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Abstract We develop two characteristic methods for the solution of the linear advection dif�

fusion equations which use a second order Runge�Kutta approximation of the characteristics

within the framework of the Eulerian�Lagrangian localized adjoint method� These methods nat�

urally incorporate all three types of boundary conditions in their formulations� are fully mass

conservative� and generate regularly structured systems which are symmetric and positive def�

inite for most combinations of the boundary conditions� Extensive numerical experiments are

presented which compare the performance of these two Runge�Kutta methods to many other well

perceived and widely used methods which include many Galerkin methods and high resolution

methods from �uid dynamics�

Key words characteristic methods� comparison of numerical methods� Eulerian�Lagrangian

methods� numerical solutions of advection�di�usion equations� Runge�Kutta methods�

� Introduction

Advection�di�usion equations are an important class of partial di�erential equations that
arise in many scienti�c �elds including �uid mechanics� gas dynamics� and atmospheric
modeling� These equations model physical phenomenon characterized by a moving front�
In �uid dynamics� for example� the movement of a solute in ground water is described by
such an equation� Since these equations normally have no closed form analytical solutions�
it is very important to have accurate numerical approximations� When di�usion dominates
the physical process� standard �nite di�erence methods �FDM� and �nite element methods
�FEM� work well in solving these equations� However� when advection is the dominant pro�
cess� these equations present many numerical di�culties� In fact� standard �nite element and
�nite di�erence methods produce solutions which exhibit non�physical oscillations� excessive
numerical di�usion which smears out sharp fronts� or a combination of both 	
�� ���

Many specialized schemes have been developed to overcome the di�culties mentioned�
One class of these methods� usually referred to as the class of Eulerian methods� uses an
Eulerian �xed grid and improved techniques� such as upstream weighting� to generate more
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accurate approximations� Most of the methods in this class are characterized by ease of for�
mulation and implementation� however their solutions su�er from excessive time truncation
errors� Moreover� they put a strong limitation on the Courant number and hence require very
small time steps to generate stable solutions� Among these methods are the Petrov�Galerkin
FEM methods 	�� �� �� � which are improvements over the standard Galerkin FEM that
incorporate upwinding in the space of the test functions� Also included in the class of Eule�
rian methods are the streamline di�usion FEM methods �SDM� 	� ��� 
�� ��� �
� ��� �� ���
and the continuous and discontinuous Galerkin methods �CGM� DGM� 	
�� ��� ��� �
� ����
The SDM improve over the standard space�time Galerkin FEM by adding a multiple of
the �linearized� hyperbolic operator of the problem considered to the standard test func�
tions� Thus they add numerical di�usion only in the direction of the streamlines� The SDM
formulations have a free parameter which determines the amount of di�usion applied and
therefore has a great e�ect on the accuracy of these methods� In practice� this parameter
should be large enough to avoid oscillations in the solution� but not too large to damp the
solution� A clear choice of this parameter is not known� in general� and is heavily problem
dependent� The CGM and DGM are well suited for purely hyperbolic equations and recently
have been extended to solve the advection�di�usion equations� They are space�time explicit
methods in which� starting with the initial time solution and Dirichlet data at the in�ow
boundary� one would successively iterate over the elements of a quasi�uniform triangulation
of the space�time domain in an order consistent with the domain� solving a local system
over each element� In addition to the methods mentioned above� the class of Eulerian meth�
ods includes the high resolution methods in �uid dynamics such as the Godunov methods�
the total variation diminishing methods �TVD�� and the essentially non�oscillatory methods
�ENO� 	��� ��� �
� ��� 
�� 
�� ��� ��� ��� ���� These methods� as well as the CGM and
DGM� are well suited for advection�di�usion equations with small di�usion coe�cients and
in general impose an extra stability restriction on the size of the time step taken based on the
magnitude of this coe�cient� Therefore� they are very sensitive to changes in the di�usion
coe�cient� which in practical problems is likely to have large values at certain points�

Another class of methods� usually known as characteristic methods� makes use of the
hyperbolic nature of the governing equation� These methods use a combination of Eulerian
�xed grids to treat the di�usive component� and Lagrangian coordinates by tracking particles
along the characteristics to treat the advective component� Included in this class are the
Eulerian�Lagrangian methods �ELM�� the modi�ed methods of characteristics �MMOC��
and the operator splitting methods 	
� ��� ��� 
�� 
�� 
� ��� ��� ��� ��� ��� �� ��� These
methods have the desirable advantage of alleviating the restrictions on the Courant number�
thus allowing for large time steps� Furthermore� the Lagrangian treatment in these methods
greatly reduces the time truncation errors which are present in Eulerian methods� On the
other hand these methods have di�culty in conserving mass and treating general boundary
conditions� The Eulerian�Lagrangian localized adjoint methods �ELLAM� were developed
as an improved extension of the characteristic methods that maintains their advantages but
enhances their performance by conserving mass and treating general boundary conditions
naturally in their formulations� The �rst ELLAM formulations were developed for constant
coe�cient advection�di�usion equations 	�� ���� The strong potential that these FEM based
formulations and their numerical results have demonstrated have led to the development
of additional formulations for variable�coe�cient advection di�usion equations 	�� �� and
for nonlinear equations 	��� as well as �nite volume formulations 	�� 
��� However� because
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the characteristics for variable�coe�cient advection�di�usion equations cannot be tracked
exactly in general� many characteristic and ELLAM methods that have been developed use
a backward Euler approximation for these characteristics due to its simplicity and stability�
These �backward Euler� schemes are second order accurate in space but only �rst order
accurate in time�

An ELLAM based formulation which uses a second order approximation for the char�
acteristics was developed recently for �rst�order advection�reaction equations 	��� This
formulation was shown to be of second order in both space and time� Unlike the �rst�order
equations� similar treatment for the advection�di�usion equations is more problematic since
one needs to treat the di�usive component and its partial derivatives �with respect to the
rectangular and characteristic coordinates� carefully along the characteristics to produce
systems having desirable structure� In addition� boundary treatment is more involved be�
cause at both the in�ow and out�ow boundary data can be speci�ed in many forms which
then need to be incorporated into the formulations� In this paper we develop characteris�
tic methods for the one�dimensional linear advection�di�usion equations� based on a second
order Runge�Kutta approximation of the characteristics� We present a backward tracking
�BRKC� and a forward tracking �FRKC� Runge�Kutta characteristic scheme� both of which
are mass conservative and incorporate boundary conditions naturally in their formulations�
These methods� which can be thought of as generalizations of the ELLAM schemes� generate
tridiagonal �regularly structured in multi�dimensions� matrices which are symmetric �except
at the in�ow boundary� and positive de�nite that can be solved e�ciently� Moreover� we
provide the results of some extensive numerical experiments which compare the performance
of the two methods developed to many of the methods mentioned above�

This paper is organized as follows� In Section 
 we develop a reference equation based on
exact characteristic tracking� In Section � we present the two characteristic schemes BRKC
and FRKC which are based on a backward tracking and a forward tracking algorithm�
respectively� We also give a detailed description of boundary treatment� in addition to some
numerical experiments which demonstrate the order of convergence of the two schemes� In
Section � we give a brief description of some well studied and widely used methods which are
known to give good approximations to the advection di�usion equations� Section  contains
the results of the numerical experiments that compare the performance of the two schemes
developed in Section � and the other methods described in Section ��

� Development of the Method

We consider the one�dimensional linear variable�coe�cient advection�di�usion equation

