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Abstract

We study the numerical approximation of the Saturation Equation which arises in the for-
mulation of two phase 7uid 7ow through porous media, idealized as either a convex bounded
polyhedral domain or a domain with smooth boundary. This equation is degenerate and the so-
lutions are not guaranteed to be su*ciently smooth for direct numerical approximation. Through
regularization, a family of approximate non-degenerate problems is considered along with their
numerical approximations. Error estimates are established for appropriately transformed contin-
uous Galerkin approximations, followed by corresponding error estimates for a fully discretized
Galerkin method for this class of problems.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In modelling immiscible two phase 7ow through porous media (see e.g. [1,9,15]), a
class of saturation equations of the form

@
@t

S +∇ · (f(S)u)−∇ · (k(S)∇S) = Q(S) on � × (0; T ] (1.1)
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on a bounded domain � (� ⊂ Rd, d6 3), is derived which satis$es the boundary
condition

(f(S)u − k(S)∇S) · n = q on @� × [0; T0] (1.2)

and has initial condition

S(x; 0) = S0(x) on � (1.3)

with 06 S0(x)6 1, for all x∈�. For simplicity we let |�|= 1.
In these equations S is the saturation of the invading 7uid (see [1,9,15]) and it

follows from the general theory [4] that 06 S6 1. The diBusion coe*cient k = k(S)
is the conductivity of the media, which is assumed here to depend only on the saturation
S. The fractional 7ow function f governs the transport term ∇·(f(S)u) where u is the
total velocity of the two phase 7ow. We assume in this analysis that u is su*ciently
smooth and is provided, but in practice, it is obtained by solving another (possibly
coupled) elliptic partial diBerential equation which models the total pressure of the two
phases. The term Q=Q(S) represents the source/sink terms and q denotes the boundary
7ux. We assume throughout that the domain � is su*ciently “nice” in order that the
standard analysis for elliptic problems [2] be valid; in particular we require elliptic
regularity and second-order error estimates to hold (see the appendix for details). This
is the case, for example, when � is either a convex polyhedral domain satisfying a
maximal interior angle condition [12] or has a smooth boundary [2].
For a given fractional 7ow f, we require that there be a constant C∗, such that

C∗|f(b)− f(a)|26 (K(b)− K(a))(b− a): (1.4)

Lemma 2.1 below shows that this requirement is reasonable.
We also suppose the diBusion coe*cient k satis$es the growth condition

k(s)¿




c1|s|�1 ; 06 s6 �1;

c2; �16 s6 �2;

c3|1− s|�2 ; �26 s6 1;

(1.5)

where 0¡�1¡ 1
2 ¡�2¡ 1 are given and assume 0¡�1; �26 2. De$ne

� := max(�1; �2);

� :=
2 + �
1 + �

(1.6)

and set

K(�) =
∫ �

0
k(�) d�:

Because of possible roughness of the solution to the degenerate problem (1.1)–(1.3),
one often regularizes the conductivity to obtain a non-degenerate formulation

@
@t

S� +∇ · (f(S�)u)−∇ · (k�(S�)∇S�) = Q(S�) on � × (0; T0]; (1.7)
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f(S�)u · n − @
@n

K�(S�) = q on @� × [0; T0]; (1.8)

S�(x; 0) = S0(x) on �; (1.9)

where K�(�) =
∫ �
0 k�(�) d�, and k� → k in an appropriate sense as the regularization

parameter � converges to zero. We de$ne C0(�) by

C0(�) := ‖K� − K‖�L∞ : (1.10)

If 0¡�¡ 1
2 and k(0)= k(1)= 0, an example of an acceptable perturbation k� of k is

de$ned by

k�(�) = k(�) for k(�)¿�; k�(�) lies between � and 1
2� otherwise; (1.11)

where

� := �(�) = min(k(�); k(1− �)): (1.12)

For this particular perturbation (see [10,11]) there holds

C0(�)6 c(��(�))�: (1.13)

In an earlier paper [11], error estimates were established for any perturbation of k and
some of those results which we require are summarized in Section 2. Eqs. (1.7)–(1.9)
constitute the problem that we approximate numerically by a transformed Galerkin
Finite Element procedure.
In Section 3 we $rst approximate the solution by a continuous time Galerkin approx-

imation, i.e. the space variable is discretized. This variational method yields a solution
Sh convergent to S� in a controlled manner as h → 0+. Our previous knowledge of
the rate of approximation of S by the solution S� of the regularized equation provides
then an estimate of the error ‖S − Sh‖ in the desired function spaces.
In Section 4 we proceed to discretize in time and provide several error estimates for

a fully discretized (backward in time) solution. We extend here the results of [16,18].
Rose in [16] treats the one dimensional case of this problem and assumes a single and
more regulated degeneracy for k. In that case the operator T can be expressed expli-
citly and the problem can be transformed into a purely parabolic problem. Smylie in
[18] treats the multidimensional case for the parabolic equation. The paper of Nochetto
and Verdi [14] also establishes error estimates for the same type of problem, using
numerical integration, again for the case of one degeneracy: k(s) = sm, m¿ 1. An ex-
ample for our setting would be any k for which k(s)¿ s�1 (1−s)�2 , for 0¡�1; �26 2.
Compare Corollary 3 of [14] to our Corollary 4.1.
As previously mentioned, the total velocity, total pressure formulation of two phase

7ow in porous medium in several dimensions presents additional analytical and numer-
ical di*culties for the saturation equation. The treatment of the transport term in [11],
reproduced here as Lemma 2.1, is very helpful in our estimates. Our arguments in the
proofs of Lemma 3.1 and Theorem 3.1 are somewhat diBerent from [16], although we
follow the same general line as in that paper.
In Section 4, by manipulating the inequalities in a diBerent manner, we are able to

improve the convergence rate in the time step as given in [16]. We also give a proof
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for the existence of a solution of the fully discretized scheme, for the case that the
total velocity u is not a function of the time variable t.
We next describe additional notation which will be used throughout the remain-

der of this paper. We de$ne (f; g) := (f; g)� :=
∫
� fg dx when this has a mean-

ing (extended when appropriate to the distributional sense), and in particular we set
f� := 1=|�|(f; 1)�. We drop the subscript � when there is no ambiguity. The notation
‖f‖Lp := ‖f‖Lp(�) is used for the standard Lebesgue norm of a measurable function,
when this quantity is $nite. Similarly, we denote by ‖f‖Lp(Lq) := ‖f‖Lp(0;T;Lq(�)) the
mixed Lebesgue norm for f, while ‖f‖Lp(Hq) := ‖f‖Lp(0;T;Hq(�)) designates the mixed
Sobolev–Lebesgue norm of a function. We use C; c, to denote constants which may
change from line to line, but which are independent of the parameters �; h and Qt,
unless explicitly speci$ed.
Finally, we would like to thank the referee for valuable suggestions and pointing out

appropriate references which improved the error estimates for numerical approximations
by a logarithmic factor.

2. Regularization results

We summarize here some results from [10,11], which are required in the error anal-
ysis that follows.

Lemma 2.1. If f∈C1([0; 1]) with f′(0)=f′(1)=0, then there is a positive constant
C∗ so that for all 06 a6 b6 1 we have

C∗|f(b)− f(a)|26 (K(b)− K(a))(b− a): (2.1)

This lemma will typically be applied in the integral form

C∗‖f(u)− f(v)‖2L2(�)6 (K(u)− K(v); u− v): (2.2)

Conversely, if (2.1) is satis$ed, then

|f′(�)|6C
√

k(�): (2.3)

Lemma 3.1 in [11] implies that there is a positive constant C∗∗ so that

C∗∗‖u− v‖2+�L2+� 6 (K(u)− K(v); u− v) (2.4)

is valid for all u; v∈L2+�. Moreover, the inequalities above remain true if k is replaced
by the regularized k� (or K is replaced by K�) with constants independent of �. Finally,
we observe that when K is Lipschitz, we have:

(K(u)− K(v))2�6 ‖K(u)− K(v)‖2L2
6 ‖k‖∞(K(u)− K(v); u− v): (2.5)

The next theorem gives the error estimates for S−S�, when the initial problem (1.1)–
(1.3) is replaced by the regularized nondegenerate problem (1.7)–(1.9). We assume for
the remaining of this paper, to simplify the analysis, that Q ≡ 0 and q ≡ 0.
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Theorem 2.1 (Fadimba and Sharpley [11, Theorem 4.1]). Assume that the coe5cients
f and k satisfy conditions (1.4) and (1.5). Let S� be the solution to regularized equa-
tions (1.7)–(1.9), and S the solution to (1.1)–(1.3), then

sup
06t6T0

‖S� − S‖2(H 1)∗ + &
∫ T0

0
(K�(S�)− K�(S); S� − S)(�) d�6C0(�); (2.6)

‖K�(S�)− K�(S)‖2L2(L2)6C0(�) (2.7)

and

‖S� − S‖2+�L2+�(L2+�) ≤ C0(�); (2.8)

where C0(�) is de:ned by (1.10).

Another useful result is the following which establishes estimates for the solution to
the regularized equation.

