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I. INTRODUCTION

First-order linear hyperbolic partial differential equations model the reactive transport of solutes
in groundwater and surface water, the movement of aerosols and trace gases in the atmosphere,
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meteorology, displacement process in oil production, seismic, fluid dynamics, gas dynamics,
and many other important applications. It is well known that the solutions of these equations
present steep fronts and even shock discontinuities, which need to be resolved accurately in ap-
plications and often cause severe numerical difficulties [1–5]. Conventional finite difference or
finite element methods normally yield numerical solutions with severe nonphysical oscillation,
numerical dispersion, or a combination of both. Moreover, practical problems often have various
interfaces that introduce extra difficulties. Physical interfaces arise, for example, in the modeling
of transport processes in composite media, leading to linear hyperbolic equations with discon-
tinuous coefficients. Numerical interfaces occur in the application of domain decomposition and
local refinement techniques. An identifying feature of ground-water contaminant transport and
many other applications is the presence of large-scale fluid flows coupled with transient trans-
port of physical quantities such as pollutants, chemical species, radionuclides, and temperature,
which are generally smooth outside some small regions and may have sharp fronts inside where
important chemistry and physics take place. An extremely fine global mesh in both space and
time is not feasible due to the excessive computational cost. An alternative approach is to apply
domain decomposition and local refinement techniques by partitioning the global domain into a
number of sub-domains and solving the problem with fine meshes in both space and time within
the sharp front regions (sub-domains) and coarse meshes outside (other sub-domains). This way,
both accuracy and efficiency can be guaranteed, but at a cost of introducing numerical interfaces
between different sub-domains. Another type of numerical interface occurs when one solves a
problem defined on an infinite domain where one has to ‘‘truncate’’ the domain in numerical
simulations.

Many domain decomposition and local refinement techniques have been developed for elliptic
and parabolic equations [6–8], but it is more difficult to develop these techniques for hyperbolic
equations. In this case, locally generated errors at the interfaces can be propagated into the domain
so that the overall accuracy is decreased. Improper treatment of the interfaces might destroy
the stability of the numerical methods. Furthermore, most methods for hyperbolic equations
with interfaces are Eulerian methods, which require extremely small time-steps to maintain the
accuracy and stability of the methods.

We develop a characteristic-based, noniterative and nonoverlapping domain decomposition
and space–time local refinement method for solution of first-order linear hyperbolic equations
with various physical and numerical interfaces. The method treats all the physical and numerical
interfaces effectively in a systematic and uniform manner without introducing any extra scheme
for the interfaces. It naturally incorporates the space–time local refinement capability in the
scheme. It significantly reduces the time truncation errors present in the Eulerian methods and is
not subject to the CFL restrictions. It generates accurate and stable solutions without oscillations,
even if large time-steps are taken in the simulations. The method can be implemented in parallel
and fully utilizes the physical properties of the governing equations. Finally, the method allows
the use of different schemes within the framework of the Eulerian–Lagrangian localized adjoint
method (ELLAM) [9–13]. Somewhat related approaches have also been utilized by others to
develop domain decomposition methods for advection–diffusion equations [6, 7, 14, 15].

This article is organized as follows. In Section II, we describe a representative characteristic
method for first-order linear hyperbolic equations with continuous coefficients, which will serve
as an underlying numerical scheme in the development of our domain decomposition and local
refinement method. In Section III, we develop a noniterative and nonoverlapping domain decom-
position method. In Section IV, we describe a space–time local refinement scheme. In Section V,
for comparison purposes, we describe some interface schemes that are currently in use. In Section
VI, we conduct various numerical experiments to compare our method with those methods and to
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observe the performance of our method for problems with static or adaptive space–time local grid
refinement, and with discontinuous coefficients. In Section VII, we summarize our observations
and results.

II. UNDERLYING NUMERICAL METHOD

A. Model Problem

In this section, we describe a characteristic method for first-order linear hyperbolic equations
with continuous coefficients, which will serve as an underlying scheme in the development of our
domain decomposition and local refinement method in the subsequent sections. As mentioned
in Section I, the transient transport behavior and the steep fronts present in the exact solutions
of the governing equations make the numerical simulation of first-order hyperbolic equations a
challenging task. Traditional methods typically generate numerical solutions with severe non-
physical oscillation, numerical dispersion, or a combination of both. Recent improvements have
been made in two categories: Eulerian methods and characteristic methods.

Eulerian methods use fixed grids and incorporate some upstream weighting in their formu-
lations to stabilize the schemes. Among the class of Eulerian methods are the Petrov–Galerkin
methods, which improve over the standard Galerkin methods by adding some upwinding in the
test functions [16–18]. Also included in this class are the streamline diffusion method and the
continuous and discontinuous Galerkin methods [19–22]. The streamline diffusion method is
accomplished by adding numerical diffusion only in the streamline direction of the governing
equation. The continuous and discontinuous Galerkin methods, starting from an initial condition
and a given inflow boundary condition, solve a local system over each element of a quasi-uniform
space–time triangulation in an order consistent with the space–time domain considered. The
class of Eulerian methods also includes many other methods such as the high-resolution meth-
ods from computational fluid dynamics, in particular, the Godunov methods and the essentially
nonoscillatory methods (ENO) [23–26]. All these Eulerian methods are characterized by ease of
formulation and implementation. However, time truncation errors dominate their solutions. In
addition, these methods are subject to the CFL stability conditions, which put a restriction on the
size of the time-step taken in numerical simulations. This may be a strong disadvantage in certain
applications (e.g., atmospheric), where considerable time must be spent in computing coefficients
(turbulence terms) from coupled equations or through model formulation [27].

