “hilbert” function are shown in Figure 3, parts (a)
and (b), respectively. The next proposition shows that although other choices of the
constant C may decrease the interval where the instantaneous frequency is negative,
there is no value for C for which it is nonnegative on [8, 520]. Analogous to Example 4.1,
it can be shown that the instantaneous frequency changes its sign for any choice of the
constant C .
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Fig. 3. Graphs for Example 4.2: (a) The IMF; and (b) its instantaneous frequency.

Proposition 4.2. The function ψ in Example 4.2 and all its derivatives are weak-
IMFs on the interval [8, 520], whose instantaneous frequencies computed by the Hilbert
transform method change sign for any choice of C .

Proof. To simplify the notation, we denote by ψ̃ the function in Example 4.2 and use
ψ to denote ψ̃ under the required linear change of variable from [8, 520] to [−π, π ] in
order to apply the continuous Hilbert transforms to the periodic function. In this case, ψ
will be of the form

ψ(τ) = c exp(ατ) sin(kτ)

where k = 16. Next note that the derivatives of ψ are all of a similar form: ψ(n)(t) =
c1eαt cos(kt + c2). In particular, each derivative is just a constant multiple of ψ with
a constant shift of phase and hence are weak-IMFs for any n = 0, 1, . . . ,∞. From
formula (4.1) applied at the zeros of ψ we have θ ′C(zj ) = −ψ ′(zj )/(Hψ(zj )+ C),
where the Hilbert transform is defined through the conjugate operator (see [11], [6])
represented as a principal value, singular integral operator

Hψ(zj ) = 1

π
p.v.

∫ π

−π
ψ(t) cot

(
zj − t

2

)
dt.(4.9)

The standard identity

sin(kt) cot

(
t

2

)
= (1+ cos(kt))+ 2

k−1∑
�=1

cos(�t)(4.10)

from classical Fourier analysis permits us to evaluate this expression by

Hψ(zj ) = 1

π

∫ π

−π
eαt T (t) dt,(4.11)

where T is an even trigonometric polynomial of degree 16 with coefficients depending
on the zj . Hence the values of Hψ at the zeros of ψ can be evaluated exactly (with
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Maple, for example). For z1 := 7
8π and z2 := 15

16π , the corresponding values of the
Hilbert transform may be estimated by Hψ(z1) ≤ 0.051 and Hψ(z2) ≥ 0.073 which
verifies that Hψ(z2) > Hψ(z1).

On the other hand, ψ ′(z1) = −keαz1 < 0 and ψ ′(z2) = keαz2 > 0, therefore
θ ′(z1) = −ψ ′(z1)/(Hψ(z1)+ C) is negative for C < −Hψ(z1) and θ ′(z2) =
−ψ ′(z2)/(Hψ(z2)+ C) is negative for C > −Hψ(z2). From the fact that−Hψ(z2) <

−Hψ(z1) we conclude that for any C the instantaneous frequency is negative for at
least one of the points z1 or z2. Finally, for the extrema of ψ , say t = ξ we have
θ ′(ξ) = c(ξ)Hψ ′(ξ)ψ(ξ), where c is a positive function for any choice of C and it is
easy to verify that there exists a value ξ such that Hψ ′(ξ)ψ(ξ) > 0. Hence θ ′(ξ) > 0
for any choice of C .

We observe that, under the relaxed condition allowing the difference between the
upper and lower envelopes to be within a given tolerance, ψ and its derivatives up to
some finite order are (strong) IMFs and the computational Hilbert transform method
produces a narrow bandwidth approximately equal to 0.0625.

The next result provides general information about the behavior of the instantaneous
frequency θ ′ from any polar representation of ψ = r sin θ in terms of a relation between
the amplitude r and ψ .

Lemma 4.1. Suppose thatψ is a weak-IMF, r(t) > 0 is an amplitude such thatψ(t) =
r(t) cos θ(t). Further, suppose that at some point t = τ , |ψ(τ)| �= r(τ ) and ψ(τ) �= 0.
A necessary and sufficient condition for θ ′(τ ) to vanish is that

ψ ′(τ )
ψ(τ)

= r ′(τ )
r(τ )

,(4.12)

that is, that the logarithmic derivative of ψ/r should vanish at t = τ .