Lemma 2.2. Assume the hypotheses of Theorem 2.1 hold. If S� is the solution to
(1.7)–(1.9), then there exist constants C; C1; C2 (independent of �) such that∥∥∥∥@S�@t

∥∥∥∥
L∞(0;T0 ;L1(�))

6C1 + C2‖S0‖W 1
2 (�)

; (2.9)

‖S�‖2L∞(L2) +
∥∥∥√k�(S�)∇S�

∥∥∥2
L2(L2)

6C · T0 + ‖S0‖2L2 ; (2.10)

∥∥∥√k�(S�)(S�)t
∥∥∥2
L2(L2)

+ ‖∇K�(S�)‖2L∞(L2)6C +
∥∥∇K�(S0)

∥∥2
L2 : (2.11)

This lemma provides the elements for the proof of the following result (see [11,
Theorem 4.4]).

Theorem 2.2. Assume the hypotheses of Theorem 2.1 holds and de:ne

m(�) := inf
06s61

k�(s): (2.12)

If �= (2 + �)=(1 + �), then there is a constant C, independent of �, such that

‖(S�)t‖L�(L�)6C m(�)−1=(2+�) (2.13)

and hence∥∥∥∥@S�@t +∇ · f(S�)u
∥∥∥∥
L�(L�)

6C m(�)−1=(2+�): (2.14)

We note that the respective estimates (2.11) and (2.10), using the proof of
[11, Theorem 4.4], immediately imply the inequalities

‖(S�)t‖L2(L2)6C m(�)−1=2 (2.15)

‖QK�(S�)‖L2(L2)6C m(�)−1=2: (2.16)
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If we choose the speci$c regularization where k� is de$ned by

k�(s) := max(k(s); ��) (2.17)

and set

�(�) = �min(1;�);

then Theorem 4.6 of [11] gives the following estimates.

Theorem 2.3. Assume the hypotheses of Theorem 2.1 hold. Then

sup
06t6T0

(K(S�)− K(S); S� − S) + &‖∇(K(S�)− K(S))‖2L2(L2)6C �(�); (2.18)

‖S� − S‖2+�L∞(L2+�)6C �(�); (2.19)

‖K(S�)− K(S)‖2L2(H 1 ; [0;T0])6C �(�): (2.20)

3. The continuous Galerkin method

3.1. The :nite element space

We give a brief description of the approximation subspaces which provide the $nite
element solutions for the Galerkin problems. For general background references of
the methods used in this section, see [2,12,19]. We let {Mh}0¡h¡1 denote a family of
$nite dimensional spaces, with Mh ⊂ H 1(�) and assume that Mh has the approximation
property:

inf
)∈Mh

‖f − )‖Lp(�)6Ch2|f|W 2; p for all f∈W 2;p(�): (3.1)

We will also need the inverse estimate assumption on Mh (see, for example, [2,
Section 4.5]):

‖)‖H 16Ch−1‖)‖L2 for all )∈Mh; (3.2)

which by duality implies

‖)‖2L2 = (); ))6 ‖)‖H 1‖)‖(H 1)∗ 6Ch−1‖)‖L2‖)‖(H 1)∗

and consequently

‖)‖L2(�)6Ch−1‖)‖(H 1)∗ for all )∈Mh: (3.3)

An important case is that for �, a convex bounded polygonal domain in R2 with a
triangulation Th = {K} where the parameter h (0¡h¡ 1) is de$ned as follows: for
a triangle K∈T, de$ne hK and *K by

hK := diam(K) (3.4)

and

*K := sup{diam(C): C is a circle inscribed in K}; (3.5)
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then

h := max{hK: K∈Th}: (3.6)

The space of piecewise linear elements for this triangulation is de$ned by

Mh := {+∈C0(�): +=K is linear for all K∈Th}: (3.7)

We assume, in addition, that T is a regular family, i.e. there exists a constant d1¿ 0
such that

*K
hK

¿d1; (3.8)

in which case [2,5,8,12] there exists Rp = Rp(�)¿ 2 so that Mh satis$es the direct
approximation estimate (3.1) for all 1¡p¡ Rp (see (A.13) of the appendix for the
dependence of Rp on �). If we assume T is a quasi-uniform triangulation, i.e. (3.8) is
satis$ed and there exists d2¿ 0 such that

hK¿d2h for all K∈Th; (3.9)

then Mh de$ned by (3.7) also satis$es the inverse estimate (3.2) (cf. [2,13]).

3.2. The discretized problem

Although analytically the saturation lies in the interval [0; 1], small numerical oscil-
lations may occur and so we extend the domain of the functions f and k� as follows:

k�(�) =

{
k�(1) if �¿ 1;

k�(−�) if �6 0;
(3.10)

f(�) =

{
0 if �6 0;

f(1) if �¿ 1:
(3.11)

We continue to de$ne the primitive K� by

K�(�) =
∫ �

0
k�(�) d� (3.12)

and observe that it is a strictly increasing C1 function on R, since k�(�)¿ 0 as long
as �¿ 0. Hence K� has a C1 inverse function H�:

H�(�) = K−1
� (�) ∀�∈R: (3.13)

We consider the ordinary diBerential equation (actually a coupled ODE system):(
@
@t

H�(Vh); )
)
− (f(H�(Vh))u;∇)) + (∇Vh;∇)) = 0 (3.14)

required to hold for all )∈Mh, and t ∈ (0; T0]. This system has the initial condition:

PhH�(Vh(0)) = PhS0; (3.15)

where S0 is as in (1.3), and Ph is the L2 projection on Mh. We solve for Vh in Mh

where Vh is the Galerkin approximation to K�(S�). We then set Sh=H�(Vh), so that Sh
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approximates S�. The operator Ph ◦ H� is a continuous, nonlinear, coercive map from
Mh into itself [16] and is thus bijective. Therefore by (3.15), Vh(0) exists in Mh.
Suppose that {ei}m1 is a basis for Mh, with m = m(h) = dim(Mh), so that for all

)∈Mh; )(x) =
∑m

i=1 )iei(x). Then (3.14) is equivalent to the system of m coupled
ODE:

d
dt
(Ph(H�(Vh)); ei)− (f(H�(Vh))u;∇ei)

+ (∇Vh;∇ei) = 0 (16 i6m): (3.16)

This can be rewritten in a vector form as a Cauchy problem:

d
dt

PhH�(Vh) = F(PhH�(Vh));

PhH�(Vh(0)) = PhS0:
(3.17)

With our assumption on f; k� and u, the function F is Lipschitz, so we are guaran-
teed the existence and uniqueness of the solution S̃h = PhH�(Vh) to (3.17). We have
previously observed that PhH� is bijective, so we have that Vh = (PhH�)−1S̃h exists
in Mh.
For convenience we de$ne Sh := H�(Vh) and rewrite (3.14) as

((Sh)t ; ))− (f(Sh)u;∇)) + (∇K�(Sh);∇)) = 0 ∀)∈Mh: (3.18)

By approximating K�(S�) by Vh ∈Mh, the approximation of S� by Sh = H�(Vh) is
shown in Theorem 3.1 below to have higher rate of convergence than approximating
S� directly by an element of Mh.

3.3. The main results

As stated above we give our main estimates for the error ‖S− Sh‖ in two theorems.
We need the following discrete version of inequality (2.11) with S� replaced by Sh:

Lemma 3.1. If Vh is the solution to (3.14) and (3.15), and if we set Sh = H�(Vh),
then ∫ T0

0
((Sh)t ; K�(Sh)t) dt + &‖∇K�(Sh)‖2L∞(L2)6 C̃{‖u‖2L∞(L2) + ‖ut‖2L2(L2)}; (3.19)

where C̃ = C̃(T0; u) = exp(C{1 + ‖u‖2L∞(L∞)}), and & a positive constant.

Proof. In (3.18), let ) = Vht = K�(Sh)t . Then

((Sh)t ; K�(Sh)t)− (f(Sh)u;∇K�(Sh)t) + (∇K�(Sh);∇(K�(Sh)t)) = 0

or equivalently

((Sh)t ; K�(Sh)t) +
1
2
d
dt

‖∇K�(Sh)‖2L2 = (f(Sh)u;∇K�(Sh)t); (3.20)
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where we use the fact that 1 and @=@t commute. Applying the product rule on the
right-hand side of (3.20), and substituting, we obtain

((Sh)t ; K�(Sh)t) +
1
2
d
dt

‖∇K�(Sh)‖2L2

=
d
dt
(f(Sh)u;∇K�(Sh))− ((f(Sh)tu;∇K�(Sh))− (f(Sh)ut ;∇K�(Sh)): (3.21)

By (2.3)

‖f(Sh)tu‖2L2 = ‖f′(Sh)(Sh)tu‖2L2 6 c‖u‖2L∞‖√k�(Sh)(Sh)t‖2L2
= c‖u‖2L∞((Sh)t ; K�(Sh)t): (3.22)

Thus (3.21) implies

((Sh)t ; K�(Sh)t) +
1
2
d
dt
‖∇K�(Sh)‖2L2

6
d
dt
(f(Sh)u;∇K�(Sh)) + 21‖f(Sh)tu‖2L2 +

1
21

‖∇K�(Sh)‖2L2

+
1
2
‖f(Sh)ut‖2L2 +

1
2
‖∇K�(Sh)‖2L2 ; (3.23)

where 21 is an arbitrary positive constant. This yields, by (3.22),

((Sh)t ; K�(Sh)t) +
1
2
d
dt
‖∇K�(Sh)‖2L2

6
d
dt
(f(Sh)u;∇K�(Sh)) + 21c‖u‖L∞(L∞)((Sh)t ; K�(Sh)t)

+
(
1
21
+
1
2

)
‖∇K�(Sh)‖2L2 +

1
2
‖f(Sh)ut‖2L2 : (3.24)

Now, for 21 su*ciently small, we can hide the second term of the right-hand side of
(3.24) in the left-hand side of (3.23). Also ‖f(Sh)ut‖L26 c‖ut‖L2 , given the smooth-
ness assumptions on f. So (3.24) becomes

1
2
((Sh)t ; K�(Sh)t) +

1
2
d
dt

‖∇K�(Sh)‖2L2

6
d
dt
(f(Sh)u;∇K�(Sh)) + C(u)‖∇K�(Sh)‖2L2 + C‖ut‖2L2(L2): (3.25)

Finally using the GrTonwall Lemma, we get∫ T0

0
((Sh)t ; K�(Sh)t) dt + 2‖∇K�(Sh)‖2L∞(L2)

6 C̃(u)
{
sup

06t6T0
|(f(Sh)u;∇K�(Sh))(t)|+ C‖ut‖2L2(L2)

}
(3.26)



364 K.B. Fadimba, R.C. Sharpley / Nonlinear Analysis: Real World Applications 5 (2004) 355–387

with C̃(u) = exp(C(u)). But

sup
06t6T0

|(f(Sh)u;∇K�(Sh))(t)|6C‖f(Sh)u‖L∞(L2)+1
2 2‖∇K�(Sh)‖2L∞(L2): (3.27)

Combining these last two inequalities, we obtain the lemma by taking &= 1
22.