Characteristic methods, on the other hand, make use of the transport nature of the governing
equations. They combine the fixed Eulerian grids with a particle tracking along the characteristic
curves of the governing equations. Among the characteristic methods are the Eulerian–Lagrangian
method, the modified method of characteristics, and the operator splitting method [28–35]. The
Lagrangian treatment in these methods greatly reduces the time truncation errors in the Eulerian
methods. In addition, these methods alleviate the restrictions on the Courant number, thus allowing
for large time-steps in the simulations. However, these methods fail to conserve mass and treat
boundary conditions in an ad hoc manner.

In this section, we present a Runge–Kutta characteristic method for the initial-boundary value
problems for first-order linear hyperbolic equations with continuous coefficients, which can be
viewed as a higher-order improvement of the ELLAM schemes developed previously [9–13]. We
consider the following model problem:

Lu := ut + (V (x, t)u)x +K(x, t)u = f(x, t), x ∈ (a, b), t ∈ (0, T ],
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u(a, t) = g(t), t ∈ [0, T ],

u(x, 0) = uo(x), x ∈ [a, b]. (2.1)

Here V (x, t) is a velocity field, K(x, t) is a first-order reaction coefficient, f(x, t) is a given
source term, g(t) is a prescribed inflow boundary condition, uo(x) is a given initial condition,
ux := ∂u

∂x , and ut := ∂u
∂t . For simplicity of exposition, we assume V (x, t) positive, so that x = a

and x = b are the inflow and outflow boundaries, respectively.

B. Variational Formulation and Characteristic Curves

In this subsection, we briefly outline a forward-tracked Runge–Kutta characteristic scheme, which
is used as the underlying numerical scheme in developing our domain decomposition and space–
time local refinement method. We refer readers to [36] for detailed information. We partition the
space–time domain Ω := (a, b)× [0, T ] of problem (2.1) as follows:

a =: x0 < x1 < · · · < xI := b,

0 =: t0 < t1 < · · · < tN := T, (2.2)

for positive integers I and N . The scheme uses a time marching algorithm, so we need to focus
on only the time interval (tn−1, tn]. Moreover, it can accommodate a varying spatial grid on
different time intervals. We will illustrate its flexibility when domain decomposition and local
refinement techniques are developed.

Multiplying Eq. (2.1) by a continuous and piecewise smooth space–time test function that
vanishes outside Ωn := (a, b) × (tn−1, tn], and integrating over the domain Ω, we obtain a
space–time variational formulation∫ b

a

u(x, tn)w(x, tn) dx+
∫ tn

tn−1

u(b, t)w(b, t)V (b, t) dt

−
∫ tn

tn−1

∫ b

a

u(wt + V wx −Kw) dxdt

=
∫ b

a

u(x, tn−1)w(x, t+n−1) dx+
∫ tn

tn−1

∫ b

a

fw dxdt

+
∫ tn

tn−1

g(t)w(a, t)V (a, t) dt, (2.3)

where we use the notation w(x, t+n−1) := limt→t+
n−1

w(x, t) due to the discontinuity of w(x, t)
at time tn−1.

The principle of ELLAM [10, 11] suggests selecting the test functions from the solution space
of the homogeneous adjoint equation

L∗w := −wt(x, t)− V (x, t)wx(x, t) +K(x, t)w(x, t) = 0, (2.4)

so that the last term on the left-hand side of Eq. (2.3) is eliminated. Equation (2.4) can be rewritten
as the following ordinary differential equation:

− d

dθ
w(X(θ; x̄, t̄), θ) +K(X(θ; x̄, t̄), θ)w(X(θ; x̄, t̄), θ) = 0,
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w(X(θ; x̄, t̄), θ)|θ=t̄ = w(x̄, t̄), (2.5)

along the characteristics X(θ; x̄, t̄) being defined by

dX

dθ
= V (X, θ)

X(θ; x̄, t̄)|θ=t̄ = x̄, (2.6)

for any given point (x̄, t̄) with t̄ ∈ [tn−1, tn]. Thus, Eq. (2.5) leads to the following expression
for the test function w inside the space–time domain (a, b)× (tn−1, tn):

w(X(θ; x̄, t̄), θ) = w(x̄, t̄)e−
∫ t̄
θ
K(X(γ;x̄,t̄ ),γ)dγ

. (2.7)