Lu � ut � �V �x� t�u �D�x� t�ux�x � f�x� t�� x � �a� b�� t � 	�� T ��

u�x� �� � uo�x�� x � 	a� b��
�
���

where V �x� t� and D�x� t� are the velocity �eld and the di�usion coe�cient� respectively�
D�x� t� is assumed to be positive throughout the domain� To simplify our presentation�
we also assume V �a� t� and V �b� t� are positive� i�e� we set x � a and x � b to be the
in�ow and out�ow boundaries� respectively� In many advection�dominated applications�
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jD�x� t�j �� jV �x� t�j� therefore� methods devised to solve equation �
��� should handle this
case accurately� We consider general boundary conditions with any combination of Dirichlet�
Neumann� or Robin conditions at the in�ow and out�ow boundaries� The function g�t� is
used to denote the time dependence to specify the boundary condition at x � a and h�t�
for the out�ow boundary at x � b� The Dirichlet� Neumann� and Robin conditions are
formulated by the requirements

u�c� t� � ���t�� t � ��� T ��

��Dux��c� t� � ���t�� t � ��� T ��

�V u�Dux��c� t� � ���t�� t � ��� T ��

�
�
�

respectively� where � � g when c � a and � � h when c � b�

��� Variational Formulation and Characteristic Curves

The domain of problem �
���� is 	a� b�� 	�� T � which we partition in space and time as follows�

� � t� � t� � � � � � tN � T�

a � xn� � xn� � � � � � xnIn � b� n � �� �� � � � � N �
�
���

for positive integers N � In �n � �� �� ���� N�� We utilize space�time test functions that vanish
outside 	a� b�� �tn� tn���� which enables us to concentrate on one time period �tn� tn���� Our
test functions are discontinuous in time and allow for di�erent meshes at di�erent time peri�
ods� For notational simplicity� we suppress the temporal index on the grid� The variational
formulation of equation �
��� on the domain � � 	a� b�� �tn� tn���� obtained by multiplying
that equation by a test function w �which we describe in more detail below� and integrating
by parts� becomes

Z b

a
u�x� tn���w�x� tn��� dx�

Z tn��

tn

Z b

a
Duxwx dxdt

�
Z tn��

tn
�V u�Dux�w jba dt�

Z tn��

tn

Z b

a
u�wt � V wx� dxdt

�
Z b

a
u�x� tn�w�x� tn�� dx�

Z tn��

tn

Z b

a
fw dxdt�

�
���

where we use the notation w�x� tn�� � limt�tn�
w�x� t� due to the discontinuity of w�x� t� at

time tn�

The principle of the localized adjoint methods �LAM� requires the test functions to be
chosen from the solution space of the homogeneous adjoint equation

L�w � �wt � V �x� t�wx � �D�x� t�wx�x � �� �
��

However� the solution space of this equation is in�nite dimensional� Thus we need to split
this equation to determine a �nite number of test functions� In fact� di�erent splittings lead
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to di�erent approximation schemes �see 	�� 
��� Due to the Lagrangian nature of the exact
solution� a natural splitting is

wt � V �x� t�wx � ��

�D�x� t�wx�x � ��
�
���

The ELLAM generalizes the framework of the localized adjoint methods by requiring the
test functions to satisfy the �rst equation in �
��� exactly or even approximately �so that
the last term on the left hand side of equation �
��� vanishes exactly or approximately��
However� the ELLAM does not require the second equation in �
��� to be satis�ed� thus one
does not have to choose the test functions w�x� t� to be of a complicated form in space� In
our formulation� we choose the test functions to be piecewise linear in space� as in the linear
standard FEM� and to be constant along characteristics which we discuss below�

The characteristic curves of �
��� are given by the solutions of initial value problems for
the ordinary di�erential equation

dy

dt
� V �y� t�� �
���

We denote the characteristic curve emanating from a given point ��x� �t� with t � 	tn� tn���� by

y � X��� �x� �t�� �
���

where � is the time position parameter along that characteristic� Furthermore� we introduce
below some notation that is described by the following relations

�x � X�tn���x� tn��

x� � X�tn�x� tn����

b��t� � X�tn� b� t��

a � X�t��x��x� tn����

b � X��t�x��x� tn��

�
���

We de�ne �x and x� as the head �using forward tracking� and the foot �using backward
tracking�� respectively� of the characteristics� The foot of a characteristic with head on the
out�ow boundary is denoted by b��t� for t � 	tn� tn���� We also de�ne �t�x� and t��x� as
the exit times of the characteristics X���x� tn� and X���x� tn��� at the out�ow and in�ow
boundaries� respectively �see Figure ��b�� The general time increment over the domain may
then be written as

�t�x� �� �t�x�� t��x��

where we de�ne t��x� � tn for characteristics with feet not on the in�ow boundary� and
similarly �t�x� � tn�� for characteristics with heads not belonging to the out�ow boundary�
By implicitly di�erentiating the fourth relation in �
��� for t��x� with respect to x� and
the relation X��� b� t� � b�

R �
t V �X�s� b� t�� s�ds� for characteristics X��� b� t� with � � 	tn� t�

originating at points �b� t� on the out�ow boundary� with respect to t� we get the following
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equations �for partial derivatives of the characteristics�

Xx�t
��x��x� tn��� � �V �a� t��x��

dt��x�
dx

�

Xt��� b� t�j��t � �V �b� t��

�
����

in respective order� In the following section� we consider approximations of the characteris�
tics� de�ned by second order Runge�Kutta approximations�

��� Reference Equation

After we have introduced the notion of the characteristics� we are able to �nd a reference
equation by expanding certain of the integrals in the variational formulation �
���� First we
assume that we can exactly track the characteristics� thus the same reference equation is
generated if we use either forward or backward tracking algorithms�

����� Treatment of the Source Term

We start with the source term �second term on the right hand side of equation �
���� which
we break as follows�

Z tn��

tn

Z b

a
fw dxdt �

ZZ
��

fw dyds�
ZZ

��

fw dyds�
ZZ

��

fw dyds� �
����

Here the region �� represents all points which lie on characteristics with feet on the in�ow
boundary� �� represents all points on characteristics with heads on the out�ow boundary�
and �nally �� represents the remainder of � �see Figure ��a�� For clarity of presentation�
we use the variable y to represent the spatial coordinate of any point in �� and reserve x
for points on the spatial mesh of � at time tn or tn��� representing either heads or feet of
characteristics� Similarly we let s denote the temporal variable instead of t� which we reserve
for the temporal coordinate of heads or feet of characteristics which lie on either the in�ow
or out�ow boundary� The general time increment can also be described for points x at time
tn�� or time tn in respective order by �t�I��x� and �t�O��x� which are de�ned as follows

�t�I��x� � tn�� � t��x�� x � 	a� b��

�t�O��x� � �t�x� � tn� x � 	a� b��
�
��
�

where t��x� and �t�x� extend to tn and tn��� respectively� if the characteristics that de�ne
them lie in ��� With the change of variable y � y�x� s� � X�s�x� tn��� for the �rst integral
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on the right hand side of �
����� we obtain

ZZ
��

f�y� s� w�y� s� dyds

�
Z 	a

a

Z tn��

t��x�
f�X�s�x� tn���� s� w�X�s�x� tn���� s�Xx�s�x� t

n��� dsdx

�
Z 	a

a

�t�I��x�




�
f�x� tn��� w�x� tn��� �

f�a� t��x�� w�a� t��x��Xx�t
��x��x� tn���

�
dx� Ef����w�

�
Z 	a

a

�t�I��x�



f�x� tn��� w�x� tn��� dx

�
Z tn��

tn

�tn�� � t�



f�a� t� w�a� t� V �a� t� dt� Ef����w��

�
����

where in the second equality we used a trapezoidal approximation for the inner integral
whose error Ef����w� is given below� In the last equality we moved the second integral to
the in�ow boundary by the change of variable a � X�t��x��x� tn��� and the �rst equation in
�
����� The trapezoidal error term introduced is given by