Remark 3.1. From Lemma 3.1 it follows that∥∥∥√k�(Sh)(Sh)t
∥∥∥
L2(L2)

6 C̃(u){‖u‖2L∞(L2) + ‖ut‖2L2(L2)}1=2 (3.28)

and

‖∇K�(Sh)‖L∞(L2)6 C̃(u){‖u‖2L∞(L2) + ‖ut‖2L2(L2)}; (3.29)

where the constants are independent of � and h.

With this lemma, we are now in position to formulate and prove the main theorem
of this section. The theorem states that Vh converges to K�(S�), and that Sh converges
to S, the solution to (1.1)–(1.3). We note that the rate of convergence of Vh to K�(S�)
is higher than that of Sh to S�, since the elements incorporate attributes of the diBusion
coe*cient.

Theorem 3.1. Suppose � and � are given by (1.6), and m(�); C0(�) are as de:ned in
(2.12) and (1.10), respectively. Furthermore, assume that 0¡�¡ Rp(�) − 2, where
Rp(�) is de:ned by the relation (A.13). Let S be the solution to the degenerate equation
(1.1)–(1.3) with Q=0 and q=0, and with coe5cients f and k which satisfy conditions
(1.4) and (1.5). If Mh satis:es approximation (3.1) and inverse (3.2) properties, and
Vh solves (3.14), then the approximate solution Sh := K�(Vh) satis:es the inequality

‖S − Sh‖2L∞((H 1)∗)+
∫ T0

0
(K�(S�)− K�(Sh); S� − Sh)

6 ch2�m(�)−1=(�+1) + C0(�) (3.30)

with constant c independent of � and h.

Remark 3.2. The condition, 0¡�¡ Rp(�), on the degeneracy of the conductivity, is
relatively mild. For example, if the maximal interior angle 3(�) of � is no larger than
24=3, then by its de$nition in (A.13) Rp − 2 = 2 and there is no additional restriction
on �. If 3 increases to 74=8, then the maximum value of � allowed is reduced to 1

3 .

Proof of Theorem 3.1. The proof will be split into two main steps by writing

S − Sh = (S − S�) + Ph(S� − Sh) + (I − Ph)(S� − Sh):

The two steps will estimate, respectively, the second and third terms, while inequality
(2.6) of Theorem 2.1 is used to estimate the $rst term by C0(�).
In order to obtain the desired results by applying T (S� − Sh) as a test function in

the weak formulation of the regularized problem (1.7)–(1.9), we $rst observe that for
all t ¿ 0

(S� − Sh)� = 0: (3.31)
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Indeed, Eqs. (1.7)–(1.9) imply

((S�)t ; ))− (f(S�)u;∇)) + (∇K�(S�);∇)) = 0 (3.32)

for all )∈Mh. By subtracting (3.18) from this equation, we obtain

((S� − Sh)t ; ))− ((f(S�)− f(Sh))u;∇))

+ (∇(K�(S�)− K�(Sh));∇)) = 0: (3.33)

If we set ) = 1∈Mh in this equation, then d=dt(S� − Sh)� = 0, in which case, (S� −
Sh)� = (S0 − Sh(0))�. for all t ¿ 0. But the initial condition (3.15) for the Galerkin
solution implies

(S0 − Sh(0))� = (S0 − Sh(0); 1) = (Ph(S0 − Sh(0)); 1) = 0;

which veri$es that mean values are preserved.
Step 1: We derive the estimate:

‖Ph(S� − Sh)‖2L∞(H−1
h )

+ &
∫ T0

0
(K�(S�)− K�(Sh); S� − Sh)(t) dt

6Ch2�m(�)−1=(1+�) (3.34)

with the de$nition of the norm ‖ · ‖H−1
h
given in the appendix. We use as test function

+=T (S� − Sh)∈H 1(�) in the weak formulation of the regularized saturation equation
for S� and use += Th(S� − Sh)∈Mh for the Galerkin formulation (3.18) with solution
Sh, where we recall that Th is de$ned as Eh ◦ T . Subtracting these two equations and
rearranging, we obtain the reference equation for Step 1:

((S� − Sh)t ; Th(S� − Sh)) + (∇(K�(S�)− K�(Sh));∇T (S� − Sh))

=− (∇ · (f(S�)− f(Sh))u; Th(S� − Sh))

− ((S�)t +∇ · f(S�)u; (T − Th)(S� − Sh)): (3.35)

We have used here the fact that the additional term

((I − Eh)K�(Sh); S� − Sh)

vanishes since K�(Sh) = Vh ∈Mh and so (I − Eh)Vh = 0.
For the $rst term on the left-hand side of the reference equation (3.35), we use the

identity

Thf = ThPhf ∀f∈ (H 1)∗; (3.36)

which follows directly from the de$nitions of T and the projections, in order to write

((S� − Sh)t ; Th(S� − Sh)) =
1
2
d
dt

‖Ph(S� − Sh)‖2H−1 : (3.37)

For the second term on the left-hand side of reference Eq. (3.35), we use the properties
of the operator T and the fact that S� − Sh has vanishing mean in order to see that it
reduces as

(∇(K�(S�)− K�(Sh));∇T (S� − Sh)) = (K�(S�)− K�(Sh); S� − Sh): (3.38)
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To handle the $rst term on the right-hand side of Eq. (3.35), we use Cauchy–
Schwartz, the arithmetic–geometric mean inequality, relation (2.2), and the properties
of T (see (3.36) and (A.27)), respectively, to obtain

|(∇ · (f(S�)− f(Sh))u; Th(S� − Sh))|
6 ‖f(S�)− f(Sh)‖L2‖u‖∞‖∇Th(S� − Sh)‖L2

6
C∗

4
‖f(S�)− f(Sh)‖2L2 + c(u)‖∇Th(S� − Sh)‖2L2

6
1
4
(K�(S�)− K�(Sh); S� − Sh) + c(u)‖Ph(S� − Sh)‖H−1

h
; (3.39)

which is of the desired form for employing the standard method of burying terms and
using GrTonwall’s lemma. We must $rst prepare the remaining terms. For the second
term on the right-hand side of reference equation (3.35), we set for convenience the
variable W := (S�)t +∇·f(S�)u, use the fact that T −Th is a symmetric operator and
follow in a similar manner to the estimates used in (3.39): here HTolder’s equality with
conjugate indices � and 2+ � replaces the Cauchy–Schwartz inequality, and inequality
(2.4) replaces (2.2), which results in

|(W; (T − Th)[S� − Sh])|6 ‖S� − Sh‖L2+�‖(T − Th)(W )‖L�

6
C∗∗

4
‖S� − Sh‖2+�L2+� + C‖(T − Th)(W )‖�L�

6
1
4
(K�(S�)− K�(Sh); S� − Sh)

+C‖(T − Th)(W )‖�L� : (3.40)

In this last expression, the rightmost term may be estimated by using the fact that Th=
EhT , and then applying the $nite element error estimates for the elliptic approximation,
as outlined in (A.21) of the appendix, in order to obtain

‖(T − Th)(W )‖L� = ‖(I − Eh)T (W )‖L�
6 ch2‖T (W )‖W 2; �

6 ch2‖W‖L� ; (3.41)

where the last inequality follows from the mapping properties of the operator T (see
(A.14) below) in the range 1¡�′ = 2+ �¡ Rp(�). This restriction on � is equivalent
to a restriction on � which depends on the parameter 3(�) appearing in the de$nition
of Rp(�) given in (A.13).
If we substitute identities (3.37) and (3.38) into the reference equation (3.35) for

Step 1, and follow by using inequalities (3.39), (3.40), and (3.41), we obtain
1
2
d
dt

‖Ph(S� − Sh)‖2H−1 +
1
2
(K�(S�)− K�(Sh); S� − Sh)

= c(u)‖Ph(S� − Sh)‖2H−1 + ch2�‖W‖�L� ; (3.42)
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where W= (S�)t+∇·f(S�)u. Applying GrTonwall’s inequality, and using our fact (2.14),
we have established the desired estimate (3.34) for Step 1 with norm for H−1 in place
of that of H−1

h . But the inverse property of Mh implies (A.28) (in the appendix) and
therefore we have