Proof. Since r > 0 we can differentiate the relation cos θ = ψ/r and get

− θ ′ sin(θ) = ψ ′r − r ′ψ
r2

= ψ

r

(
ψ ′

ψ
− r ′

r

)
.(4.13)

To prove necessity, suppose that θ ′(τ ) = 0. Then, since ψ(τ) �= 0, it follows from the
identity (4.13) that ψ ′(τ )/ψ(τ) = r ′(τ )/r(τ ).

To prove sufficiency it is enough to notice that in the event the left-hand side of (4.13)
vanishes at t = τ , but θ ′(τ ) �= 0, then sin θ(τ ) must vanish. Hence |cos θ(τ )| = 1 or
|ψ(τ)| = r(τ ), which is a contradiction. Hence θ ′(τ ) = 0.

Looking back, one can see that Lemma 4.1 can be used to motivate the proof of
the characterization theorem for weak-IMFs (Theorem 3.1). Indeed, for the envelopes
constructed there, r ′/r and ψ ′/ψ were forced to have different signs and therefore they
cannot be equal at any point that is not a zero of ψ . From Lemma 4.1, it follows that θ ′

does not change sign between any two zeros ofψ . Since θ ′ is continuous and was forced
to be nonzero at the zeros of ψ , we have that θ ′ cannot change sign.
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Proposition 4.3. Let va(t) be an even function defined on (−π, π ] such that va(0) = 0
and eva/‖eva‖L1 → δ as a →∞, where δ is the Dirac delta function. Define ψa(t) :=
eva(t) cos(kt). Then there exists a value of a0 sufficiently large such that the analytic
instantaneous frequency for ψa for any a > a0 changes sign for any choice of the
constant used in defining the Hilbert transform Hψa .

Proof. Recall from (4.9) that a Hilbert transform of ψa at a point t ∈ (−π, π ] is
Hψa(t)+ C , where C is an arbitrary real constant and

Hψa(t) = p.v.
1

π

∫ π

−π
ψa(τ ) cot

t − τ
2

dτ(4.14)

is the conjugate operator for periodic functions. Using two applications of the iden-
tity (4.1), we observe that the analytic method produces an instantaneous frequency of
the form

θ ′C =
ψa Hψ ′a − (Hψa + C)ψ ′a
(Hψa + C)2 + ψ2

a

= Rθ ′0 − C Lψ ′a,(4.15)

where R and L are positive functions on (−π, π ]. Let zj = 2 j − 1

2k
π ,−k + 1 ≤ j ≤ k,

be the zeros of ψa , then

sgn(ψ ′a(zj )) = (−1) j(4.16)

and by (4.15), with C = 0, it follows that

θ ′0(zj ) = − ψ ′a(zj )

Hψa(zj )
(4.17)

and, consequently,

sgn(θ ′0(zj )) = (−1) j+1 sgn(Hψa(zj )).(4.18)

The proof of the proposition will be completed if we can show that for sufficiently
large a there is an index J for which two consecutive values of Hψa(zj ) have the same
sign

sgn(Hψa(z J )) = sgn(Hψa(z J+1)) =: σ.(4.19)

When C = 0 this follows immediately from (4.18). For C �= 0, we use the analogue
of (4.18),

sgn(θ ′C) = −sgn(ψ ′a) sgn(Hψa + C)(4.20)

which follows immediately from (4.15). In the case sgn(C) = σ , this last identity
shows that θ ′C has different signs at the endpoints of (z J , z J+1), since ψ ′a does. For
the final case, sgn(C) = −σ , we observe that Hψa and ψ ′a are both odd functions
since ψa is even. By considering −z J and −z J+1 in place of z J and z J+1, we see that
sgn H(ψa) = −σ = sgn(C) at these two points and so once again from (4.20), θ ′C
has different signs at the endpoints. Hence by the continuity of θ ′C , there are nonempty
intervals where the instantaneous frequency takes on opposite sign.
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Therefore to complete the proof, we must verify (4.19), i.e., for parameter a > 0
sufficiently large, there is a pair of consecutive points z J , z J+1, such that H(ψa) does
not change sign. Evaluating the conjugate operator at the zeros x = zj in (4.9), we
can proceed as in Proposition 4.2 using the periodicity of ψa and the trigonometric
identity (4.10), to obtain