In the numerical scheme, we use a second-order Runge–Kutta quadrature, known as the Heun’s
method, to approximate the characteristics defined by Eq. (2.6). Namely, we define the approxi-
mate characteristic curve emanating from a point (x̄, t̄), with t̄ ∈ [tn−1, tn], by

X(θ; x̄, t̄) := x̄− (t̄− θ)
2

[V (x̄, t̄) + V (x̄− (t̄− θ)V (x̄, t̄), θ)], (2.8)

where θ is the time position parameter along the approximate characteristic.
Furthermore, we define x̃ at time tn to be the head of the characteristic given by x =

X(tn−1; x̃, tn) of (2.7), which meets the foot x at time tn−1. Similarly, x∗ is the foot of charac-
teristic at time tn−1 with the head x at time tn, i.e., x∗ = X(tn−1;x, tn). b∗(t) = X(tn−1, b, t)
is the foot of the characteristic at time tn−1 with its head (b, t), t ∈ [tn−1, tn], on the outflow
boundary. We define t∗(x) = tn−1 if the characteristic X(θ;x, tn) does not backtrack to the
inflow boundary x = a during the time period [tn−1, tn], and t∗(x) to be the time instant when
the characteristicX(θ;x, tn) backtracks to the inflow boundary x = a (i.e.,X(t∗(x);x, tn) = a)
otherwise. We let t̃(x) be the time instant such that the characteristic X(θ; b, t̃(x)) with the head
(b, t̃(x)) meets the foot x at time tn−1 (i.e., x = X(tn−1; b, t̃(x))). The time increments over the
domain Ωn can be written as

∆t(I)(x) := tn − t∗(x), x ∈ [a, b],

∆t(O)(x) := t̃(x)− tn−1, x ∈ [a, b],

∆t := tn − tn−1. (2.9)

In the numerical formulation, we also introduce a local time refinement at both the inflow
boundary Γ(I)

n := {(a, s)|s ∈ [tn−1, tn]} and the outflow boundary Γ(O)
n := {(b, s)|s ∈

[tn−1, tn]} of Ωn by

t
(I)
n,i := tn − i ∆t

CIn
, i = 0, . . . , CIn,

t
(O)
n,i := tn − i ∆t

COn
, i = 0, . . . , COn, (2.10)

respectively, where we have the flexibility of selecting the two positive integers CIn and COn,
which determine these partitions. In practice, these parameters should be selected to be on the
order of the Courant number to guarantee stable boundary treatment, because the discretization
on the two boundaries is in time not along the characteristics.



6 WANG, AL LAWATIA, AND SHARPLEY

C. Numerical Scheme

To derive the numerical scheme, we approximate the second term on the right-hand side of
Eq. (2.3) along the characteristics. For clarity of presentation, we use the variables y and θ to
represent the spatial and temporal coordinates, respectively, of points in Ωn, and reserve x and t
for points on the space–time boundary of Ωn, representing heads or feet of characteristics. We
note that y ∈ [a,X(θ; b, tn)] can be written as y = X(θ;x, tn) for a unique x ∈ [a, b] and that
y ∈ [X(θ; b, tn), b] can be written as y = X(θ; b, t) for a unique t ∈ [θ, tn]. The source term of
Eq. (2.3) can then be approximated by being split into three parts, with each inner integral being
approximated by the trapezoidal rule as follows [36]:∫ tn

tn−1

∫ b

a

f(y, θ)w(y, θ) dydθ

=
∫ tn

tn−1

∫ X(θ;ã,tn)

a

f(y, θ)w(y, θ) dydθ

+
∫ tn

tn−1

∫ X(θ;b,tn)

X(θ;ã,tn)
f(y, θ)w(y, θ) dydθ

+
∫ tn

tn−1

∫ b

X(θ;b,tn)
f(y, θ)w(y, θ) dydθ

=
∫ b

ã

∆t
2
f(x, tn)w(x, tn)dx+

∫ b∗

a

∆t
2
f(x, tn−1)w(x, t+n−1) dx

+
∫ ã

a

∆t(I)(x)
2

f(x, tn)w(x, tn)dx+
∫ tn

tn−1

(tn − t)
2

f(a, t)w(a, t)V (a, t) dt

+
∫ tn

tn−1

(t− tn−1)
2

f(b, t)w(b, t)V (b, t) dt

+
∫ b

b∗

∆t(O)(x)
2

f(x, tn−1)w(x, t+n−1) dx+R(f, w), (2.11)

where R(f, w) represents the error term due to the trapezoidal approximation of the integrals.
Incorporating Eq. (2.11) into the variational formulation (2.3), yields a reference equation satisfied
by the exact solution.