C‖Ph(S� − Sh)‖(H 1)∗ 6 ‖Ph(S� − Sh)‖H−1
h
6 ‖Ph(S� − Sh)‖(H 1)∗ (3.43)

and the proof of Step 1 is complete.
Step 2: We show that

‖(I − Ph)(S� − Sh)‖L∞((H 1)∗)6Ch�: (3.44)

De$ne parameter 0¡7¡ 1 by

7 := h1=(1+�); (3.45)

where we may assume that h is small enough so that 76min{�1; 1 − �2}, where �1
and �2 were prescribed in (1.5). We introduce as in [16,18] a new dependent variable
S7
�, de$ned as follows:

S7
� :=

{
max(S�; 7) if S�6 �2;

min(S�; 1− 7) if S� ¿�2:
(3.46)

Obviously, with S7
� de$ned in this way, we have

|S7
� − S�|6 7 (3.47)

and

k�(S7
�)¿C7�: (3.48)

We de$ne S7
h similarly and obtain the same estimates (3.47) and (3.48) where S� and

S7
� are replaced by Sh and S7

h, respectively. Using (3.48) we see

‖∇K�(S7
�)‖L2 = ‖k�(S7

�)∇S7
�‖L2¿C7�‖∇S7

�‖L2 ; (3.49)

which implies

‖∇S7
�‖L∞(L2)6 7−�‖∇K�(S7

�)‖L∞(L2): (3.50)

But in the weak sense ∇K�(S7
�) = ){76S�61−7}∇K�(S�), so our earlier estimate (2.11)

implies that

‖∇K�(S7
�)‖L∞(L2)6 ‖∇K�(S�)‖L∞(L2)6C (3.51)

and thus combining with (3.50) we obtain

‖∇S7
�‖L∞(L2)6C7−�: (3.52)

Similarly, if we use (3.29) this same proof shows that

‖∇S7
h‖L∞(L2)6C7−�: (3.53)
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Next recall the approximation property of the L2-projection, [2,12] which states for
j =−1; 0; 1 that

‖(I − Ph)+‖Hj 6Ch‖+‖Hj+1 ∀+∈Hj+1(�): (3.54)

It then follows directly that

‖(I − Ph)S�‖L∞(L2)6 ‖(I − Ph)(S� − S7
�)‖L∞(L2) + ‖(I − Ph)S7

�‖L∞(L2)
6C7+ Ch‖S7

�‖L∞(H 1)6C(7+ h7−�); (3.55)

where we have made use of inequality (3.47) and the mapping properties of Ph, the
approximation property (3.54) applied with j = 0, and estimate (3.52). But from its
de$nition, 7= h1=(1+�) and so substituting into (3.55) above, we get

‖(I − Ph)S�‖L∞(L2)6Ch1=(1+�): (3.56)

Similarly ‖(I − Ph)Sh‖L∞(L2)6Ch1=(1+�) and so we obtain

‖(I − Ph)(S� − Sh)‖L∞(L2)6Ch1=(1+�): (3.57)

Upon another application of the error estimate (3.54) with j = −1, we see that
‖(I − Ph)(S� − Sh)‖L∞(H−1)6Chh1=(1+�) and inequality (3.44) stated in Step 2 is
veri$ed.
Finally, by combining the inequalities established in Steps 1 and 2, together with the

estimate for S−S� provided by Theorem 2.1, the proof of Theorem 3.1 is complete.

We illustrate some immediate consequences of Theorem 3.1 and its proof by a
particular choice of the perturbation

k�(s) = max(k(s); c0��) 06 s6 1:

In this case, it is straightforward to estimate that C(�)6C0�2+� and m(�)¿ c0��.
Finally, let � = �(h) be given by

� = �0h9 with 9=
4 + 2�

2 + 4� + �2
(3.58)

for a $xed positive constant �0.

Corollary 3.1. Suppose 0¡�¡ Rp(�)− 2, with Rp(�) de:ned as in (A.13). Let � be
given by (1.6) and S be the solution to Eqs. (1.1)–(1.3) with Q=0 and q=0, whose
coe5cients f and k satisfy conditions (1.4) and (1.5). If Mh satis:es approximation
(3.1) and inverse (3.2) properties, then the approximate solution Sh := K�(Vh), where
Vh solves (3.14) with � as in (3.58), satis:es the estimates

‖S − Sh‖L∞((H 1)∗)6Ch9(2+�)=2; (3.59)

‖K�(Sh)− K�(S�)‖L2(L2)6Ch9(2+�)=2; (3.60)

‖S − Sh‖L2+�(L2+�)6Ch9; (3.61)

‖S − Sh‖L∞(L2)6Ch9(2+�)=2−1: (3.62)
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Proof. Estimates (3.59)–(3.61) are by now clear. Inequality (3.59) follows directly
from (3.30) with the designated assignment of �. Inequality (3.61) follows from (3.30)
of Theorem 3.1 together with inequality (2.4). Inequality (3.60) follows similarly, but
uses the simple pointwise inequality |K�(b)− K�(a)|26 ‖k‖∞(K�(b)− K�(a))(b− a)
which is uniform in �. Finally, to establish estimate (3.62) we notice that in the course
of the proof of Theorem 3.1 (see (3.3), (3.34) and (3.57), respectively) that we have

‖Ph(S� − Sh)‖2L∞(L2)6Ch−2‖Ph(S� − Sh)‖2L∞((H 1)∗)

6Ch2�−2m(�)−1=(1+�) (3.63)

‖(I − Ph)(S� − Sh)‖L∞(L2)6Ch1=(1+�): (3.64)

The proof is completed by combining this with estimate (2.19) from Lemma 2.3.

3.4. Additional error estimates

The following theorem was stated in [16] without proof in the one-dimensional case
where K has one degeneracy. In this subsection we give a multivariate proof, if K has
two degeneracies, for the special case where the regularization k� is de$ned by

k�(s) := max(k(s); ��); (3.65)

which, as we have seen, implies C(�)6 c�2+�, and m(�)¿ ��. In order to establish
this theorem and to provide the Galerkin error estimates in the next section, we as-
sume for the remainder of this paper that K�(S�) is su*ciently regular. In particular,
we assume

‖K�(S�)‖W 2; � 6C�(‖QK�(S�)‖L� + 1): (3.66)

This inequality holds, for example, under a diBusive 7ux assumption
@K�(S�)

@n
= 0 on @�: (3.67)

Indeed, if this condition holds, then since 1¡�¡ 2, it follows that �¡ Rp(�) and
so the elliptic regularity (see A.12) holds for the Neumann problem over domains �
which satisfy our standing assumptions. Hence,

‖K�(S�)− K�(S�)�‖W 2; � 6C(‖QK�(S�)‖L� + ‖K�(S�)‖L�): (3.68)

In what follows we use C and c for constants which are independent of the para-
meters � and h, but may depend on the Darcy velocity u.

Theorem 3.2. Suppose the hypotheses of Corollary 3.1 hold and �; 9 are given as in
(3.58). Furthermore, suppose that either condition (3.66) or condition (3.67) holds,
then

‖S − Sh‖L∞(L2+�)6Ch9=(2+�) min(1;�); (3.69)

‖K(S)− K�(Sh)‖L2(H 1)6Ch9=2 min(1;�): (3.70)
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Proof. By Theorem 2.3, it su*ces to establish the estimate

sup
06t6T

(K�(S�)− K�(Sh); S� − Sh) + ‖∇(K�(S�)− K�(Sh))‖2L2(L2)6Ch9min(1;�):

Set Wh = Eh(K�(S�)), and let ) =Wh − K�(Sh)∈Mh. Then (3.33) becomes

((S�)t − (Sh)t ; Wh − K�(Sh))− ((f(S�)− f(Sh))u;∇(Wh − K�(Sh)))

+ (∇(K�(S�)− K�(Sh));∇(Wh − K�(Sh))) = 0; (3.71)

which can be rewritten as

d
dt
(S� − Sh; K�(S�)− K�(Sh)) + ‖∇(K�(S�)− K�(Sh))‖2L2

= ((f(S�)− f(Sh))u;∇(Wh − K�(Sh)))

+ ((S� − Sh)t ; K�(S�)−Wh)

+ (S� − Sh; (K�(S�)− K�(Sh))t)

+ (∇(K�(S�)− K�(Sh));∇(K�(S�)−Wh)): (3.72)

The $rst term on the right-hand side of (3.72) can be rewritten as

((f(S�)− f(Sh))u;∇(Wh − K�(Sh))) = ((f(S�)− f(Sh))u;∇(Wh − K�(S�)))

+ ((f(S�)− f(Sh))u;∇(K�(S�)− K�(Sh))): (3.73)

So we can bound this term by

‖(f(S�)− f(Sh))u‖L2‖∇(Wh − K�(S�))‖L2 + C‖(f(S�)− f(Sh))u‖2L2
+ 1
4‖∇(K�(S�)− K�(Sh))‖2L2 : (3.74)

We can then hide the last term of (3.74) in the left-hand side of (3.72). The $rst term
of (3.74) is bounded as follows:

‖(f(S�)− f(Sh))u‖L2‖∇(Wh − K�(S�))‖L2
6C‖f(S�)− f(Sh)‖L2‖(I − Eh)K�(S�)‖H 1

6C‖S� − Sh‖L2‖(I − Eh)K�(S�)‖H 1 ; (3.75)

where we have used the fact that f is Lipschitz. Applying the elliptic approximation
estimate for H 1 to this inequality, followed by estimate (3.66), we then get

|((f(S�)− f(Sh))u;∇(Wh − K�(S�)))|
6Ch‖S� − Sh‖L2 |K�(S�)|H 2

6Ch‖S� − Sh‖L2 (‖QK�(S�)‖L2 + 1): (3.76)
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The second term on the right-hand side of (3.72) is bounded similarly:

|((S� − Sh)t ; Wh − K�(S�))|6 ‖(S� − Sh)t‖L2‖(I − Eh)K�(S�)‖L2
6Ch2‖(S� − Sh)t‖L2 (‖QK�(S�)‖L2 + 1); (3.77)

while the third term is estimated by

|(S� − Sh; (K�(S�)− K�(Sh))t)|6 ‖S� − Sh‖L2+�‖(K�(S�)− K�(Sh))t‖L� : (3.78)

Finally, the last term on the right-hand side of (3.72) is bounded as follows:

|(∇(K�(S�)− K�(Sh));∇(I − Eh)K�(S�))|
6 1

4‖∇(K�(S�)− K�(Sh))‖2L2 + C|(I − Eh)K�(S�)|2H 1

6 1
4‖∇(K�(S�)− K�(Sh))‖2L2 + Ch2(‖QK�(S�)‖L2 + 1): (3.79)

We can hide the $rst term on the right-hand side of (3.79) in the left-hand side of
(3.72). Now combining inequalities (3.72), (3.76)–(3.79) together, we obtain

d
dt
(S� − Sh; K�(S�)− K�(Sh)) +

1
2
‖∇(K�(S�)− K�(Sh))‖2L2

6C{h‖S� − Sh‖L2 + h2‖(S� − Sh)t‖L2 + h2}(‖QK�(S�)‖L2 + 1)
+C{‖S� − Sh‖L2+�‖(K�(S�)− K�(Sh))t‖L� + ‖f(S�)− f(Sh)‖L2}: (3.80)

Now integrate over the interval [0; T0] and use HTolder’s inequality to get

max
06t6T0

(S� − Sh; K�(S�)− K�(Sh))(t) + 1
2‖∇(K�(S�)− K�(Sh))‖2L2(L2)

6C{h‖S� − Sh‖L2+�(L2+�) + h2‖(S� − Sh)t‖L2(L2) + h2}h−9�=2

+C{‖S� − Sh‖L2+�(L2+�)‖(K�(S�)− K�(Sh))t‖L�(L�)
+‖(f(S�)− f(Sh))u‖L2(L2)}

+(S0 − Sh(0); K�(S0)− K�(Sh(0))); (3.81)

where we used the fact from (2.16) that ‖QK�(S�)‖L2(L2)6 cm(�)−1=2. The last term
of (3.81) is O(h9), by (3.59). Therefore, using (2.11), (3.61), (3.28), (2.15), (2.16)
and (3.58), respectively, we get

sup
06t6T0

(K�(S�)− K�(Sh); S� − Sh) + 1
2‖∇(K�(S�)− K�(Sh))‖2L2(L2)

6C{h9+1h−�9=2 + h2h−�9 + h9 + h2h−�9 + h9}
6Ch9: (3.82)

The proof is completed by using (2.4)–(2.5) and (2.19)–(2.20) together with the
triangle inequality.
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4. Discrete Galerkin method

In the previous section we have derived error estimates for a continuous Galerkin
method (the time variable remaining continuous) applied to the regularized problem
(1.7)–(1.9). In this section we discretize in time (backward scheme) and give cor-
responding error estimates. Again, here we follow Rose’s analysis in [16], but are
generalizing to the multidimensional case with two degeneracies, and making modi$-
cations of the analysis to establish a higher rate of convergence in the time step.
The $nite diBerence scheme used here is implicit with Vn

h = FVn+1
h , where F is a

nonlinear function. Thus one must show that this function is invertible for Qt chosen
su*ciently small. We show this is the case when u constant in time. Therefore at
each step Vn

h �→ Vn+1
h is well de$ned which leads to a sequence of nonlinear algebraic

equations. Finally we derive the error estimates for S − Sn
h , where Sn

h = H�(Vn
h ) and

H� is de$ned by (4.13).

4.1. The discretized problem and existence of a solution

We consider the backward-diBerence time discretization(
H�(Vn+1

h )− H�(Vn
h )

Qt
; )
)
− (f(H�(Vn+1

h ))un+1;∇)) + (∇Vn+1
h ;∇)) = 0 (4.1)

for all )∈Mh; n= 0; 1; : : : ; N − 1 with
PhH�V 0h = PhS0: (4.2)

The operator PhH� is bijective and the results of [16] guarantee a solution V 0h . We
show that for the time step su*ciently small, the mapping Vn

h → Vn+1
h given by (4.1)

is well de$ned. We get from (4.1) that

Vn
h = FVn+1

h (4.3)

for some function F :Mh → Mh. To show Vn
h → Vn+1

h is well de$ned it is enough to
show the function F appearing in (4.3) is bijective. We show this in two ways, the
$rst indicating why the nonlinear equations can be solved for small time step, and the
second giving a quantitative estimate for Qt to guarantee invertibility.

4.1.1. Indirect argument for invertibility
Let (ei)m1 be a basis for Mh, where m= m(h) = dim(Mh). Set ) = ei in (4.1). Then

(H�(Vn
h ); ei) = (H�(Vn+1

h ); ei)

−Qt{(f(H�(Vn+1
h ))un+1;∇ei)− (∇Vn+1

h ;∇ei)} (4.4)

for 06 i6N − 1. This can be rewritten in the vector form
PhH�(Vn

h ) = PhH�(Vn+1
h ) + QtF(PhH�(Vn+1

h )); (4.5)
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where F(PhH�(Vn+1
h )) is the vector in Mh with components (−f(H�(Vn+1

h )) +
∇Vn+1

h ;∇ei). If we choose maxQt su*ciently small then we see by (4.5) that the
mapping PhH�(Vn+1

h ) �→ PhH�(Vn
h ) is bijective, and, since PhH� is bijective, we

deduce that Vn+1
h → Vn

h is bijective for small Qt.

4.1.2. Direct argument for invertibility
Here we provide a su*cient condition on Qt to show that the nonlinear function F

is bijective and that the nonlinear equations are invertible. We assume for this analysis
that u is constant in time, or at least its variation in time is negligible.
Let Vn

h (resp. V
m
h ) be the iterated solution at time nQt (resp. mQt). Then by (4.1)

we have(
PhH�(Vn

h )− PhH�(Vm
h )

Qt
; )
)
+ ((f(H�(Vn+1

h ))− f(H�(Vm+1
h )))u;∇))

=
(
PhH�(Vn+1

h )− PhH�(Vm+1
h )

Qt
; )
)
+ (∇(Vn+1

h − Vm+1
h );∇)): (4.6)

Set ) = Vn+1
h − Vm+1

h , and use the relation Vn
h = FVn+1

h to get(
PhH�(FVn+1

h )− PhH�(FVm+1
h )

Qt
; V n+1

h − Vm+1
h

)

+((f(H�(Vn+1
h ))− f(H�(Vm+1

h )))u;∇(Vn+1
h − Vm+1

h ))

=
(
PhH�(Vn+1

h )− PhH�(Vm+1
h )

Qt
; V n+1

h − Vm+1
h

)

+ ‖∇(Vn+1
h − Vm+1

h )‖2L2(�): (4.7)

We can bound the second term of the left-hand side of (4.7) as follows:

|((f(H�(Vn+1))− f(H�(Vm+1
h )))u;∇(Vn+1

h − Vm+1
h ))|

6 1
2‖(f(H�(Vn+1

h ))− f(H�(Vn+1
h ))u‖2L2 + 1

2‖∇(Vn+1
h − Vm+1

h )‖2L2 : (4.8)

Now using Lemma 2.1 applied to K� (in place of K) we get

|((f(H�(Vn+1))− f(H�(Vm+1
h )))u;∇(Vn+1

h − Vm+1
h ))|

6
‖u‖2L∞(L∞)
2C∗ (H�(Vn+1

h )− H�(Vm+1
h ); V n+1

h − Vm+1
h )

+ 1
2‖∇(Vn+1

h − Vm+1
h )‖2L2

=
‖u‖2L∞(L∞)
2C∗ (PhH�(Vn+1

h )− PhH�(Vm+1
h ); V n+1

h − Vm+1
h )

+ 1
2‖∇(Vn+1

h − Vm+1
h )‖2L2 : (4.9)
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So identity (4.7) leads to

(PhH�(FVn+1
h )− PhH�(FVm+1

h ); V n+1
h − Vm+1

h )

+Qt
‖u‖2L∞(L∞)
2C∗ (PhH�(Vn+1

h )− PhH�(Vm+1
h ); V n+1

h − Vm+1
h )

¿ (PhH�(Vn+1
h )− PhH�(Vm+1

h ); V n+1
h − Vm+1

h )

+
1
2
Qt‖∇(Vn+1

h − Vm+1
h )‖2L2 (4.10)

and so,

(PhH�(FVn+1
h )− PhH�(FVm+1

h ); V n+1
h − Vm+1

h )

¿

(
1−Qt

‖u‖2L∞(L∞)
2C∗

)
(PhH�(Vn+1

h )− PhH�(Vm+1
h ); V n+1

h − Vm+1
h )

+
1
2
Qt‖∇(Vn+1

h − Vm+1
h )‖2L2 : (4.11)

Now we use the fact that PhH� is coercive [16] to get from (4.11)

(PhH�(FVn+1
h )− PhH�(FVm+1

h ); V n+1
h − Vm+1

h )

¿

(
1−Qt

‖u‖2L∞(L∞)
2C∗

)
‖Vn+1

h − Vm+1
h ‖2L2

+
1
2
Qt‖∇(Vn+1

h − Vm+1
h )‖2L2 : (4.12)

Thus, if the standard type of existence condition on the time step(
1−Qt

‖u‖2L∞(L∞)
2C∗

)
¿ 0 (4.13)

for nonlinear equations is satis$ed, then PhH�F is bijective; since it is clearly con-
tinuous [3,16] and PhH� is bijective [16], then F is also bijective. Thus by taking
Qt to satisfy (4.13), we can perform the backward solve to produce the solutions
V 0h ; V

1
h ; : : : ; V

n
h to the sequence of nonlinear algebraic equations which approximate the

solution to the nonlinear diBerential equations (3.14) and (3.15).