Hψa(zj ) = c
∫ π

−π
eva(t) cos(kt) cot

zj − t

2
dt

= c
∫ π

−π
eva(t+zj ) sin(kt) cot

t

2
dt

= c
∫ π

−π
eva(t+zj )Pk(t) dt,

where in the last identity Pk(t) is a trigonometric polynomial of degree k. Therefore it
follows that

lim
a→∞

Hψa(zj )

‖eva‖L1

= cPk(0) = c cot
zj

2

holds, where we remind the reader that c is a generic constant which may change
from line to line. For any zm, zm+1 ∈ (0, π) it follows easily that there exists a > 0
such that sgn(Hψa(zm)) = sgn(Hψa(zm+1)). Hence for a sufficiently large, ψa is a
weak-IMF.

We note that the arguments in Proposition 4.3 can also be used to explain the behavior
of θ ′ in Example 4.2.

Example 4.3. We illustrate in Figure 4 the use of Proposition 4.3 in producing addi-
tional weak-IMFs with nonmonotone phase. For the sample function ψ , we set k = 16
and let va be a Gaussian with standard deviation s = 0.01 and centered at the origin.
The perturbation is applied at both t1 = 0 and t2 = π/16. In Figure 4 the function ψ is
displayed in part (a), its Hilbert transform in part (b), and its instantaneous frequency in
part (c).

For this same function, in Figure 4(d) we illustrate the application of Lemma 4.1. The
instantaneous frequency changes sign when the logarithmic derivative of ψ/r vanishes
at points other than at an acceptable zero: either a zero of (i) ψ or of (ii) its Hilbert
transform, i.e., points where | f | = r . Notice that the endpoints of the two intervals
where the instantaneous frequency becomes negative corresponds precisely to the four
(nonacceptable) zeros of the logarithmic derivative of ψ/r .

Example 4.4. An informative example of a function which may be considered a true
IMF is given by the function

ψ(t) = (t2 + 2) cos(π sin(8t))/16, −4π ≤ t ≤ 4π,(4.21)

which, along with its instantaneous frequency, is plotted in Figure 5. Notice that t2 + 2
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Fig. 4. Sample IMF from Example 4.3: (a) Cosine signal with strong perturbation at 0 and π/16; (b) the
Hilbert tranform of ψ near the perturbations; (c) the instantaneous frequency of ψ near the perturbations; and
(d) the logarithmic derivative of ψ/r near the perturbations.
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Fig. 5. Plot of the example IMF defined by equation (4.21): (a) The IMF ψ with a parabolic envelope; and
(b) instantaneous frequency.

may be regarded as an envelope of ψ and that it is close but different from the upper
envelope produced by a cubic spline fit through the maxima. Recall from the observation
in Section 2.1 that a necessary and sufficient for the IMF envelope condition (b) of
Definiton 2.1 to be satisfied is that those envelopes reduce to a quadratic polynomial.
This example shows that the sifting convergence criterium in the EMD process for
measuring the difference of the absolute values of the upper and lower envelopes should
be chosen with care. If fact, it can be easily verified that smoothing off the endpoint
data of this example will result in a function for which the EMD residual can be made
visually negligible after a single sifting. There are many variations of these examples to
produce similar behavior.

We conclude this section with a procedure that adds a smooth disturbance at an
appropriate scale to any reasonable function in such a way that the function maintains its
smoothness and analytical profile, that is, no additional extrema are introduced and the
existing extrema are only perturbed, but the resulting function has nonmonotone analytic
phase. By a reasonable function ψ , we will mean an IMF in the strongest sense, which
we call a Hilbert-IMF.

Definition 4.1. A function is called a Hilbert-IMF if it satisfies the following condi-
tions:

(i) ψ is an IMF in the sense of the definition in [4];
(ii) the analytic signal of ψ (i.e., via the Hilbert transform) � = reiθ , r ′ and θ ′ are

smooth functions, and θ ′ > 0; and
(iii) the weighted L2 bandwidth is small.