The numerical scheme is based on approximating the exact solution u(x, t) of Eq. (2.1) by a
piecewise-linear trial function at time tn and at the outflow boundary Γ(O)

n . Therefore, we set up
test functions at time tn and at the outflow boundary as follows: At time tn we define the test
functions wi(x, tn)(i = 1, . . . , I − 1) to be the hat function

wi(x, tn) :=


x−xi−1

∆xi
, x ∈ [xi−1, xi],

xi+1−x
∆xi+1

, x ∈ [xi, xi+1],
0, otherwise,

(2.12)

where ∆xi := xi−xi−1. At the outflow boundary the test functionswI+i(b, t)(i = 1, . . . , COn−
1) are given by

wI+i(b, t) :=


t
(O)
n,i−1−t

∆tf , t ∈ [t(O)
n,i , t

(O)
n,i−1],

t−t(O)
n,i+1

∆tf , t ∈ [t(O)
n,i+1, t

(O)
n,i ],

0, otherwise,

(2.13)
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where ∆tf := ∆t
COn

. The test function w0(x, tn) is defined only on [x0, x1] by (2.12) and,

similarly, wI+COn is defined only on [tn−1, t
(O)
n,COn−1] by (2.13), while wI is so that wI(x, tn)

is defined by (2.12) for the interval [xI−1, xI ], and wI(b, t) is defined by (2.13) on the interval
[t(O)
n,1 , tn]. We extend these test functions to the interior of the domain by

wi(X(θ; x̄, t̄), θ) := wi(x̄, t̄)e−
(t̄−θ)

2 [K(x̄,t̄ )+K(X(θ;x̄,t̄ ),θ)], (2.14)

which are (trapezoid) approximations to the test functions defined in (2.7). Here for test functions
wi(x, tn)(i = 0, . . . , I), (x̄, t̄) = (x, tn) with x ∈ [a, b] and θ ∈ [t∗(x), tn] and for test functions
wi(b, t)(i = I, . . . , I + COn), (x̄, t̄) = (b, t) with t ∈ [tn−1, tn] and θ ∈ [tn−1, t].

The trial function U , which approximates the exact solution u, has the form

U(x, tn) :=
I∑
i=0

U(xi, tn)wi(x, tn), x ∈ [a, b],

U(b, t) :=
COn∑
i=0

U(b, ti)wI+i(b, t), t ∈ [tn−1, tn], (2.15)

for n = 1, . . . , N . Thus, we replace the exact solution u and the test functions w in the reference
equation by the trial function U and test functions wi(i = 0, . . . , I + COn). Since U(a, tn)
= g(t) is known from the prescribed inflow boundary condition and U(b, tn−1) is known
from the solution at the previous time level tn−1, our scheme will be stipulated only for nodes
xi(i = 1, . . . , I) and t(O)

n,i (i = 1, . . . , COn − 1). However, to conserve mass, all the nodal test
functions should sum to one (when no reaction is present) [10]. Taking this into consideration,
the formulation of our scheme becomes∫ b

a

U(x, tn)ŵi(x, tn) dx+
∫ tn

tn−1

U(b, t)ŵi(b, t)V (b, t) dt

=
∫ b

a

U(x, tn−1)ŵi(x, t+n−1) dx+
∫ tn

tn−1

g(t)ŵi(a, t)V (a, t) dt

+
∫ b

a

∆t(I)(x)
2

f(x, tn)ŵi(x, tn) dx+
∫ b

a

∆t(O)(x)
2

f(x, tn−1)ŵi(x, t+n−1) dx

+
∫ tn

tn−1

(t− tn−1)
2

f(b, t)ŵi(b, t)V (b, t) dt

+
∫ tn

tn−1

(tn − t)
2

f(a, t)ŵi(a, t)V (a, t) dt, (2.16)

where ŵ1 := w1 +w0, ŵi := wi for i = 2, . . . , I +COn − 2, and ŵI+COn−1 := wI+COn−1 +
wI+COn . In (2.16), we dropped the error term due to the trapezoidal approximation.

The numerical scheme (2.16) is known as the forward Runge–Kutta characteristic method
(FRKC) [36]. The FRKC scheme generates tridiagonal (regularly structured in higher dimen-
sions), well-conditioned, symmetric, and positive definite coefficient matrices, which can be
solved efficiently even for multidimensional problems. It allows for large time-steps in the sim-
ulation without loss of accuracy. Moreover, it conserves mass and treats boundary conditions
in a systematic way without requiring any artificial outflow boundary condition. This bound-
ary treatment provides a natural way of developing domain decomposition and local refinement
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techniques using this method. The reader is referred to [36] for implementational details of the
FRKC scheme and its numerical experiments, which show that the FRKC scheme outperforms
many widely used methods, including the Galerkin and Petrov–Galerkin finite element methods
[16–18], streamline diffusion method [20, 22], continuous and discontinuous Galerkin methods
[19, 21], the monotonic upstream-centered scheme for conservation laws (MUSCL), and the
essentially nonoscillatory (ENO) scheme [23–26].

In the following sections, we use the FRKC scheme to develop a domain decomposition method
with space–time local refinement capability for solution of problem (2.1) with interfaces. The
domain decomposition method is general in that any other scheme within the ELLAM framework,
such as the backward Euler ELLAM scheme or the backward Runge–Kutta characteristic method
developed previously [9–13, 36], can be used instead of the FRKC scheme.