4.2. Error analysis

We are interested in estimating the error S(tn)−H�(Vn
h ) of the discrete time Galerkin

approximation to the diBerential equations. We set Sn
h := H�(Vn

h ), in which case the
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Eqs. (4.1) and (4.2), respectively, become(
Sn+1
h − Sn

h

Qt
; )
)
− (f(Sn+1

h )un+1;∇)) + (∇K�(Sn+1
h );∇)) = 0

for all )∈Mh; (4.14)

PhS0h = PhS0; (4.15)

where S0 is the initial saturation given as in (1.3). We then have the following fully
discretized version of Theorem 3.1.

Theorem 4.1. Suppose �; � are de:ned by (1.6) and m(�) is as de:ned in (2.12). Let
S� be the solution to the regularized equation (1.7)–(1.9) with Q=0 and q=0, and
with coe5cients f and k which satisfy conditions (1.4) and (1.5). Let Sn

h = H�(Vn
h ),

where Vn
h ∈Mh; n= 0; 1; : : : ; N − 1 solves (4.1) and (4.2). Then

max
06n6N

‖Sn
� − Sn

h‖2(H 1)∗ + &
N−1∑
0

Qt(K�(Sn+1
� )− K�(Sn+1

h ); Sn+1
� − Sn+1

h )

6C{h2�m(�)−1=(1+�) + Qt(�+2)=2}; (4.16)

where Sn
� := S�(tn).

Proof. Subtract (4.14) from (3.32) to get(
Sn+1
� − Sn

�

Qt
− Sn+1

h − Sn
h

Qt
; )

)
− ((f(Sn+1

� )− f(Sn
h))u

n+1;∇))

+ (∇(K�(Sn+1
� )− K�(Sn+1

h ));∇))

+

(
@Sn+1

�

@t
− Sn+1

� − Sn
�

Qt
; )

)
= 0 (4.17)

for all )∈Mh. If we set

@++n =
+n+1 − +n

Qt
;

then (4.17) can be rewritten as

(@+(S� − Sh)n; ))− ((f(Sn+1
� )− f(Sn+1

h ))un+1;∇))

+

(
@Sn+1

�

@t
− Sn+1

� − Sn
�

Qt
; )

)
+ (∇(K�(Sn+1

� )− K�(Sn+1
h ));∇)) = 0: (4.18)
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Next we set ) = Th(Sn+1
� − Sn+1

h ) in (4.18) to get

(@+Ph(S� − Sh)n; Th(Sn+1
� − Sn+1

h ))

+ (∇(K�(Sn+1
� )− K�(Sn+1

h ));∇Th(Sn+1
� − Sn+1

h ))

= ((f(Sn+1
� )− f(Sn+1

h ))un+1;∇Th(Sn+1
� − Sn+1

h ))

−
(
@Sn+1

�

@t
− @+Sn

�; Th(S
n+1
� − Sn+1

h )

)
; (4.19)

where Th is de$ned by (A.24).
The identity

1
2Qt

{‖+n+1‖2
H−1

h
− ‖+n‖2

H−1
h
}+ Qt

2
‖@++n‖2

H−1
h
= (Th(@++n); +n+1); (4.20)

which is the discretized analogue of the fact (T@+=@t; +)=1=2 d=dt(T+; +), is established
using the de$nition of Eh and Th for ‖+‖2H−1

h
= (Th+; +), and properties of Th = EhT .

If we apply this identity to += Ph(S� − Sh)∈Mh, then we obtain the estimate

1
2Qt

{‖Ph(Sn+1
� − Sn+1

h )‖2
H−1

h
− ‖Ph(Sn

� − Sn
h)‖2H−1

h
}

6
1
Qt
(Ph(Sn+1

� − Sn+1
h )− Ph(Sn

� − Sn
h); Th(S

n+1
� − Sn+1

h )): (4.21)

Upon substituting this estimate into identity (4.19) we obtain

1
2Qt

‖Ph(Sn+1
� − Sn+1

h )‖2
H−1

h
− 1
2Qt

‖Ph(Sn
� − Sn

h)‖2H−1
h

+(∇(K�(Sn+1
� )− K�(Sn+1

h ));∇Th(Sn+1
� − Sn+1

h ))

6 ((f(Sn+1
� )− f(Sn+1

h ))un+1;∇Th(Sn+1
� − Sn+1

h ))

−
(
@Sn+1

�

@t
− Sn+1

� − Sn
�

Qt
; Th(Sn+1

� − Sn+1
h )

)
: (4.22)

But, we get by de$nition of Eh (see (A.18)), and because Th(Sn+1
� − Sn+1

h )∈Mh,

(∇(K�(Sn+1
� )− K�(Sn+1

h ));∇Th(Sn+1
� − Sn+1

h ))

=(∇Eh(K�(Sn+1
� )− K�(Sn+1

h ));∇Th(Sn+1
� − Sn+1

h )): (4.23)

Next using the de$nition of Th (see (A.22) and (A.24)), and the fact that (Sn+1
� −

Sn+1
h )� = 0 (set ) = 1 in (4.14) and use (3.15)), we have

(∇(K�(Sn+1
� )− K�(Sn+1

h ));∇Th(Sn+1
� − Sn+1

h ))

= (Eh(K�(Sn+1
� )− K�(Sn+1

h )); (Sn+1
� − Sn+1

h ))
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= (K�(Sn+1
� )− K�(Sn+1

h ); Sn+1
� − Sn+1

h )

+ ((Eh − I)K�(Sn+1
� ); Sn+1

� − Sn+1
h ) (4.24)

since Vn+1
h = K�(Sn+1

h )∈Mh. We combine estimates (4.22) and (4.24) to yield
1
2Qt

‖Ph(Sn+1
� − Sn+1

h )‖2(H 1)∗ − 1
2Qt

‖Ph(Sn
� − Sn

h)‖2(H 1)∗

+(K�(Sn+1
� )− K�(Sn+1

h ); Sn+1
� − Sn+1

h )

6 ((f(Sn+1
� )− f(Sn+1

h ))un+1;∇Th(Sn+1
� − Sn+1

h ))

+|((I − Eh)K�(Sn+1
� ); Sn+1

� − Sn+1
h )|

−
(
@S�
@t

− Sn+1
� − Sn

�

Qt
; Th(Sn+1

� − Sn+1
h )

)
: (4.25)

The $rst term on the right-hand side of (4.25) can be bounded as follows:

((f(Sn+1
� )− f(Sn+1

h ))un+1;∇Th(Sn+1
� − Sn+1

h ))

6
1
2
C∗‖f(Sn+1

� )− f(Sn+1
h )‖2L2 +

1
2C∗ ‖∇ThPh(Sn+1

� − Sn+1
h )‖2L2

6
1
2
C∗‖f(Sn+1

� )− f(Sn+1
h )‖2L2 +

1
2C∗ ‖Ph(Sn+1

� − Sn+1
h )‖2

H−1
h
; (4.26)

where C∗ is as in (2.2). By Lemma 2.1 the $rst term on the right-hand side of (4.26)
can be hidden in the left-hand side of (4.25).
The second term on the right-hand side of (4.25) is bounded as follows:

|((I − Eh)K�(Sn+1
� ); Sn+1

� − Sn+1
h )|6C‖(I − Eh)K�(Sn+1

� )‖�L�

+
C∗∗

8
‖Sn+1

� − Sn+1
h ‖2+�L2+� (4.27)

by the arithmetic–geometric mean inequality. We can again hide the second term on
the right-hand side of (4.27) in the left-hand side of (4.25). Using the error estimate
for the elliptic projection and the inequality (3.66), we have for the $rst term

‖(I − Eh)K�(Sn+1
� )‖�L� 6Ch2�‖QK�(Sn+1

� )‖�L� : (4.28)

It remains to deal with the last term on the right-hand side of (4.25). For this,
we have

@Sn+1
�

@t
− Sn+1

� − Sn
�

Qt
=
1
Qt

∫
In
S�tt(�)(tn+1 − �) d�; (4.29)

where we use the Taylor expansion of S� about tn and In := [tn; tn+1]. By (1.7) it
follows that

S�tt = (−∇ · f(S�)u +QK�(S�))t : (4.30)
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Using (4.29) and (4.30) in the last term of (4.25) we get(
@Sn+1

�

@t
− Sn+1

� − Sn
�

Qt
; Th(Sn+1

� − Sn+1
h )

)

=
(
1
Qt

∫
In
((−∇ · f(S�)u)t(�)

+ (QK�(S�))t(�))(tn+1 − �) d�; Th(Sn+1
� − Sn+1

h )
)
: (4.31)

The divergence theorem together with (1.8) and (4.31) give(
@Sn+1

�

@t
− Sn+1

� − Sn
�

Qt
; Th(Sn+1

� − Sn+1
h )