The idea of the perturbation procedure is based on the fact that by multiplying the
analytic function � = reiθ by another analytic function, say � = r1eiθ1 , the result
�� = rr1ei(θ+θ1) is also analytic with analytic amplitude rr1 and analytic phase θ + θ1.
Since θ ′ and θ ′1 are smooth functions, in order to force the instantaneous frequency of��
to change sign it suffices to choose � such that θ ′1(T ) < −θ ′(T ) at some point T . One
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way we can ensure that the weighted L2 bandwidth of �� remains small is to localize
the perturbation � to a small interval I , i.e., both r1 and θ1 should decay rapidly to zero
outside I . Further, to guarantee that the real part of�� is an IMF in the sense of [4], the
added perturbation must only result in a small deviation of the zeros and extrema of the
original IMF�, and should not introduce additional zeros nor extrema. This is achieved
by incorporating an additional tuning parameter σ into our perturbation �σ , for small
values of σ .

The technique used in the proof of the results below shows that there are many functions
that can be used as such perturbation functions. We consider one particular smooth
function that is constructed from the modified Poisson kernel

yρ(t) := (1− ρ)2
1− 2ρ cos t + ρ2

, 0 ≤ ρ < 1.(4.22)

It is well known that its conjugate function is

H yρ(t) = 1− ρ
1+ ρ

2ρ sin t

1− 2ρ cos t + ρ2
.

Although it is an abuse of notation, we will refer to these simply as y and H y with the
understanding that the parameter ρ is implicitly present. We define the perturbation �
in terms of y = yρ by

� = �ρ := exp(−H y + iy)(4.23)

and observe that, as the parameter ρ approaches 1 from below, the function �ρ becomes
very localized.

The perturbed IMF is set to �(��σ ) = re−σH y cos(θ + σ y) for some real exponent
σ . The idea in brief is to select σ small and ρ sufficiently close to 1 so that the change
in the functional values are also small, i.e., the zeros, extrema, and the extremal values
are perturbed slightly from the original IMF. On the other hand, the corresponding
instantaneous frequency becomes θ ′ +σ y′ (see Lemma 4.2 below). Moreover, y′ has one
local minimum that is negative with magnitude depending on ρ. In the special case when
r = eAt and θ = mt on an interval (the length of the interval can be arbitrarily small),
we prove in Corollary 4.2 that there exists a subinterval and values of the parameters σ
and ρ such that under mild conditions, the perturbed function satisfies all the properties
(i)–(iii) of Definition 4.1, but has nonmonotone phase. From the proof and by continuity
it is then clear that the new instantaneous frequency can be made negative on an interval
while preserving all other properties listed in (i)–(iii). A similar result holding for more
general functions is established in Corollary 4.3.

To show that the perturbed function is a weak-IMF we utilize the logarithmic derivative
as ρ → 1− and the following technical lemma, where we establish that the maximum
of H y′ and its value at the minimum of y′ behave asymptotically as a finite multiple of
the minimum value of y′.

Lemma 4.2. Let 0 ≤ ρ < 1 and y = yρ be defined as in equation (4.22), then the
following properties hold:

(a) For all σ > 0 the function�σ defined in equation (4.23) is analytic with amplitude
e−σH y and phase σ y.
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(b) If −µ := min y′ = y′(t0), then limρ→1− H y′(t0)/µ = 1/
√

3.
(c) limρ→1− µ/max |H y′| = 3

√
3/8.

(d) The function H y′ is even with exactly one positive zero, tz which satisfies 0 <
t0 < tz and limρ→1− y′(tz)/µ = 0.

Proof. Part (a) follows from the construction of the analytic function � and the fact
that |�| > 0. To establish part (b) we determine the minimizer of y′, which we denote
t0, from the equation y′′(t0) = 0, which is equivalent to the equation

2ρ cos2 t0 + (1+ ρ2) cos t0 − 4ρ = 0.(4.24)

Hence there exists a unique solution t0 which satisfies the relation

cos t0 = D − (1+ ρ2)

4ρ
,

where D :=
√
ρ4 + 34ρ2 + 1. Substituting this explicit formula for cos t0 into the ex-

pression for y′(t0), the minimum value of y′ can be written as

y′(t0) = −2(1− ρ)2
√

2(1+ ρ2)D − (2ρ4 + 20ρ2 + 2)

(3ρ2 + 3− D)2
.(4.25)

Proceeding similarly with the expression for H y′(t) given by

H y′(t) = 2ρ(1− ρ)
1+ ρ

(1+ ρ2) cos t − 2ρ

(1− 2ρ cos t + ρ2)2
(4.26)

we find, after algebraic rationalization and simplification, that

H y′(t0)
µ

= 2
√

2 ρ√
(1+ ρ2)D + ρ4 + 10ρ2 + 1

.(4.27)

Part (b) follows immediately by taking the limit as ρ → 1−.
Part (c) is established in a similar manner by observing from equation (4.26) that

max |H y′| = H y′(0) = 2ρ/(1− ρ2) and so, using the identity (4.25), it follows that
µ/H y′(0) converges to 3

√
3/8 as ρ → 1−.