III. DOMAIN DECOMPOSITION

A. Various Types of Interfaces

In addition to the difficulties encountered in solving first-order hyperbolic equations mentioned
in Section II.A, practical problems often have various physical and numerical interfaces, which
introduce further complexities. When the physical domain (a, b) in Eq. (2.1) is composed of
different sub-domains (dl−1, dl) that consist of different media for l = 1, 2, . . . , Lwhere d0 := a
and dL := b, the velocity field V (x, t) in Eq. (2.1) will have jump discontinuities at points
dl ∈ (a, b) for (l = 1, 2, . . . , L − 1) and is continuous elsewhere. This leads to hyperbolic
equations with discontinuous coefficients V (x, t). In this case, Eq. (2.1) still holds on each sub-
domain (dl−1, dl) for l = 1, 2, . . . , L, but not on the physical interfaces dl(l = 1, 2, . . . , L− 1).
Instead, the mass conservation principle ensures the continuity of the flux across the interfaces:

V (d−l , t)u(d−l , t) = V (d+
l , t)u(d+

l , t), t ∈ [0, T ], l = 1, 2, . . . , L− 1, (3.1)

where u(d−l , t) := limx→dl,x<dl u(x, t) and u(d+
l , t) := limx→dl,x>dl u(x, t).

Equation (3.1) is used to enclose the initial-boundary value problem (2.1) across the physical
interfaces. Note that Eq. (3.1) implies that the jump discontinuities in the coefficientV (x, t) yield
similar discontinuities in the exact solution u(x, t). One has to approximate the solution u(d−l , t)
and u(d+

l , t)(l = 1, 2, . . . , L− 1) very carefully at the interfaces so that the numerical solutions
obtained are accurate, stable, and physically reasonable without any accompanying overshoot or
excessive artificial diffusion nor artificially reflected waves [37, 38].

Numerical interfaces arise in the application of domain decomposition techniques, which have
been applied widely in decomposing problems imposed over complicated geometric domains into
a set of subproblems on much simpler sub-domains, in solving large size problems in parallel, and
in solving problems in an efficient way. In all these cases, one divides the physical domain into
several overlapping or nonoverlapping sub-domains and solves the problem on these sub-domains
instead. This generates interfaces among different sub-domains [6–8, 39].

Numerical interfaces also occur when one solves problems imposed over unbounded physical
domains. Since no computer can handle infinitely many data, one has to ‘‘truncate’’ the phys-
ical domains in numerical simulations. This truncation introduces an artificial open boundary,
which requires special care. Otherwise, artificial waves may be generated and reflected back from
the artificial outflow boundary, which is another type of numerical interface. Consequently, the
accuracy or the stability of numerical methods will be destroyed and nonphysical numerical solu-
tions obtained. A lot of work has been done in designing reasonable artificial outflow boundary
conditions in the development of numerical schemes for hyperbolic equations [40, 41].
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In this section, we develop a domain decomposition method for solution of problem (2.1)
possibly coupled with various physical and numerical interfaces described above. Although it
is derived for physical interfaces, Eq. (3.1) still holds at numerical interfaces due to the mass
conservation principle. Therefore, in this article we always utilize Eq. (3.1) to treat both physical
and numerical interfaces in a uniform manner. In the remaining part of this section, we first
describe possible ways of passing information between different sub-domains sharing an interface,
then we present a global algorithm to solve problems (2.1) and (3.1) by incorporating the interface
treatment with the FRKC scheme (2.16) applied on each sub-domain.

B. Spatial Interfaces

For simplicity of exposition, we consider problem (2.1) with one interface in space at the point
d ∈ (a, b). The global space–time domain Ω := (a, b)× [0, T ] is divided into two sub-domains
Ω1 := (a, d)×[0, T ] and Ω2 := (d, b)×[0, T ], which share the interface Id := {(d, s)|s ∈ [0, T ]}.
When V (x, t) is assumed positive, Id is the outflow boundary for Ω1 and the inflow boundary
for Ω2. The algorithm developed here applies to other velocity distributions.

Applying the FRKC scheme (2.16) on Ω(1,n) := (a, d)× [tn−1, tn] yields a numerical solution
on (a, d) at time tn and at the outflow boundary Idn := {(d, s)|s ∈ [tn−1, tn]} of Ω(1,n), which

allows a uniform partition P (O)
(1,n) of COn intervals on Idn from the left. With Idn as the inflow

boundary of Ω(2,n) := (d, b)× [tn−1, tn], which has a uniform partition P (I)
(2,n) of CIn intervals

from the right, one can obtain the numerical solution on Ω(2,n) by using the FRKC scheme (2.16).
These two partitions on Idn, accumulated over all the time-steps [tn−1, tn] of the simulation, define
the following two partitions on Id: (i) partitionP (O)

1 := ∪Nn=1P
(O)
(1,n) determined by the grid points

t
(O)
n,i for i = 0, 1, . . . , COn − 1 (as in (2.10)) and n = 1, 2, . . . , N from the left of Id, and (ii)

the partition P (I)
2 := ∪Nn=1P

(I)
(2,n) given by the grid points t(I)n,i for i = 1, . . . , CIn − 1 (as in

(2.10)) and n = 1, . . . , N from the right of Id. To complete the domain decomposition method,
we need only to give an algorithm on how to pass the information across the interface Id. In the
subsequent subsections, we will discuss different ways of passing information between the two
sub-domains Ω1 and Ω2, so that it is consistent with the case when no interface is present.