Ef����w� �Z 	a

a

Z tn��

t��x�

�t��x�� s��tn�� � s�




d�

ds�

h
Xx�s�x� t

n���f�X�s�x� tn���� s�
i
w�x� tn��� dsdx�

�
����
since w is constant along characteristics� With the same change of variable� y � X�s�x� tn����
and similar treatment as in �
����� we expand the second integral on the right hand side of
equation �
���� to get

ZZ
��

f�y� s� w�y� s� dyds

�
Z b

	a

Z tn��

tn
f�X�s�x� tn���� s� w�X�s�x� tn���� s�Xx�s�x� t

n��� dsdx

�
Z b

	a

�t




�
f�x� tn��� w�x� tn��� � f�x�� tn� w�x�� tn��

dx�

dx

�
dx� Ef����w�

�
Z b

	a

�t



f�x� tn��� w�x� tn��� dx�

Z b�

a

�t



f�x� tn� w�x� tn�� dx�Ef����w��

�
���

where we have used the fact that dx�

dx
� Xx�t

n�x� tn���� In this expression the trapezoidal
error term is given by

Ef����w� �Z b

	a

Z tn��

tn

�tn � s��tn�� � s�




d�

ds�

h
Xx�s�x� t

n���f�X�s�x� tn���� s�
i
w�x� tn��� dsdx�

�
����
The treatment of the source term over �� is slightly di�erent since for the characteristics�
we backtrack from points originating on the out�ow boundary� With the change of variable
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y � X�s� b� t�� the third term on the right hand side of �
���� becomes

ZZ
��

f�y� s� w�y� s� dyds

� �
Z tn��

tn

Z t

tn
f�X�s� b� t�� s� w�X�s� b� t�� s� Xt�s� b� t� dsdt

� �
Z tn��

tn

�t � tn�




�
f�b� t� w�b� t�Xt�t� b� t�

� f�X�tn� b� t�� tn� w�X�tn� b� t�� tn��Xt�t
n� b� t�

�
dt� Ef����w�

�
Z tn��

tn

�t � tn�



V �b� t� f�b� t� w�b� t� dt

�
Z b

b�

�t�O��x�



f�x� tn� w�x� tn�� dx�Ef����w��

�
����

where in the last equality we used the second equation in �
���� for the �rst integral and the
change of variable x � X�tn� b� t� for the second� The trapezoidal error term introduced is
given by

Ef����w� �
Z tn

tn��

Z t

tn

�tn � s��t � s�




d�

ds�
	Xt�s� b� t� f�X�s� b� t�� s��w�b� t� dsdt� �
����

����� Treatment of the Di�usion Term

Next we treat the second term on the left hand side of equation �
���� which we break� similar
to the source term in �
����� over the three subdomains �i �i � �� 
� �� discussed above� Due
to the similarity in the treatment of this integral over �� and ��� we combine the two and
use the same change of variable y � X�s�x� tn��� as before� and obtain

ZZ
�����

D�y� s� uy�y� s� wy�y� s� dyds

�
Z b

a

Z tn��

t��x�
Xx�s�x� t

n��� �DuX��X�s�x� tn���� s� wX�X�s�x� tn���� s� dsdx

�
Z b

	a

�t




�
�Dux��x� t

n��� wx�x� t
n��� �Xx�t

��x��x� tn����

�DuX��X�t��x��x� tn���� t��x�� wX�X�t��x��x� tn���� t��x��
�
dx

�
Z 	a

a
�t�I��x� �Dux��x� t

n��� wx�x� t
n��� dx�ED������w�

�
Z 	a

a
�t�I��x� �Dux��x� t

n��� wx�x� t
n��� dx�

Z b

	a

�t



�Dux��x� t

n��� wx�x� t
n��� dx

�
Z b�

a

�t



�Dux��x� t

n� wx�x� t
n
�� dx� ED������w��

�
����
where in the second equality we used a backward Euler approximation for the integral over
�a� �a� and a trapezoidal approximation over ��a� b� with error given below� and in the third
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equality we made the change wx�X�s�x� tn���� s� � wX�X�s�x� tn���� s�� Xx�s�x� t
n���� The

error term in �
���� is given by

ED������w� �

�
Z 	a

a

�Z tn��

t��x�

Z tn��

s

d

d�
�Dux��X���x� tn���� ��d�ds

�
wx�x� t

n��� dx

�
Z b

	a

Z tn��

tn

�tn � s��tn�� � s�




d�

ds�

h
�Dux��X�s�x� tn���� s�

i
wx�x� t

n��� dsdx�

�
�
��

Using a trapezoidal approximation for this di�usive �ux term over �a� �a� when the in�ow
boundary condition is Dirichlet or Robin condition introduces unknowns on the in�ow bound�
ary and severely complicates the scheme� Therefore we chose to use only backward Euler
approximation on that interval� Neumann in�ow condition on the other hand allows us to
use the more accurate trapezoidal approximation for the di�usive integral uniformly over
the whole spatial domain� This treatment does not lead to any non�symmetric terms in the
formulation� Details of this treatment and boundary implementation are discussed in the
following section�

Finally we treat remaining di�usion integral over ��� With the change of variable y �
X�s� b� t� this integral becomes

ZZ
��

D�y� s� uy�y� s� wy�y� s� dyds

� �
Z tn��

tn

Z t

tn
Xt�s� b� t� �DuX��X�s� b� t�� s� wX�X�s� b� t�� s� dsdt

� �
Z tn��

tn

�t� tn�




�
�Dux��b� t� wt�b� t�

�Xt�t
n� b� t� �DuX��X�tn� b� t�� tn� wX�X�tn� b� t�� tn��

�
dt� ED����w�

� �
Z tn��

tn

�t� tn�



�Dux��b� t� wt�b� t� dt

�
Z b

b�

�t�O��x�



�Dux��x� t

n� wx�x� t
n
�� dx � ED����w��

�
�
��

where in the second equality� we have used the relation wX�b� t�Xt�t� b� t� � wt�b� t� for the
�rst integral� The error term ED��� is given by�

ED����w� �Z tn��

tn

Z t

tn

�s� tn��t � s�




d�

ds�

h
�Dux��X�s� b� t�� s�wt�X�s� b� t�� s�

i
dsdt�

�
�

�

�



����� Assembly of the Reference Equation

Substituting the integrals expanded in equations �
����� �
���� �
����� �
���� and �
�
�� back
into the variational equation �
��� yields the following reference equation

Z b

a
u�x� tn��� w�x� tn��� dx�

Z 	a

a
�t�I��x� �Dux��x� t

n��� wx�x� t
n��� dx

�
Z b

	a

�t



�Dux��x� t

n��� wx�x� t
n��� dx

�
Z b

a

�t�O��x�



�Dux��x� t

n� wx�x� t
n
�� dx�

Z tn��

tn

�t� tn�



�Dux��b� t� wt�b� t� dt

�
Z tn��

tn
�V u�Dux��b� t� w�b� t� dt�

Z tn��

tn
�V u�Dux��a� t� w�a� t� dt

�
Z b

a
u�x� tn� w�x� tn�� dx�

Z b

a

�t�I��x�



f�x� tn��� w�x� tn��� dx

�
Z b

a

�t�O��x�



f�x� tn� w�x� tn�� dx�

Z tn��

tn

�tn�� � t�



V �a� t� f�a� t� w�a� t� dt
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V �b� t� f�b� t� w�b� t� dt � E�w� � Ro�w��

�
�
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The last two terms in equation �
�
�� are E�w� �

P�
i���Ef��i

�ED��i
� which represents the

collective approximation error and Ro�w� �
R tn��

tn
R b
a u �wt � V wx� dxdt represents the adjoint

term which in our case vanishes by equation �
����

� Numerical Approximation

Since we do not impose a particular form for the velocity �eld V �x� t�� explicitly solving the
ordinary di�erential equation �
��� which de�nes the characteristics is not possible in general
and introduces additional di�culty� Therefore in our numerical approximation of the solution
of the advection di�usion equation �
���� we consider an approximation of the characteristics
X��� �x� �t� which is based on a second order Runge�Kutta approximation known as Heun�s
method� In particular� we de�ne the approximate characteristic curve emanating from a
point ��x� �t�� with �t � 	tn� tn���� by

Y ��� �x� �t� � �x�
��t � ��



	V ��x� �t� � V ��x� ��t� ��V ��x� �t�� ��� � �����

Furthermore� if the Courant number Cr � max�V ��t��x is at least 
� we partition the
out�ow boundary fx � b� t � 	tn� tn���g as follows�

ti �

���
�	

tn�� � �i� I��x�max�V �� i � I� � � � � I � IC � ��

tn� i � I � IC�
���
�

where IC in this case is the integer part of Cr� When no subdivision of the out�ow boundary
is introduced �Cr � 
�� we let IC � � so that both cases are treated uniformly� This partition
introduces some unknowns on the out�ow boundary� however it has the advantage of insuring

�	



that the schemes we develop are suitable even for large Courant numbers� We de�ne the
test functions at time tn�� as hat functions given by

wi�x� t
n��� �

���������
�������	

x� xi��
�xi

� x � 	xi��� xi��

xi�� � x

�xi��
� x � 	xi� xi����

�� otherwise�

�����

for i � �� � � � � I � �� At the out�ow boundary the test functions are given by�

wi�b� t� �

���������
�������	

ti�� � t

�ti
� t � 	ti��� ti��

t � ti��
�ti��

� t � 	ti� ti����

�� otherwise�

�����

for i � I � �� � � � � I � IC� Here �xi � xi � xi�� and �ti � ti�� � ti� For the interior
of the domain �� we extend these test functions de�ned by ����� and ����� to be constant
along the approximate characteristics� The test function wI is a combination of both� that
is� wI�x� t

n��� is de�ned by ����� for the interval 	xI��� xI �� and wI�b� t� is de�ned by �����
on the interval 	tI��� t

n����

The numerical schemes are based on approximating the exact solution u� which satis�es
the reference equation �
�
��� by a piecewise linear function U which satis�es a similar
equation with two di�erences� �i� the new equation will be developed using the change of
variables resulting from the approximate characteristic tracking given by ������ and �ii� the
error and adjoint terms� similar to E�w� and Ro in �
�
��� are not included� Since the
terms neglected contribute global errors which are of order O���x�� � ��t���� the resulting
schemes will be of desired accuracy� In the following two subsections we develop two schemes
to solve the advection�di�usion equation �
��� based on backward and forward characteristic
tracking� respectively� Here we emphasize that the test functions de�ned above are constant
along the approximate characteristics�

��� Backtracking Runge�Kutta characteristic scheme

The �rst numerical scheme �BRKC� is based on a backward tracking of characteristics� We
�rst let the domains �i be de�ned in a similar manner as before� but use the approximate
characteristics Y ���x� tn��� in place of the true characteristics �see Figure ��a�� In this case�
our characteristics originate at points �x� tn��� and are given by Y ���x� tn��� in �� and
��� In ��� the characteristics originate at points �b� t� on the out�ow boundary and are
given by Y ��� b� t�� The notation introduced in Section 
 for exact tracking is also used in
our numerical scheme formulation� however we modify it for this approximate characteristic
tracking� Accordingly� we de�ne �x satisfying x � Y �tn� �x� tn��� and x� � Y �tn�x� tn��� as
the head and the foot respectively� of the Runge�Kutta approximate characteristics� The
foot of a characteristic with head on the out�ow boundary is denoted by b��t� � Y �tn� b� t�
for t � 	tn� tn���� We also de�ne t��x� �given by the relation a � Y �t��x��x� tn���� as the exit

��



time of the characteristic Y ���x� tn��� at the in�ow boundary� On the other hand �t�x� �given
by x � Y �tn� b� �t�x��� is such that the point �b� �t�x�� on the out�ow boundary backtracks to
the point �x� tn�� The two time increments �t�I��x� and �t�O��x� are as de�ned before in
�
��
��

The reference equation using this approximate characteristic tracking is derived in a
similar manner as was done for equation �
�
��� Since� however� the solution of u at time
level tn�� is sensitive to errors arising from the evaluation of the terms of �
�
�� which
involve integrals of the trial function U��� tn� at the previous time level� these terms must
be treated with care� That these integrals are di�cult to evaluate �especially in higher
dimensions� is due to the fact that the test functions are de�ned by extending back along the
approximate characteristics their values from time tn�� and may be substantially distorted
by this process 	�� �� ��� To indicate the possible complications that may arise� we note
that quite complicated geometries may occur even in the case of a constant velocity �eld�
For example� when the support of a test function in three dimensions is traced back in time
and intersects a boundary of the spatial domain� a four dimensional space�time region with
a complicated geometry results as the support of the space�time test function�

The backtracking scheme uses the approximate characteristic Y to change variables in
each of the integrals where the test functions are evaluated at time level tn�� In this way�
the integrals are rewritten as integrals at time tn�� �or� as the case may be� at the out�ow
boundary� of test functions �i�e� hat functions on the grid� at the current time integrated
against trial functions evaluated at the foot of the characteristics� The term �backtracking�
comes from the use of the backward characteristics to determine the trial function values at
the previous time� Hence after some rearrangement and combining of terms� the reference
equation of the piecewise linear trial functions U using Runge�Kutta backward tracking is
given by

Z b

a
U�x� tn��� w�x� tn��� dx�

Z 	a

a
�t�I��x� �DUx��x� t

n��� wx�x� t
n��� dx

�
Z b

	a

�t




�
�DUx��x� t

n��� � �DUx���x
�� tn�

�
wx�x� t

n��� dx

�
Z tn��

tn
�V U �DUx��b� t� w�b� t� dt�

Z tn��

tn
�V U �DUx��a� t� w�a� t� dt

�
Z tn��

tn

�t� tn�




�
�DUx��b� t� � �DUx���b

��t�� tn�
�
wt�b� t� dt

�
Z b

	a
Yx�t

n�x� tn��� U�x�� tn� w�x� tn��� dx�
Z tn��

tn
Yt�t

n� b� t� U�b��t�� tn� w�b� t� dt

�
Z b
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�t�I��x�




�
f�x� tn��� � Yx�t

��x��x� tn��� f�x�� t��x��
�
w�x� tn��� dx

�
Z tn��

tn

�t � tn�




�
V �b� t� f�b� t� � Yt�t

n� b� t� f�b��t�� tn�
�
w�b� t� dt�

����
where in the third integral on the right hand side� x� is a on �a� �a�� This general reference
equation holds for all nodes xi� �i � �� � � � � I� and ti� �i � I� � � � � I � IC�� and simpli�es in
speci�c cases� The sti�ness matrix is updated by evaluating terms involving U at time level

��



tn�� and at the out�ow boundary in equation ����� Likewise� by evaluating the remaining
terms� we can update the right hand side vector of the generated system�

As we mentioned earlier� one di�culty arises in accurately computing the terms evalu�
ated at feet of characteristics �i�e� x� or t��x��� since several grid points from the previous
time level may occur as backtracked points within a given interval at the current time� To
illustrate how to overcome this di�culty� we will focus on the �rst term on the right hand
side of equation ���� applied with test function wi� In this case� when x varies over the
interval 	xi��� xi� �i�e�� the left half of the support of wi��� t

n����� x� will vary over the interval
	xi�IC��� xi�IC �� Therefore� due to the distortion by the characteristic tracking� U�x�� tn�
is not a piecewise linear function� but rather a piecewise smooth function of x � 	xi��� xi��
This possible loss of smoothness� however� a�ects the accuracy of high order quadrature
methods� Therefore� we simply subdivide the interval so that U�x�� tn� is smooth on each
subinterval and apply numerical integration to each subinterval separately� To illustrate the
idea� we suppose x�i�� is in 	xj��� xj� and x�i belongs to 	xj��� xj���� then we would split the
integral into three parts along the intervals �xi��� �xj�� 	�xj� �xj���� and 	�xj��� xi�� Newton iter�
ation is applied to determine the points at the current time level that track back to the grid
points at the previous time level� �Recall that approximate Runge�Kutta forward tracking
and back tracking may not be inverse operations for variable velocity �elds�� Once these
intervals are determined� we may numerically integrate by determining quadrature points in
each subinterval and then backtracking them to perform the quadrature with values of the
trial function� The amount of piecewise smoothness will be determined by the corresponding
smoothness of the velocity �eld� Additional information on this general problem and how to
treat multivariate problems may be found in 	
�� ��� 
��

Another di�culty in incorporating the known values of the trial function in equation ����
arises from evaluating the expression Ux��x

�� tn� when x� happens to be one of the nodal
points fxig

I
i�� at which Ux� may have a jump discontinuity� Since our characteristic tracking

is only approximate� we assume that all points within a small tolerance of xi belong to the
interval �xi� xi���� This introduces an error which is controlled to within the desired order
provided the tolerance is of the same order�

The scheme for nodes near the in�ow boundary �i�e�� xi �i � �� ���IC � ��� di�ers since
the characteristics traced back strike that boundary and lead to boundary terms appearing
in the scheme� In the case of Robin �ux boundary condition� we can easily change the �fth
integral on the left side of equation ���� as follows

Z tn��

tn
�V U �DUx��a� t� w�a� t� dt �

Z tn��

tn
g��t� w�a� t� dt� �����

Dirichlet in�ow boundary condition introduces extra di�culty� since then the unknown dif�
fusive �ux term in the �fth integral on the left side of equation ���� appears in the scheme
equations for nodes xi � �a� An alternative treatment for the di�usion term discussed in

	��� 
� avoids this di�culty� Instead of integrating the term
R tn��

tn ��Dux�x w dxdt by parts
as we did in the derivation of the variational formulation �
��� and then applying the integral
approximation �trapezoidal� Euler�� we can reverse the order� whence we get the term

Z 	a

a

d�t�I��x�

dx
�DUx��x� t

n��� w�x� tn��� dx �����

��



instead of the di�usive �ux in the �fth term on the left side of ����� The �fth term on the
left side of ���� then simpli�es toZ tn��

tn
V �a� t� g��t� w�a� t� dt� �����

Since the value of the trial function U is known at node x� from the prescribed Dirichlet
boundary condition� we don�t need to formulate equations there� Hence our scheme will be
stipulated only for nodes xi �i � �� � � � � I�� However� we do modify w� � w��w� so that the
test functions sum to one in order to maintain mass conservation�

Neumann in�ow boundary condition generates a more natural scheme in the sense that
a trapezoidal approximation� instead of the backward Euler approximation described above�
can be implemented for the di�usive integral over ��� The advantage of this treatment is that
it symmetrizes the in�ow terms thus maintaining the symmetry of the whole formulation�
Implementing this boundary condition leads to the following two changes to equation �����
�i� a factor of ��
 multiplies the second integral on the left side� and �ii� the additional term
of

�
Z 	a

a

�t�I��x�



g��t

��x�� wx�x� t
n��� dx �����

is added on the left side� The �fth term on the left side of equation ���� is replaced byZ tn��

tn
�V U��a� t� w�a� t� dt�

Z tn��

tn
g��t� w�a� t� dt� ������

Wang� Ewing� and Russell 	
� describe in detail several possible ways to treat the �rst
integral in equation ������� Their �ndings suggest combining this term with the �rst term
on the left hand side of the reference equation ���� and replacing these with the termZ b

	a
U�x� tn��� w�x� tn���dx� ������

Although this term is not exact for a variable velocity �led V � the error introduced is within
the desired order�

Due to the fact that we generate unknowns at the out�ow boundary at nodes ti� boundary
treatment here becomes very important� First we note that U�b� tn� is known from the
previous time step solution� hence� we don�t impose an equation at tI�IC � tn� Therefore�
as we did earlier in the case of Dirichlet in�ow conditions� we rede�ne the test function
wI�IC�� �� wI�IC�� � wI�IC � to maintain mass balance� For test functions wi� �i � I �
�� � � � � I � IC � ��� the terms on the in�ow boundary and terms evaluated at time tn�� of
equation ���� vanish� Thus for nodes ti �i � I � �� � � � � I � IC � ��� the reference equation
���� simpli�es to the followingZ tn��

tn
�V U �DUx��b� t� wi�b� t� dt

�
Z tn��

tn

�t � tn�




�
�DUx��b� t� � �DUx���b

��t�� tn�
�
wit�b� t� dt

� �
Z tn��

tn
Yt�t

n� b� t� U�b��t�� tn� wi�b� t� dt

�
Z tn��

tn

�t � tn�




�
V �b� t� f�b� t� � Yt�t

n� b� t�f�b��t�� tn�
�
wi�b� t� dt�

����
�
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We describe below how this equation changes for all three types of out�ow boundary condi�
tions� The equation for node xI � has in addition to the terms in ����
� some other terms that
are in equation ���� which don�t vanish for this node� Neumann out�ow boundary condition
can be incorporated in equation ����
�� simply by making the change ��DUx��b� t� � h��t�
in the �rst and second integrals on the left hand side of this equation� Similarly the �ux
out�ow condition can be incorporated in equation ����
� by applying the condition to the
�rst integral on the left hand side� and using the relation ��DUx��b� t� � h��t� � �V U��b� t�
for the second integral on the left hand side of equation ����
�� In the case of out�ow Dirich�
let condition� the solution U�b� tn��� is known from the boundary condition� therefore the
equations for i � I � � decouple and can be solved for U�xi� t

n���� �i � ����I � ��� Unless we
desire the values of the derivative of the solution at the out�ow boundary� we don�t generate
any equations there�

��� Forward Tracking Scheme

In this brief section we indicate the development of a scheme �FRKC� based on a �forward
tracking� which is a feasible alternative for the backward tracking scheme of the last subsec�
tion especially for multidimensional problems� With the test functions as de�ned earlier by
equations ����� ������ we use the reference equation �
�
�� to derive the numerical scheme
for Runge�Kutta forward tracking� Here again we wish to avoid the expensive task of back�
tracking the geometry to perform the integration of the test functions at the previous time
level� Instead we perform this integration by using the �xed spatial grid of the trial func�
tion at t � tn and apply numerical quadrature� The values of the test function required
by the quadrature are obtained by forward tracking the quadrature points and evaluating
wi��x� t

n��� or its derivatives at time tn��� This forward scheme is only used to evaluate cer�
tain terms to incorporate known values and therefore does not lead to distorted grids that
comprise a major drawback of explicit numerical schemes�

In this scheme� the characteristics originate at points �x� tn� and are given by Y ���x� tn� in
�� and �� or they originate at points �a� t� and are given by Y ��� a� t� in ��� Here again we use
the same notation established in Sections 
 and �� except we rede�ne them for this particular
forward tracked approximate characteristics� Accordingly� we de�ne �x � Y �tn���x� tn� and
x� satisfying x � Y �tn���x�� tn� as the head and foot of the approximate characteristic�
Moreover� we let t��x� �given by x � Y �tn��� a� t��x��� and �t�x� �given by b � Y ��t�x��x� tn��
denote the exit time of the approximate characteristics at the in�ow and out�ow boundaries�
respectively� The time increments �t�I� and �t�O� are then given by equation �
��
�� where
t��x� and �t�x� extend to tn and tn��� respectively� if they are de�ned by characteristics in
��� The reference equation for the forward scheme� derived in a similar manner as equation
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�
��� is given by
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The boundary treatment is similar to that of the backtracking scheme BRKC�

��� Experimental Order of Convergence

In this subsection we establish numerically the order of convergence of the two schemes
developed for equation �
��� as well as the backward Euler ELLAM 	
�� referred to as BE�
ELLAM� The test problem involves the transport of a Gaussian distribution �described in
Section ��� initially centered at zero� The spatial domain is 	�� ���� with a temporal domain
	�� ��� In this test we choose the small di�usion coe�cient of D � ���
� and consider the two
velocity �elds� V � � � ���x and the more rapidly changing V � �� ��x� The right hand
side in equation �
��� is generated from this data and the analytical solution� The L� and
L� norms of the residual error of the solution U of all three schemes are given by

max
n������N

kU�x� tn�� u�x� tn�kLp�a�b� � C���x�
� � C���t�

� � p � �� 


where �� � give the order of convergence of the error in space and time respectively� and C��
C� are positive constants� To obtain the order of convergence in space we �x �t � ���� to
insure time truncation errors are appropriately small� We then perform runs varying �x and
apply a linear regression on the Lp �p � �� 
� norms of the error to determine the parameter
�� Tables � and � present the results of these runs and the computed value of the parameter
� for the two velocity �elds described above� In a similar manner we �x �x � ����� and
perform runs varying �t to estimate the value of the parameter �� Tables 
 and � give
corresponding results for � for the two velocity �elds� From these results we clearly see that
the two schemes developed are corroborated to be second order in space and time� We also
see that BE�ELLAM� as was expected� is second order in space but only �rst order in time�
The orders are more apparent in the rapidly changing velocity �eld V � �� ��x �Tables �
and ��� Tables � and � show that when the time step �t is very small� the BRKC� FRKC�
and BE�ELLAM schemes generate solutions with comparable errors� This is expected since
all the schemes are second�order accurate in space and the temporal errors are negligible� In

��



practice one wishes to use largest possible time step in numerical simulations to enhance the
e�ciency without sacri�cing accuracy� Therefore� Tables 
 and � bear more computational
aspect since very large time steps are normally desired� One sees that the BRKC and
FRKC schemes further reduce the temporal errors in BE�ELLAM� which are themselves
signi�cantly smaller than most Eulerian methods� This justi�es the appropriateness of these
schemes when large time steps are to be taken� The constant C� is much smaller than C� for
all three schemes corroborating that time truncation errors are smaller that spatial errors� a
strong advantage of characteristic methods in general�

� Description of Some Other Methods

The necessity to numerically solve advection�dominated advection�di�usion equation with
high accuracy has lead to the development of many specialized methods� In this section
we brie�y describe some well perceived methods which are widely used in practice� In the
next section we carry out experiments to compare the performance of the BRKC and FRKC
schemes with these methods� In this description� we impose all the assumptions on the
velocity �eld V �x� t� and the di�usion coe�cient D�x� t� which were described in Section 

and describe the methods with Dirichlet boundary conditions�

��� Galerkin and Petrov�Galerkin �nite element methods

The linear Galerkin �GAL�� quadratic Petrov�Galerkin �QPG�� and cubic Petrov�Galerkin
�CPG� FEM methods with a Crank�Nicholson time discretization and Dirichlet in�ow and
out�ow boundary conditions for equation �
��� are described by the following formulation
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where the trial function U�x� tn��� is piecewise linear on the intervals de�ned by the partition�
The three methods di�er in their choices of the test functions wi�x� �i � �� 
� � � � I � ��� In
the GAL method� the test functions are chosen from the space of the trial functions� thus�
wi�x� are the hat functions de�ned by equation ����� where wi�x� replaces wi�x� t

n���� The
Petrov�Galerkin methods were designed to improve the GAL method by introducing some
upwinding in the test space� The QPG methods use test functions� which are the sum of the
standard hat functions and quadratic asymmetric perturbation terms� de�ned by
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�x� xi����xi � x�
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where the parameter �i � coth�Vi�xi
�Di

�� �Di

Vi�xi
with Vi and Di being the arithmetic mean of

the velocity �eld and the di�usion coe�cient over the interval �xi��� xi�� The CPG methods
on the other hand use test functions which have symmetric cubic perturbation terms added
to the hat functions as follows�

wi�x� �
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�x� xi���
�xi

�  �i
�x� xi����xi � x��xi�� � xi � 
x�
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�x� xi��xi�� � x��xi � xi�� � 
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� �����

where �i � Cri
�� with Cri �

Vi�t
�xi

is the Courant number averaged over the interval �xi��� xi��
Although many other Petrov�Galerkin formulations are also known to solve equation �
���
reasonably well� QPG and CPG methods are among the most popular ones in practice�

��� The Streamline Di�usion FEM methods

The Streamline Di�usion method �SDM� is applied to the non�conservative form of equation
�
��� given by

Lu � ut � V �x� t�ux � Vx�x� t�u� �D�x� t�ux�x � f�x� t�� �����

Here we describe the linear SDM formulation for this equation� We divide the domain into
the time slabs 	a� b� � �tn� tn���� and successively on each slab� we seek a continuous and
piecewise linear function U�x� t� �discontinuous in time at tn and tn��� which satis�es the
following formulation�Z tn��

tn

Z b

a
	Ut � V Ux � VxU � 	w � 	�wt � V wx�� dxdt�

Z tn��

tn

Z b

a
DUx wxdxdt

�	
Z tn��

tn

Z b

a
�DUx�x �wt � V wx� dxdt�

Z b

a
Un
�w

n
�dx

�
Z tn��

tn

Z b

a
f 	w � 	�wt � V wx�� dxdt�

Z b

a
Un
�w

n
�dx�

����

The test function w is piecewise linear in both space and time �bilinear� in the slab� and
is discontinuous at time tn and tn�� and is zero at x � a and x � b� In equation ����
wn
� � limt��tn�� w�x� t�� U

�
� � uo�x�� and 	 is a free parameter� described below� that has

signi�cant in�uence on the accuracy of the scheme� There are many relations that can be
used for the parameter 	� One of the most widely used relations is 	 � C hp

��V � � where h

is the mesh diameter and C is a constant to be chosen 	��� The choice of C determines
the amount of di�usion applied in the direction of the characteristics and therefore has a
great e�ect on the accuracy of the scheme� One requires that C is large enough to produce
non�oscillatory solution� but not too large to damp the solution� This choice is� in general�
problem dependent and not clear in practice� Although there are more improved versions
of SDM method with shock capturing capacity which produce better approximations� they
usually have nonlinear formulations �even though they model linear equations�� have more
free parameters similar to 	 �described above� that need to be chosen carefully� and also
have higher computational cost� The formulation ���� is the one we chose for numerical
experiments described in the next section�

��



��� The Continuous and Discontinuous Galerkin FEM methods

The Continuous and Discontinuous Galerkin methods �CGM and DGM� 	�
� ��� apply to the
non�conservative form of equation �
��� given by equation ������ The domain �g � �a� b� �
��� T � is divided into a quasi�uniform triangulation with side length h� and Dirichlet data is
assumed on the in�ow portion of the boundary denoted by !�I� and given by V�x� t� �n � ��
where V�x� t� � �V �x� t�� �� gives the characteristic direction and n � �n�� n�� is the outward
unit normal vector� The boundary data given at the out�ow portion of the boundary are
not used in the formulation� In the DGM method one seeks a discontinuous approximation
U�x� t�� which lies in the space Pn�T � of polynomials of degree at most n on each triangle
T � and satis�es the equation

Z
T
�Ut � V Ux � VxU�w dxdt�

Z
��I��T �

U� wV � n dS �
Z
��
�I�

�T �
DU�

x w n� dS

�
Z
T
fw dxdt�

Z
��I��T �

U� wV � n dS �
Z
��
�I�

�T �
DU�

x w n� dS� for all w � Pn�T �

�����
where !��I��T � is the in�ow boundary of T exclusive of any sides on the boundary of the

domain� U��x� t� � lim���� U��x� t� � 
V�� and U� is the solution at the previous element
or an interpolation of the prescribed Dirichlet data for sides on !�I�� CGM is formulated in
the same way by requiring a solution U�x� t� � Pn�T � which satis�es equation ������ however
there are two main di�erences� First� the trial function U�x� t� is required to be continuous
over the domain �g� and the test functions are in Pn���T ��T �� where ��T � is the number of
in�ow sides that T has� Secondly� the continuity requirement in CGM makes the second
terms on both sides of ����� cancel each other� In both of these methods� one iterates over
the elements solving a linear system of order equal to the degree of freedom on each element
which makes these schemes quasi�explicit� In the next section� we consider the lowest�order
CGM �n � 
�� and DGM �n � ���

��� High Resolution Methods �MUSCL and ENO	

High resolution methods from computational �uid dynamics are known to be good for purely
hyperbolic equations� An extension of these methods to equation �
��� is based on time�
splitting of the equation� as described below� and then a high�order Godunov method can be
used to solve the advective part� with a mixed FEM method to solve the di�usive part 	����
We consider two such schemes� the �rst based on Monotone Upstream�centered Scheme for
Conservation Laws �MUSCL� which was developed by van Leer 	���� and a second� based
on a generalization of the �rst� called the Essentially Non�Oscillatory scheme �ENO� which
was developed by Harten et al� 	
�� ���� Assuming that Un�x� approximates the solution
u�x� tn� of equation �
���� we can generate an approximation of u�x� tn��� as follows� First the
MUSCL or ENO scheme� described below� can be applied to �nd a solution of the advective
equation

�ut � �V �u�x � �� for �x� t� � 	a� b�� �tn� tn����

�u�x� tn� � Un�x�� for x � 	a� b��
�����

��



which we denote �Un���x�� Then the mixed method can be used to solve

u�t � �Du�x�x � f� for �x� t� � 	a� b�� �tn� tn����

u��x� tn� � �Un���x�� for x � 	a� b�
�����

whose solution is the approximation Un���x� of u�x� tn���� We note the well�known fact that
the mixed method in lowest�order approximation space and a trapezoidal rule of integration
is equivalent to the block�centered �nite di�erence scheme 	
���

Now we describe the MUSCL and ENO schemes� Unlike the other methods discussed
here which are node based� MUSCL and ENO are cell�centered based methods� i�e� the
solution is approximated at the points xi���� �i � �� � � � � I�� where xi���� is the mid point
of the interval 	xi��� xi�� To simplify the presentation� we assume that the partition �
�
� is
uniform� The MUSCL or ENO solution of equation ����� is given by

�Un��
i���� � Un

i���� �
�t

�x
�V �xi����� t

n�Un
i�����L � V �xi� �

�
� tn�Un

i� �
�
�L�� �����

where the Courant number is assumed not to exceed one �a stability requirement� and the
left state Un

i�����L is given by

Un
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The two methods di�er in the choice of the slope 	Un
i����� The ENO formulation uses the

slope given by

	Un
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���
�	

��U
n
i����� if j��U

n
i����j � j��Un

i����j�

��Un
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where the di�erence operators are given by
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The MUSCL formulation on the other hand uses the following de�nition for the slope

	Un
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n
�limU

n
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i����j
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where sgn�x� � � for x � �� sgn�x� � �� for x � �� and sgn��� � ��
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The parameter �i in equation ����� is 
 for i � �� � � � � I � � and � otherwise� which is the
upper bound that allows the steeper representation of sharp fronts�

� Numerical Experiments

In this section we describe numerical experiments which we use to compare the Runge�Kutta
characteristic methods developed in this paper �using both forward� and back�tracking� with
several generally well�regarded numerical schemes� including various Galerkin and Petrov�
Galerkin �nite element methods� high resolution methods in �uid dynamics� and the method
of Streamline Di�usion� We apply these methods to two standard test problems �a smooth
Gaussian distribution and a step function� for which we have analytic solutions to the
advection�di�usion equation� In addition� each of these functions are typically used to test for
numerical artifacts of proposed schemes� such as numerical stability and di�usion� spurious
oscillations� phase errors� and Gibbs type e�ects near sharp fronts�

In order to test these proposed schemes for advection�dominated transport� we consider
the model equation �
��� over the time period t � 	�� ���� with a variable velocity V �x� t� �
� � ���x� and a relatively small di�usion coe�cient of D � ���
� We consider both test
problems for our initial�boundary conditions with the results for the Gaussian shown in
�gures beginning with label I and the step function with label II� For clarity of exposition�
we have arranged the numerical methods into  groups based on common characteristics of
their behavior and implementation� These groups are organized according to the following
table�

Group Methods

� Runge�Kutta characteristic methods �BRKC and FRKC�


 Crank�Nicholson FEM �Galerkin� Quadratic and Cubic Petrov�Galerkin�

� Streamline Di�usion �with various selections of the control parameter��

� Continuous and Discontinuous Galerkin

 High resolution methods in �uid dynamics �MUSCL and ENO�

��



In our experiments� we have systematically varied the space and time steps to examine
the performance of each method� For each grouping we have chosen to display � plots
which provides a fair illustration of the accuracy of each method� their potential bene�cial
properties� as well as their possible undesirable numerical artifacts� For comparison to BRKC
and FRKC� the �rst plot in each �gure� labeled �a�� presents the evolved solution for all
methods in the group using a common space mesh ��x � ���� for Problem I� �x � ����� for
Problem II� and a time step as close as possible to the BRKC�FRKC time step of �t � �����
but chosen small enough to ensure stability� The third plot of the �gure �labeled �c�� for each
grouping shows the solutions with an optimally e�cient and reasonable choice of space and
time steps to produce a qualitatively comparable solution to that of the BRKC and FRKC
schemes in Figures I�� and II��� respectively� The second plot in each Figure �labeled �b��
shows an intermediate stage for each grouping� For example� Figure I�
 consists of � plots
��a���c�� which shows the solutions for model problem I at time T � ��� for the methods in
group 
 �spatial �nite elements and a Crank�Nicholson time stepping� with ��x��t� taken
as ������ ������ ������ ��
���� and ������� ������� respectively� In this example� we were
required by the CFL constraint to begin with �t � ����� since the maximum velocity is ����
over the interval 	������ and larger time steps result in unbounded solutions�

To gauge algorithm e�ciency� we also compare the timings for each method to achieve
the accuracy depicted in plot �c� of each �gure� These results are presented in Tables ���
using the groupings of algorithms as we described in our list above� We realize� of course�
that some code optimization may be possible but feel that these timings are representative
of each scheme�s e�ciency on these model problems�


�� Model Problem I� Gaussian

Our �rst model problem is a Gaussian distribution over the spatial domain 	�� ����� We use
baseline parameters of �x � ����� �t � ���� for each numerical scheme in our testbed and
vary these parameters until we obtain results with errors comparable to the two Runge�Kutta
methods �BRKC and FRKC�� With the exception of the BRKC and FRKC schemes� each
of these methods has implicit Courant restrictions on the time step which must be met for
numerical solutions to be bounded and may not be chosen as large as that permitted by the
ELLAM schemes�

Figure I�� shows the initial condition for model problem I �plotted with solid line at the
in�ow boundary� along with the evolved solution at time t � ���� Near the right boundary� we
see the analytic solution �solid line�� the back�tracked BRKC solution �marker �o��� and the
forward�tracked FRKC solution �dotted line�� Both methods use a spatial step of �x � ����
with a relatively large time step of �t � ����� Each of the two solutions give very accurate
approximations which are free of numerical oscillations� arti�cial di�usion� phase error� and
adverse boundary e�ects� The timings for the BRKC and FRKC schemes are presented in
Table  and provide baseline timings for all experiments�

Figure I�
�a contains the plots of the analytic solution �solid line�� the Galerkin ap�
proximation �labeled with symbol ����� quadratic Petrov�Galerkin �dotted line� and cubic
Petrov�Galerkin �labeled with symbol �o�� at time t � ��� with �x � ���� where the time�
stepping method employed is Crank�Nicholson� Due to Courant number restrictions on these

��



methods� an initial time step of �t � ���� was required� This plot shows that there are
signi�cant trailing oscillations for both the Galerkin and quadratic Petrov�Galerkin methods
and to a lesser extent for the cubic Petrov�Galerkin method� All methods in this group
however have signi�cant di�usion and a mild downstream phase error� As we decrease our
mesh sizes to try to match the performance of the two Runge�Kutta characteristic schemes�
we see in Figures I�
�b I�
�c that the trailing oscillations and numerical di�usion are less
pronounced �for all but the cubic Petrov�Galerkin method�� but still persist for all three
methods until we decrease �x to ����� and �t to ������ In this case the CPU requirement
for these methods is two orders of magnitude larger than that required to achieve similar
results using the BRKC or FRKC methods �see Table ��� In displaying the timings for these
Crank�Nicholson schemes� we have presented� in the interest of space� only the average of
the three schemes since the timings for each scheme was within one second of the other two
methods�

Figure I�� presents the corresponding results for the Streamline Di�usion Method� This
method requires the use of a control parameter C� and we present in Figure I�� the plots for
three values of this parameter in each of the subplots �a���c�� In Figure I���a we have used a
time step of �t � ���
� which is the largest we may choose and have bounded solutions due
to the method�s Courant constraint� As Figure I�� demonstrates� there are both leading and
trailing oscillations� along with relatively strong numerical di�usion and a downstream phase
error� These persist to a milder degree �see Figure I���c� as both the spatial and time steps
are decreased� In Table � we present the timings for this method� For each selection of C�
the CPU time is presented to compute the solution for t � ���� The timings for Figure I���a�c
are at least ����� 
����� and ��
�� seconds� respectively� which indicate a severe weakness
of this method in certain applications� Another drawback of this method is that it is not
clear in general how to choose the parameter C� which indicates that an iteration of this
parameter may be necessary and the expense of this method will increase accordingly�

Figure I�� presents the results for the Continuous �dotted line� and Discontinuous �labeled
with symbol ���� Galerkin methods� Again due to Courant restrictions� we were able to
take �t no larger than �x � ����� We see that there are signi�cant leading and trailing
oscillations and a mild phase error for these two schemes with the Discontinuous Galerkin
method performing somewhat better of the two� However� this later method does exhibit
some overshoot near the maximum of the Gaussian� which persists in plot �b� where �x �
���
� and �t � ������ The accuracy of the two Runge�Kutta characteristic schemes are
matched in plot �c� by taking �x � ����� and �t � ������ but both the CGM and DGM
require a CPU expense of more than �
� seconds �see Table �� as compared to ��� seconds
for the FRKC and 
�� seconds for the BRKC �see Table ��

The �nal schemes which we wish to observe are the two high resolution methods in �uid
dynamics �MUSCL and ENO� In Figure I�� we have plotted the results of the simulation
of these schemes where we again must take a relatively small initial time step of �t � ����
due to the Courant restriction of these methods� The analytic solution is plotted as the
solid line� while the ENO scheme uses a dotted line and the MUSCL scheme is plotted
using the symbol ���� The monotonicity of these methods is quite apparent� but there
is a pronounced trailing non�negative oscillation as well as an overshoot near the peak of
the pulse for both methods� with the ENO scheme producing the most overshoot� These

��



e�ects indicate strong mass balance errors for the Godunov schemes� Parts �b� and �c� of
this �gure� show that these artifacts persist until we reduce the mesh sizes to have values
�x � ����� and �t � ����� Even with this reduction the trailing nonnegative oscillation
is still apparent for both methods �see Figure I��c�� To achieve this level of approximation
required a total of ���� and �
�� seconds of CPU time for the MUSCL and ENO schemes�
respectively� which is a signi�cant increase over the ��� sec required for the FRKC scheme�
or for the BRKC �
�� seconds��


�� Model Problem II� Step Function

In this section we discuss the corresponding experiments carried out above with the step
function replacing the Gaussian distribution� The observations made from Problem I are
still valid for all of the numerical schemes tested� but in this case there are several additional
features we would like to point out which are less pronounced than in the case of a Gaussian
distribution�

For this model problem our interval is 	�� 
� and we begin with �x � ������ Figure II��
shows the initial condition and analytic solution �solid line�� together with the BRKC and
FRKC solutions� We have taken �t � ���� for these methods�

The Galerkin and Petrov�Galerkin methods with Crank�Nicholson time stepping �see
Figure II�
� shows strong oscillations �both up� and down�stream� near each steep front�
Figure II�� shows that the streamline di�usion method exhibits a Gibbs� e�ect near each
of the jump discontinuities in the initial function� In this case� it appears that reducing
the value of C continues to improve the error� while in previous experiments 	��� we have
shown that the error may have local minimum as a function of C for this method� The
Continuous and Discontinuous Galerkin methods �see Figures II�� parts b�c� have a behavior
very similar to the Streamline Di�usion method� This is to be expected since these methods
are closely related� However� the Streamline Di�usion method has approximately double the
unknowns which must be determined and is correspondingly more expensive to compute�
The high resolution schemes �Figure II�� tend to worsen slightly as the grids are re�ned
past �x � ����� and �t � ��
��� Although the numerical error is somewhat high� the
qualitative features of these solutions are good�
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Fig I�� Continuous and discontinuous Galerkin methods
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Fig I�� High resolution methods MUSCL and ENO
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Fig II�
 Galerkin� quradratic and cubic Petrov�Galerkin
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Fig II�� Continuous and discontinuous Galerkin methods
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Fig II�� High resolution methods MUSCL and ENO
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