Finally, for part (d) we determine from (4.26) that zeros of H y′ are exactly the roots
of the equation cos t = 2ρ/(1+ ρ2). Substituting this expression for cos tz into the left-
hand side of equation (4.24) for cos t0, we get a negative value−2ρ(1− ρ2)2/(1+ ρ2)2

for the quadratic expression and so cos tz < cos t0, which is equivalent to t0 < tz .
Observing that sin tz = (1− ρ2)/(1+ ρ2), we can use this identity to evaluate y′(tz) to

obtain
y′(tz)

µ
= −2ρ(1− ρ)

(1+ ρ)µ → 0 as ρ → 1−.

In Corollary 4.2 we prove in the special case r(t) = eAt , A ≤ 0, and θ = mt that
we can find values of σ and ρ such that the procedure described above produces a
desired function satisfying the properties (i)–(iii) of Definition 4.1 but whose analytic
instantaneous frequency changes sign. We first prove a milder version in the following
proposition, and then modify the parameter σ to establish the stronger version.
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Proposition 4.4. Let the notation be as in the previous lemma (Lemma 4.2). In particu-
lar, let t0 be the point which provides the global minimum for y′, let tz be the positive zero
of H y′, and let µ := −y′(t0). Suppose further that A ≤ 0. If ψ(t) := exp(At) cos mt ,
then there exist a constant ρ∗ and a point t∗ such that, for ρ∗ < ρ < 1,

ψ̃(t) = exp

(
At − m

µ
H y(t − t∗)

)
cos

(
mt + m

µ
y(t − t∗)

)
,(4.28)

is a weak-IMF, but its analytic instantaneous frequency vanishes at t0 + t∗. Moreover,
the difference between absolute values of the upper and lower cubic spline envelopes is
small except at the endpoints in the case that A is negative.

Proof. From the previous discussion and from the representation ψ̃(t) =
�(�(t)�m/µ(t−t∗)) it is clear that the analytic phase of ψ̃ is θ̃ (t) = mt+(m/µ)y(t−t∗).
The definition of µ implies that the expression m + (m/µ)y′(t − t∗) is nonnegative and
vanishes only at the point t0 + t∗, hence θ̃ is strictly increasing. Furthermore, we show
that if ρ is close to 1, the rapid decay of y(t − t∗) away from t0 + t∗ will ensure that
the zeros of ψ and ψ̃ are the same in number and are separated only slightly from one
another.

We may assume that the perturbation y = yρ is added between a maximum of ψ and
the zero τ0 immediately following; the other three situations can be handled in the same
way with appropriate changes of the signs of the corresponding expressions. Denote by

τ− the nearest point less than τ0 which satisfies tan mτ− = 32

3
√

3
. Any point from the

interval (τ−, τ0) can be picked for t∗. We select t∗ := (τ0 + τ−)/2, δ := (τ0 − τ−)/4,
and set � := (t∗ − δ, t∗ + δ). By construction it is clear that functions y, H y, y′, and
H y′ (translated by t∗) tend uniformly to zero outside the interval� as ρ approaches 1−.
Hence ψ̃ uniformly tends to ψ outside �.

Since ψ and ψ ′ have only simple zeros, it follows that there exists ρ1 such that for
any 1 > ρ > ρ1 the perturbed function ψ̃ is a weak-IMF; even more, for each zero and
extrema of ψ there corresponds exactly one zero and extrema of ψ̃ . To prove this, we
consider the functions on three disjoint sets, a subinterval �∗ of � (to be determined),
the set �\�∗, and the complement of �.

We first consider the set of values t in the complement of �. Assume that there is
a sequence of ρ’s approaching 1 from below so that there is an extrema of ψ , say τe,
such that in a neighborhood of that extrema ψ̃ has at least three extrema (the extrema
must be odd in number since ψ̃ tends uniformly to ψ). By Rolle’s theorem and the
uniform convergence as ρ → 1−, it follows that ψ ′ has a multiple zero at τe, which is a
contradiction. Hence outside �, ψ̃ is an IMF.