To avoid multiple indices for the elements in either partition, we assume that they are ordered
in an increasing order by a single index ranging from 0 to the size of the partition considered.
The treatment of the interface Id between Ω1 and Ω2 can be carried out by a projection or an
interpolation of the piecewise linear solution U(d−, t) to get U(d+, t). However, implementing
this projection varies depending on the relation that can be assumed between the two partitions
considered.

1. Non-conforming Interfacial Matching

The FRKC scheme (2.16) allows the use of both nonuniform and uniform time-steps in the
simulation over each sub-domain. Thus, when different time-steps are used on the two sub-
domains Ω1 and Ω2, the partitions P (O)

1 and P (I)
2 are not compatible in general and lead to a

nonconforming matching on the interface Id. In this case, an L2-projection can be used to pass
the information from P

(O)
1 to P (I)

2 :∫ T

0
V (d+, t)U(d+, t)wi(d+, t) dt =

∫ T

0
V (d−, t)U(d−, t)wi(d+, t) dt, (3.2)

for i = 0, 1, . . . ,
∑N
n=1 CIn.
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We now briefly discuss some implementational issues regarding Eq. (3.2). The left-hand side
of Eq. (3.2) resides on the partition P (I)

2 and is standard in finite element methods. However,
the evaluation of the right-hand side requires extra care. Notice that the trial function U(d−, t)
and the test function wi(d+, t) reside on the partitions P (O)

1 and P (I)
2 , respectively, which are not

compatible in general, and that the right-hand side of Eq. (3.2) is assembled based on the index of
the test function. When one uses a quadrature to evaluate the right-hand side of Eq. (3.2) on the
intervals [t(I)i−1, t

(I)
i ] and [t(I)i , t

(I)
i+1] (i.e., the support ofwi) of the partitionP (I)

2 , one may integrate
the product of a linear function wi(d+, t) with a piecewise-linear function U(d−, t) on each of
these two intervals. Hence, a blind numerical integration of this term may result in loss of mass
and oscillations in the numerical solutions [10, 32]. To overcome these difficulties, we further
subdivide the intervals [t(I)i−1, t

(I)
i ] and [t(I)i , t

(I)
i+1] into a number of subintervals such thatU(b−, t)

is linear on each of these subintervals. Then, we apply a numerical quadrature on each of these
subintervals to evaluate the right-hand side of Eq. (3.2). While the nonconforming interfacial
matching works for general nonuniform partitionsP (O)

1 andP (I)
2 , the process of determining how

many subintervals [t(O)
j−1, t

(O)
j ] of P (O)

1 are contained in the intervals [t(I)i−1, t
(I)
i ] and [t(I)i , t

(I)
i+1] of

P
(I)
2 may not be very efficient in general. To enhance the efficiency, we consider a conforming

matching in the next subsection.
Finally, we notice that when the partitions P (O)

1 and P (I)
2 on Id are identical and V (x, t) is

continuous across Id, Eq. (3.2) implies that U(d+, t) = U(d−, t). Thus, the nonconforming
matching of the interfaces is consistent with the scheme when no interface is present.

2. Conforming Interfacial Matching

The partition P (O)
1 on the interface Id (as the outflow boundary of Ω1) and P (I)

2 on Id (as the
inflow boundary of Ω2) are conforming, if one of them is a subset of the other and each coarse
global time-step [tcn−1, t

c
n] is an integer multiple of a uniform fine global time-step [tfm−1, t

f
m].

The number of fine time intervals in each coarse time interval is allowed to vary with n. In this
case, Eq. (3.2) is confined to the coarse time-step [tcn−1, t

c
n] instead of [0, T ]:∫ tcn

tc
n−1

V (d+, t)U(d+, t)wi(d+, t) dt =
∫ tcn

tc
n−1

V (d−, t)U(d−, t)wi(d+, t) dt. (3.3)

A conforming matching is fairly flexible in that it allows a nonuniform coarse time-stepping
procedure in numerical simulations. Meanwhile, since each coarse global time-step is uniformly
partitioned into a number of finer global time-steps, no search algorithm is needed in evaluating the
right-hand side as in the case of a nonconforming matching. This leads to ease of implementation
and improvement of the CPU time involved in evaluating the right-hand side of Eq. (3.3).

When the velocity field is continuous across the interface Id and when one projects from a
coarse grid to a finer one, thenU(d+, t) is exactly the same asU(d−, t). In other words, Eq. (3.3)
is equivalent to a piecewise linear interpolation, which makes passing information very simple
and efficient.