)

=
(
1
Qt

∫
In
(f(S�)u)t(�)(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)

−
(
1
Qt

∫
In
(∇K�(S�))t(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)
: (4.32)

We estimate each of the terms of the right-hand side of (4.32) separately.
The :rst term is bounded as follows:(

1
Qt

∫
In
(f(S�)u)t(�)(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)

6
1
Qt

∫
In
‖(f(S�)u)t(�)‖L2 |tn+1 − �| d�‖∇Th(Sn+1

� − Sn+1
h )‖L2 : (4.33)

By the Cauchy–Schwartz inequality we have

1
Qt

∫
In
‖(f(S�)u)t(�)‖L2 |tn+1 − �| d�

6
1
Qt

‖(f(S�)u)t‖L2(L2(�); In)
(∫ tn+1

tn
(tn+1 − �)2 d�

)1=2

= (Qt)1=2‖(f(S�)u)t‖L2(L2(�); In): (4.34)

So (4.33) becomes(
1
Qt

∫
In
(f(S�)u)t(�)(tn+1 − �) d�;∇ThPh(Sn+1

� − Sn+1
h )

)

6 (Qt)1=2‖(f(S�)u)t‖L2(L2(�); In)‖∇ThPh(Sn+1
� − Sn+1

h )‖L2
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6 (Qt)=2‖(f(S�)u)t‖2L2(L2(�); In) + 1
2‖∇ThPh(Sn+1

� − Sn+1
h )‖2L2

= (Qt)=2‖(f(S�)u)t‖2L2(L2(�); In) + 1
2‖Ph(Sn+1

� − Sn+1
h )‖2

H−1
h
; (4.35)

where we used identity (A.27) for the last equality.
The second term on the right-hand side of (4.32) can be rewritten as follows:(

1
Qt

∫
In
(∇K�(S�))t(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)

=
(
1
Qt

∫
In
(∇EhK�(S�))t(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)

=
(
1
Qt

∫
In
(EhK�(S�))t(tn+1 − �) d�; Sn+1

� − Sn+1
h

)
: (4.36)

Here we made use of the de$nition of Eh (see (A.18)) and the de$nition of Th (see
(A.22)–(A.24)). Using again the Cauchy–Schwartz inequality and (4.36) we get∣∣∣∣

(
1
Qt

∫
In
(∇K�(S�))t(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)∣∣∣∣
6

1
Qt

∫
In
‖EhK�(S�)t‖L2 (tn+1 − �) d�‖Sn+1

� − Sn+1
h ‖L2 : (4.37)

Also ∫
In
‖Eh(K�(S�))t(�)‖(tn+1 − �) d�

6 ‖EhK�(S�)t‖L2(L2(�); In)
(∫ tn+1

tn
(tn+1 − �)2 d�

)1=2

6 ‖EhK�(S�)t‖L2(L2(�); In)(Qt)3=2: (4.38)

So (4.37) becomes∣∣∣∣
(
1
Qt

∫
In
(∇K�(S�))t(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)∣∣∣∣
6 (Qt)1=2‖EhK�(S�)t‖L2(L2(�); In)‖Sn+1

� − Sn+1
h ‖L2(�); (4.39)

which then gives∣∣∣∣
(
1
Qt

∫
In
(∇K�(S�))t(tn+1 − �) d�;∇Th(Sn+1

� − Sn+1
h )

)∣∣∣∣
6C(Qt)�=2‖EhK�(S�)t‖�L2(L2(�); In)

+
C∗∗

8
‖Sn+1

� − Sn+1
h ‖2+�L2(�)
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6C(Qt)�=2‖EhK�(S�)t‖�L2(L2(�); In)

+
C∗∗

8
‖Sn+1

� − Sn+1
h ‖2+�L2+�(�): (4.40)

Now using estimates (4.21), (4.26), (4.27), (4.28), (4.35) and (4.40), after hiding the
appropriate terms, we get

1
2Qt

‖Ph(Sn+1
� − Sn+1

h )‖2
H−1

h
− 1
2Qt

‖Ph(Sn
� − Sn

h)‖2H−1
h

+
1
4
(K�(Sn+1

� )− K�(Sn+1
h ); Sn+1

� − Sn+1
h )

6C
{
‖Ph(Sn+1

� − Sn+1
h )‖2

H−1
h
+ h2�‖QK�(Sn+1

� )‖�L�

+
Qt
2
‖(f(S�)u)t‖2L2(L2(�); In) + (Qt)�=2‖EhK�(S�)t‖�L2(L2(�); In)

}
: (4.41)

Next, multiplying (4.41) by Qt, summing from n= 0 to n= m− 1, with 0¡m6N ,
and using the fact that Ph(S0� − S0h) = 0, we obtain

1
2
‖Ph(Sm

� − Sm
h )‖2H−1

h
+
1
4

m−1∑
0

Qt(K�(Sn+1
� )− K�(Sn+1

h ); Sn+1
� − Sn+1

h )

6C

{
m−1∑
0

Qt‖Ph(Sn+1
� − Sn+1

h )‖2
H−1

h
+ h2�

m−1∑
0

Qt‖QK�(Sn+1
� )‖�L�

+Qt2
m−1∑
0

‖(f(S�)u)t‖2L2(L2(�); In)

+ (Qt)(�+2)=2
m−1∑
0

‖EhK�(S�)t‖�L2(L2(�); In)
}
: (4.42)

Next using the discrete GrTonwall Lemma (see [6,10]) and the fact 16 �6 2, we get

max
06n6N

‖Ph(Sn
� − Sn

h)‖2H−1
h
+ &

N−1∑
0

Qt(K�(Sn+1
� )− K�(Sn+1

h ); Sn+1
� − Sn+1

h )

6C

{
h2�

N−1∑
0

Qt‖QK�(Sn+1
� )‖�L�

+(Qt)(�+2)=2(‖(f(S�)u)t‖2L2(L2) + ‖EhK�(S�)t‖�L2(L2))
}
: (4.43)

Since ∑
06n6N

Qt‖K�(Sn
�)‖�W 2; � → ‖K�(S�)‖�L�(W 2; �)
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as Qt → 0, we have∑
06n6N

Qt‖K�(Sn
�)‖�W 2; � 6Cm(�)−1=(1+�); (4.44)

where m(�) is de$ned by (2.12), and we have used inequalities (3.66) and (2.14)
together with Eq. (1.7).
For the second term of the right-hand side of (4.43), we observe by (2.11) and

(2.3), and [18] that ‖f(S�)t‖L2(L2) and ‖EhK�(S�)t‖L2(L2) are bounded independently of
�, and h. Thus (4.43) becomes

max
06n6N

‖Ph(Sn
� − Sn

h)‖2H−1
h
+ &

N−1∑
0

Qt(K�(Sn+1
� )− K�(Sn+1

h ); Sn+1
� − Sn+1

h )

6C{h2�m(�)−1=(1+�) + (Qt)(�+2)=2} (4.45)

An immediate consequence of (4.45) is the following.

N−1∑
0

‖K�(Sn+1
� )− K�(Sn+1

h )‖2L2Qt6C{h2�m(�)−1=(1+�) + (Qt)(�+2)=2} (4.46)

and

N−1∑
0

Qt‖Sn+1
� − Sn+1

h ‖2+�L2+� 6C{h2�m(�)−1=(1+�) + (Qt)(�+2)=2}: (4.47)

To obtain the desired estimate for Sn
� − Sn

h , we will use (4.45) together with an
estimate for (I − Ph)(Sn

� − Sn
h). This estimate however requires the following Lemma.

Lemma 4.1. For K� and Sn
h as in Theorem 4.1, there is a positive constant C so that

max
06n6N

‖∇K�(Sn
h)‖L26C: (4.48)

Proof. In (4.14) set ) = K�(Sn+1
h )− K�(Sn

h)∈Mh to get(
Sn+1
h − Sn

h

Qt
; K�(Sn+1

h )− K�(Sn
h)
)
− (f(Sn+1

h )un+1;∇(K�(Sn+1
h )− K�(Sn

h)))

+ (∇K�(Sn+1
h );∇(K�(Sn+1

h )− K�(Sn
h))) = 0: (4.49)

This yields (Cauchy–Schwartz)(
Sn+1
h − Sn

h

Qt
; K�(Sn+1

h )− K�(Sn
h)
)
+
1
2
‖∇K�(Sn+1

h )‖2L2 −
1
2
‖∇K�(Sn

h)‖2L2

6 (f(Sn+1
h )un+1;∇(K�(Sn+1

h )− K�(Sn
h))): (4.50)
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The right-hand side of (4.50) can be rewritten as follows:

(f(Sn+1
h )un+1;∇(K�(Sn+1

h )− K�(Sn
h)))

= (f(Sn+1
h )un+1;∇K�(Sn+1

h ))− (f(Sn
h)u

n;∇K�(Sn
h))

+ (f(Sn
h)u

n − f(Sn+1
h )un+1;∇K�(Sn

h))

6 (f(Sn+1
h )un+1;∇K�(Sn+1

h ))− (f(Sn
h)u

n;∇K�(Sn
h))

+
C̃
2Qt

‖f(Sn
h)u

n − f(Sn+1
h )un‖2L2 + CQt‖∇K�(Sn

h)‖2L2

+
C̃
2Qt

‖f(Sn+1
h )(un+1 − un)‖2L2 : (4.51)

The last term on the right-hand side of (4.51) is bounded by

1
2 C̃Qt‖ut‖2L∞‖f(Sn+1

h )‖2L∞ : (4.52)

Now hide the second term of the right-hand side of (4.51) in the left-hand side of
(4.50) by inequality (2.2), by making C̃ su*ciently small. Combine (4.50) and (4.51),
sum over 06 n6m, and use the discrete GrTonwall Lemma, to complete the proof of
the lemma.