Consider now the interval�. To follow the changes of the extrema of ψ̃ , we consider
the logarithmic derivative of ψ̃ given by

L̃(t) := ψ̃ ′(t)

ψ̃(t)
= A + m

µ
(−H y′(t − t∗))

−
(

m + m

µ
y′(t − t∗)

)
tan

(
mt + m

µ
y(t − t∗)

)
.

We show L̃ is negative on �. It then follows that ψ̃ has no additional extrema on this
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interval, and so ψ̃ will be an IMF in the sense of the definition in [4], but its analytic
instantaneous frequency m + (m/µ)y′ has a zero.

To see that L̃ is negative on �, observe that for a fixed ρ (1 > ρ > ρ1) since A ≤ 0,
tan(mt + (m/µ)y(t − t∗)) > 0, and (m + (m/µ)y′(t − t∗)) ≥ 0 it follows that L̃ < 0
on the interval �∗ := (t∗ − tz, t∗ + tz), where tz is specified in part (d) of Lemma 4.2.
From the proof of that lemma, we see that tz approaches 0 as ρ approaches 1− and hence
we can pick ρ2 (1 > ρ2 > ρ1) such that �∗ ⊂ � for each ρ for which 1 > ρ ≥ ρ2.

On the other hand, for any t outside �∗, we have that m + (m/µ)y′(t) > m +
(m/µ)y′(tz) and from Lemma 4.2(d) it follows that there exists 1 > ρ3 > ρ2 such that the
inequality m+(m/µ)y′(t) > m/2 holds for any 1 > ρ > ρ3 and any t ∈ �\�∗. Finally,

from Lemma 4.2, we can pick 1 > ρ∗ > ρ3 such that the inequality max |H y′|/µ < 16

3
√

3
holds for any ρ > ρ∗. The choice of the point t∗ and the fact that y is a positive function
provide the inequality

tan

(
mt + m

µ
y(t − t∗)

)
> tan(mτ−) = 32

3
√

3

for any t ∈ �\�∗. Using the above estimates and the assumption A ≤ 0 we have that

L̃ < m
max |H y′|

µ
− m

2
tan

(
mt + m

µ
y(t − t∗)

)
< 0,

for any t ∈ �\�∗ and any 1 > ρ > ρ∗, which completes the proof.

Corollary 4.2. Let ψ be the Hilbert-IMF considered in Proposition 4.4. Then there
exist σ > −m/µ such that the small perturbation of ψ , ψ̃ = �(��σ ), satisfies parts (i)
and (iii) of the definition of a Hilbert-IMF, but does not have a monotone analytic phase.

Proof. Since ψ̃ and all other related functions considered in Proposition 4.4 depend
continuously on σ , and for σ = −m/µwe have that θ̃ ′ vanishes only at the point t0+ t∗,
it follows that any increase of σ forces the instantaneous frequency to be negative in a
neighborhood of that point. On the other hand, by the choice of ρ∗ (1 > ρ∗ > 0) from
Proposition 4.4 and the uniform convergence, it follows that there exists σ ∗ > −m/µ
such that the perturbed function ψ̃ is a weak-IMF outside � and L̃σ ∗ is negative on
�; i.e., there are no additional zeros and extrema on �. Hence, ψ̃ is a nicely behaved
function with analytic instantaneous frequency that changes sign on an interval of positive
measure.

Remark 4.2. The condition A ≤ 0 can be relaxed to A < m/
√

3 which agrees with
the estimate in Lemma 4.2(b). The proof of Proposition 4.4 with that restriction requires
further technical estimates as in Lemma 4.2(d) for a point tη such that 0 < t0 < tη and

lim
ρ→1−

y′(tη)
µ
= η − 1

for a fixed 0 < η < 1. Details of the estimates are similar so we do not include them
here.



Analysis of the Intrinsic Mode Functions 45

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

6

7

(a) (b)

Fig. 6. Plot of the IMF in Example (4.5): (a) An IMF perturbed by a smooth perturbation; and (b) instantaneous
frequency.