C. Temporal Interfaces

The procedure developed in the last subsection can also be applied to treat temporal interfaces. We
solve Eq. (2.1) by a domain decomposition technique in time. Again, we assume that the global
space–time domain Ω := (a, b) × [0, T ] is divided into two sub-domains Ω1 := (a, b) × [0, T1]
and Ω2 := (a, b) × [T1, T ] with 0 < T1 < T . In this case, the temporal interface IT1 is given
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by IT1 := {(x, T1)|x ∈ [a, b]}. Once the solution is computed on the sub-domain Ω1 up to the
temporal interface IT1 , we need to pass the solution to the other side of the interface IT1 , where
it is used as the initial condition for the simulation on the sub-domain Ω2. As in the case of a
spatial interface, if the partition on Ω1 is not the same as that on Ω2, the following projection is
used to pass the numerical solution across the interface IT1 :∫ b

a

U(x, T+
1 )wi(x, T+

1 ) dx =
∫ b

a

U(x, T−1 )wi(x, T+
1 ) dx (3.4)

for i = 0, 1, . . . , I , where I is the number of the test functions used on the spatial part of Ω2.
The piecewise linear test functions wi(x, T+

1 ) are given by Eq. (2.12) with T1 replacing tn. The
detailed treatment is similar to that for the spatial interfaces and is omitted here.

D. Domain Decomposition Method on a General Space––––––Time Partition

To fully describe the method, we consider a general space–time partition of the domain Ω :=
(a, b)× [0, T ] into sub-domains given by

a =: d(m)
0 < d

(m)
1 < · · · < d

(m)
Lm

:= b, m = 1, 2, . . . ,M,

0 =: T0 < T1 < · · · < TM := T. (3.5)

These sub-domains are labeled as

Ω(l,m) := (d(m)
l−1 , d

(m)
l )× [Tm−1, Tm], for l = 1, . . . , Lm, and m = 1, . . . ,M. (3.6)

In porous medium fluid flows and seismics, the physical interfaces arise when the medium
properties change abruptly, which are typically time-independent. In this case the spatial partition
should normally be time-independent, too, i.e., d(m)

l = dl(l = 0, . . . , Lm). On the other hand,
the steep fronts presented in the numerical solutions are often dynamic, so a practical domain
decomposition and local refinement method often needs to be adapted to the moving steep fronts.
In this case, the spatial partition should be time-dependent. The partition (3.5) and the method
presented in this subsection cover both cases. A general domain decomposition method for
solving Eq. (2.1) over domain Ω goes as follows:

Step 1. Using the given initial and inflow boundary conditions in (2.1), one applies the FRKC
scheme (2.16) over the space–time sub-domain Ω(1,1). The solution over this domain defines the
solution U(d−1 , t) for t ∈ [0, T1] and U(x, T−1 ) for x ∈ [a, d1].
Step 2. Using the procedures developed in Section III.B, one can pass the solution U(d−1 , t)
across the interface between Ω(1,1) and Ω(2,1), and obtains U(d+

1 , t) for t ∈ [0, T1]. Then, one
can apply the FRKC scheme (2.16) on Ω(2,1) to obtain the numerical solution on this sub-domain.
Continuing this process, one can obtain the numerical solutions on Ω(l,1) for l = 1, 2, . . . , L1.
Namely, one can obtain the solution on [a, b] for t ∈ [0, T1].
Step 3. In parallel to Step 2, one can apply the scheme (2.16) to solve Eq. (2.1) on the sub-
domain Ω(1,2) unless the sub-domain Ω(1,2) has a larger spatial interval [d(2)

0 , d
(2)
1 ] than the interval

[d(1)
0 , d

(1)
1 ] for the sub-domain Ω(1,1). In this case, Step 2 needs to be carried out before this step

to find the solution over the sub-domain Ω(2,1) or even more sub-domains on time interval [0, T1]
until the solution U(x, T−1 ) is known on enough spatial intervals to cover the spatial domain of
the sub-domain Ω(1,2).
Step 4. Repeat Steps 2 and 3 for sub-domains that are adjacent to sub-domains Ω(2,1) and Ω(1,2)
(and possibly others) until one finally covers all the sub-domains defined in (3.6).
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In terms of systolic parallel implementation of this algorithm, it is evident that once the solution
is computed on a domain Ω(l,m), the part of the solution generated at the outflow boundary of
that sub-domain can be projected to Ω(l+1,m), and similarly the solution at the last time-step
can be projected to domain Ω(l,m+1) (with some possible contribution from domains adjacent to
Ω(l,m) when the spatial domain of Ω(l,m+1) is different from that of Ω(l,m)). Then Steps 2 and
3 can be implemented concurrently to solve problem (2.1) over the two sub-domains Ω(l+1,m)
and Ω(l,m+1). The global concurrency is more evident in the case when the spatial partition
of the domains given in (3.5) is independent of time, whence one starts solving problem (2.1)
over Ω(1,1). Next, Steps 2 and 3 can be implemented concurrently to solve the problem over
sub-domains Ω(2,1) and Ω(1,2). These procedures can be continued until all the sub-domains are
processed.