In order to complete the proof of Theorem 4.1, we use the inequality
max06n6N‖∇K�(Sn

�)‖L26C established by Lemma 3.1, and follow the analysis done
in (3.44)–(3.57), in order to get

max
06n6N−1

‖(I − Ph)(Sn+1
� − Sn+1

h )‖(H 1)∗ 6Ch� (4.53)

The proof of the theorem is completed by assuming the inverse estimates (3.2), and
using estimates (3.43), (4.45), and (4.53).

If, as in Section 3, we take � = �0h9 with 9 = (4 + 2�)=(2 + 4� + �2), and if we
consider the speci$c perturbation de$ned by (2.17), then the conclusion of Theorem 4.1
becomes

max
06n6N−1

‖Sn+1
� − Sn+1

h ‖2(H 1)∗ +
N−1∑
0

Qt(K�(Sn+1
� )− K�(Sn+1

h ); Sn+1
� − Sn+1

h )

6C{h(2+�)9 + (Qt)(�+2)=2}: (4.54)

Finally we have the following

Corollary 4.1. Under the hypotheses of Theorem 4.1 we have

max
06n6N

‖S(tn)− Sn
h‖2(H 1)∗ 6C{h2�m(�)−1=(1+�) + C(�) + (Qt)(�+2)=2} (4.55)
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and
N−1∑
0

Qt‖S(tn+1)− Sn+1
h ‖2+�L2+� 6C{h2�m(�)−1=(1+�) + C(�) + (Qt)(�+2)=2}; (4.56)

where C(�) is de:ned by (1.10), and m(�) de:ned by (2.12).

Estimate (4.56) does not require the inverse estimate assumption (3.2), but we do
need this assumption for estimate (4.55). Estimate (4.56) is a direct consequence of
Theorem 2.1 and estimate (4.47). Estimate (4.55) is a direct consequence of
Theorems 2.1 and 4.1.

Appendix A. Poisson solutions—regularity and approximation

In [11], properties of the Poisson Solution Operator T were given which were needed
in our development and are summarized here for convenience. In addition, we de$ne
the Mean-Value Preserving Elliptic Projection onto approximating subspaces, the cor-
responding discrete version of the operator T , and give some of their properties which
are required for our analysis.

A.1. The Poisson solution operator

The elliptic boundary value problem


−Q!= f in �;

@!
@n
= 0 on @�;

!� = 0

(A.1)

has a unique solution ! =: Sf with !∈H 1 when f∈H−1 and f� vanishes (see
[2, Sections 5.2 and 5.3]). Therefore for any f∈H−1 the boundary value problem



−Qu= f − f� in �;

@u
@n
= 0 on @�;

u� = f�

(A.2)

has a unique solution u∈H 1 given by u := S(f − f�) + f�, and we de$ne the
Mean-Value Preserving Elliptic Solution operator T : (H 1)∗ → H 1 by T (f) = u. A
more convenient equivalent norm for H 1 is de$ned by (A.9) below and is closely
related to T . The weak formulation of (A.2) is given by

(∇u;∇+) = (f;+)− (f�; +)

= (f;+)− f�+�

= (f;+)− (Tf)�+� (A.3)
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for all +∈H 1 and so

(∇(Tf);∇+) = (f;+)− f�+�: (A.4)

In particular, if we take += Tf, then we obtain

‖∇Tf‖2L2 = (f; Tf)− (f�)2 = (f; Tf)− (Tf)2�: (A.5)

The operator T is linear, symmetric and positive de$nite [11,18]

(Tf; g) = (f; Tg) for all f; g∈ (H 1)∗ (A.6)

and from (A.5) it follows that

(Tf; f) = ‖∇Tf‖2L2 + (Tf)2� = ‖∇Tf‖2L2 + (f�)2: (A.7)

With these properties in mind we can de$ne on (H 1)∗ the norm:

&f&(H 1)∗ := (Tf; f)
1=2 (A.8)

which is the dual norm for H 1, when H 1 is equipped with the equivalent norm

&u&H 1 := (‖∇u‖2L2 + (u�)2)1=2: (A.9)

With these de$nitions we get the relationship

(Tf; f) =&Tf&
2
H 1 � ‖Tf‖2H 1 ; (A.10)

where � means equivalent within $xed constants independent of f. The proof of
the equivalence is a simple application of PoincarWe’s inequality (see e.g [7]) in one
direction and HTolder inequality in the other.

Proposition A.1. Suppose f belongs to (H 1)∗, then

(Tf; f)1=2 = ‖f‖(H 1)∗ ; (A.11)

in the sense of the norm (A.9).

The results of [12, Chapter 4] further extend the properties of the operator T to more
general Sobolev spaces over convex polygonal domains in R2. In particular, elliptic
a priori estimates of the form

‖u‖W 2; p(�)6 c�{‖Qu‖Lp + ‖u‖Lp}; (A.12)

are established (see, inequality (4,1,2) of [12] and its proof using Theorem 4.3.2.4 and
Remark 4.3.2.5), under the assumption that 1¡p¡ Rp(�), where

Rp(�) :=
(
1− 4

23(�)

)−1
(A.13)

and 3(�) is de$ned as the maximal interior angle of the polygon �. Hence in this
range of p it follows that

‖Tf‖W 2; p(�)6 c�{‖f − f�‖Lp + ‖Tf‖Lp}6 c‖f‖Lp : (A.14)

The last inequality on the right-hand side of inequality (A.14) (i.e. the boundedness
of T on Lp) follows by the Sobolev embedding theorem (since d6 2), the fact that
the result holds in the case p= 2, and HTolder’s inequality.
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From [11], we also have the following result:

Proposition A.2. For smooth f, the operators T and @=@t commute
@
@t
(Tf) = T

(
@f
@t

)
: (A.15)

Furthermore, if f∈H 1(�) and
@f
@n
= 0 on @�; (A.16)

then

T (Qf) = Q(Tf): (A.17)

A.2. The mean-value preserving projection

Let {Mh}h¿0 be a family of $nite dimensional spaces (see, for example,
[2, Chapter 4]) such that Mh ⊂ H 1(�). Let f∈H 1, then{

(∇fh;∇)) = (∇f;∇)) ∀)∈Mh;

(fh)� = f�

(A.18)

has unique solution in Mh. We de$ne the mean-value preserving operator Eh :H 1(�)→
Mh by Eh(f) := fh where fh is the unique solution to (A.18). By the de$nition of
the projection Eh and orthogonality it follows that

06 ‖∇(f − Ehf)‖2L2 + ‖∇Ehf‖2L2 = ‖∇f‖2L2
and so for f∈H 1(�), there holds

‖∇Ehf‖L26 ‖∇f‖L2 ; (A.19)

‖Ehf‖H 16 ‖f‖H 1 : (A.20)

In fact, by using a duality argument (see [2, Section 7.5]), the projection Eh can be
shown to be bounded on W 1;p(�) for all 1¡p¡∞, and therefore a corresponding
Cea estimate holds for the elliptic projection. This and another lifting argument then
provides a mean-preserving second order elliptic error estimate for Eh of the form

‖f − Ehf‖Lp 6 ch2‖f‖W 2; p(�) (A.21)

if 1¡p′ ¡ Rp(�), where Rp is de$ned as in (A.13) and p′ is the conjugate index
to p.

A.3. The discrete analogue of the solution operator

We consider the discretized elliptic problem of $nding for each wh ∈Mh a solution
f∈H 1(�)∗ such that{

(∇wh;∇)) = (f − f�; )) ∀)∈Mh;

(wh)� = (f)�:
(A.22)
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By the de$nition of the solution operator T to (A.2) there holds{
(∇Tf;∇)) = (f − f�; )) ∀)∈Mh;

(Tf)� = (f)�
(A.23)

and so

Th := Eh ◦ T : H 1(�)∗ → Mh (A.24)

is the solution operator to the discrete problem (A.22), that is wh=Eh(Tf). It follows
directly [11,18] that the operator Th is linear, symmetric in the sense

(Thf; g) = (f; Thg) for all f; g∈ (H 1)∗ (A.25)

and is non-negative since

(Thf; f) = ‖∇Thf‖2L2 + (f�)2¿ 0: (A.26)

Although ) → (Th); ))1=2 is only a semi-norm on (H 1)∗, it is a norm when restricted
to Mh,

‖)‖H−1
h
= (Th); ))1=2 = (‖∇Th)‖2L2 + ()�)2)1=2: (A.27)

In fact, Rose [17, Lemma 4.4] established the following:

Lemma A.1. If ‖)‖(H 1)∗ is de:ned by (A.11), then there is a positive constant C
so that

C‖)‖(H 1)∗ 6 ‖)‖H−1
h
6 ‖)‖(H 1)∗ ∀)∈Mh: (A.28)

By combining the elliptic error estimates (A.21) with the elliptic regularity of T
(A.12) the following lemma follows immediately.

Lemma A.2. If the discrete solution operator Th is de:ned by (A.24), then

‖(T − Th)(f)‖Lp 6 ch2‖f‖Lp (A.29)

if max(p;p′)¡ Rp(�), where Rp(�) is de:ned as in (A.13).
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