Example 4.5. To illustrate the above construction, we consider the function� = e4i t ,
−π < t ≤ π , and apply the procedure twice for ρ = 0.95 and σ = 0.31, once at
the point t1 = −2.1 and again at the point 0.2. The resulting signal and its analytic
instantaneous frequency are shown in Figure 6.

For any nice function (e.g., a Hilbert-IMF) ψ = r cos θ with only simple zeros, it
is clear from the identity ψ ′/ψ = r ′/r − tan θ θ ′ that if there exist a zero for which
r ′ �= 0, then the logarithmic derivative ψ ′/ψ and the instantaneous bandwidth r ′/r have
the same sign in a one-sided neighborhood of that zero. Then if the perturbation is added
in that neighborhood, the proof of Proposition 4.4, without significant modifications, can

be used to prove similar results so long as
r ′

r
+ 9

8
√

3
max

I
θ ′ is negative in a neighborhood

of that zero, as established in the next corollary. We note that by choosing ρ closer to 1,
the interval I can be made arbitrarily small.

Corollary 4.3. Let ψ = r cos θ be the restriction to the circle of any function analytic
in a disk of radius larger than one. Assume that ψ is an IMF in the sense of [4] with
amplitude r and monotone phase θ which are defined using the Hilbert transform.
Suppose further that ψ has only simple zeros, that there exists a zero z0 of ψ for which
r ′/r and ψ ′/ψ have the same sign in a one-sided neighborhood I of z0, and that
r ′

r
+ 9

8
√

3
max

I
θ ′ < 0 on I , then there exist parameters ρ∗ and σ ∗, and a point t∗

such that the function ψ̃(t) = �(�(t)�σ ∗(t − t∗)) is an IMF with zeros and extrema
which are close perturbations of those ofψ , but with an analytic instantaneous frequency
θ̃ ′(t) = θ ′ + σ y′(t − t∗) which changes sign.

Proof. As in Proposition 4.4, it is enough to prove that θ̃ ′(T ) = 0 for some point T . We
may assume from the hypothesis that θ ′ > 0, then the modified instantaneous frequency
θ̃ (t) = θ ′(t) + σ y′(t − t∗) > 0 for small σ . Hence, if σ is continuously increased,
by continuity we will reach a value σ1 for which θ̃ ′(T ) = 0 for some point T and is
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positive elsewhere. If ρ is then increased close to 1, and σ1 is adjusted accordingly, we
can localize the perturbation on an arbitrarily small interval with θ̃ ′ vanishing at a point.

Notice that the instantaneous bandwidth does not change sign on an interval that
contains both I and z0 as an interior point. We may assume that L < 0 on I , then the
logarithmic derivative of ψ̃ is

L̃(t) = r ′(t)
r(t)
− σH y′(t − t∗)− θ̃ ′(t) tan θ̃ (t).

From the choice of σ it follows that maxI θ
′ − σµ ≥ 0 and hence σ ≤ maxI θ

′/µ. For
the new instantaneous bandwidth as ρ → 1−, we have

r ′

r
− σH y′(· − t∗) ≤ r ′

r
+max

I
θ ′

max |H y′|
µ

→ r ′

r
+ 9

8
√

3
max

I
θ ′ < 0

on I , where the last inequality is the assumption on ψ relating instantaneous bandwidth
and frequency. Since I is a finite interval, there exists ρ∗ such that L̃ < 0 for any ρ
satisfying 1 > ρ > ρ∗. On the other hand, since θ̃ ′ ≥ 0 and tan θ̃ > 0 on I it follows
that L̃ < 0 on I . All other steps are the same as in the proof of Proposition 4.4.

Remark 4.3. The condition on the logarithmic derivatives (of the function ψ and its
amplitude r ) to have the same sign in a neighborhood of a zero is equivalent to r ′(z0) �= 0,
or r ′(z0) = 0 but r ′ψ ′ψ > 0 on I . In other words, if all other requirements are met, the
procedure works more generally than in the case of envelopes considered in Theorem 3.1.

Remark 4.4. The procedure for adding perturbations to a nice function can also be used
for removing certain types of noise. If a function has a negative instantaneous frequency
on some small interval, then we can apply the procedure with a perturbation �σ using
negative σ in order to remove negative instantaneous frequencies, but still preserve the
general features (zeros, local extrema) and smoothness class of the original function.
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