IV. SPACE---TIME LOCAL REFINEMENT

In many applications modeled by Eq. (2.1), the solutions are relatively smooth outside some very
small sharp front regions. These sharp fronts of the solutions need to be resolved accurately in
practice [1, 2, 4]. Because of the extremely large size of these problems, an extremely fine global
mesh in both space and time is not feasible due to its excessive computational cost. Therefore, one
has to use locally refined space–time grids within these small regions to resolve the sharp fronts
of the solutions accurately and use coarse space–time grids to obtain a satisfactory approximation
outside the sharp front regions with a significantly reduced overall computational cost. The use
of local refinement introduces numerical interfaces between the coarse and fine grids, which need
special care especially for hyperbolic equations [42, 43].

Because it solves problem (2.1) accurately and treats boundary conditions systematically in
a mass conservative manner, the FRKC scheme (2.16) can naturally be combined with a space–
time local refinement algorithm. The local refinement algorithm falls in the general framework
of the domain decomposition method developed in the previous section, but can be carried out in
a more efficient way by selecting the partitions on the interface between two adjacent domains
in an appropriate way. We begin by describing ways to improve the treatment of the interfaces
resulting from space–time local refinement over that described in the previous section.

A. Interpolation/Projection-Free Space---Time Local Refinement

We consider solving problem (2.1) over the global domain Ω := (a, b)× [0, T ], which is divided
into three sub-domains Ω1 := (a, d1)× [0, T ],Ω2 := (d1, d2)× [0, T ], and Ω3 := (d2, b)× [0, T ].
We assume that the exact solution u(x, t) of the problem has steep fronts within the sub-domain
Ω2 in the middle and is smooth in the other two sub-domains. Therefore, we will use refined
spatial and temporal grids on Ω2 and coarse meshes outside. We now describe how to pass a
solution across the interface from a sub-domain with a coarse space–time mesh to a sub-domain
with a fine mesh and vise versa. The algorithm actually applies no matter how many sub-domains
are used in the local refinement.

Let Id1 := {(d1, s)|s ∈ [0, T ]} be the interface shared by the two sub-domains Ω1 and Ω2.
With Id1 being the outflow boundary of Ω1 and the inflow boundary of Ω2, the FRKC scheme
(2.16) has a flexibility in selecting the partition parametersCO(1) andCI(2) (where the superscript
indicates the domain) on Id1 . While for any choice of these parameters the algorithm in Section
III.B can pass the solution U(d−1 , t) across the interface Id1 to yield U(d+

1 , t), a more efficient
alternative can be obtained by matching the partition CO(1) on Id1 (as the outflow boundary of
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Ω1) with the partitionCI(2) on Id1 (as the inflow boundary of Ω2). With this particular choice of
the partitionCO(1), the FRKC scheme (2.16) applied to the sub-domain Ω1 naturally generates the
numerical solutions at the nodes on the interface Id1 and U(d1+, t) = U(d1−, t) for t ∈ [0, T ].
Namely, the numerical solution given on the outflow boundary of Ω1 directly defines the inflow
boundary condition for problem (2.1) on sub-domain Ω2 without any interpolation or projection
involved.

The treatment of the interface Id2 := {(d2, s)|s ∈ [0, T ]} between the sub-domains Ω2 and Ω3
is carried out in a similar manner. In this case, the solution moves out of the sub-domain Ω2 with
a fine space–time partition and into the sub-domain Ω3 with a coarse space–time mesh. In this
case, we choose the partition CI(3) on Id2 (as the inflow boundary of Ω3) to match the partition
CO(2) on Id2 (as the outflow boundary of Ω2). Then we naturally have U(d+

2 , t) = U(d−2 , t)
for t ∈ [0, T ], i.e., we pass the numerical solution across the interface Id2 in a natural manner,
without using any interpolation or projection.

B. Adaptive Local Refinement/Nonlinear Approximation

Due to the transient property of the exact solutions of problem (2.1), the regions that contain the
sharp fronts of the solutions normally move with time. Hence, one has to use dynamic space–time
local refinement to solve problem (2.1) in an efficient and accurate manner. To carry out adaptive
local refinement effectively, one has to locate sharp front regions accurately and apply local refine-
ment only where it is needed. In numerical simulations, one can use a posterior error indicators/
estimators to locate the front regions.

Extensive research has been conducted in developing various a posterior error indicators/
estimators for elliptic and parabolic equations [44–48]. In the context of hyperbolic equations,
one also needs to take into account the transient behavior of the solutions. We refer the readers
to [49] for an excellent discussion and review on the latest development of adaptive refinement
techniques. In our scheme, the adaptive local refinement algorithm can be described as follows:

Step 1. Apply an error indicator or estimator (e.g., those mentioned above) on the current solution
(or initial condition, if current time is initial time) of problem (2.1) to locate its steep front regions,
which are then identified by their spatial boundaries.
Step 2. For each time-step in the simulation, track these regions forward along the characteristics
to predict where the steep front regions will locate at the next time-step. This will provide locally
refined grids needed to resolve the steep fronts of the solutions. The contribution from the reaction
term, the source term, and the boundary conditions, which could lead to the formation of new
steep front regions, can also be identified in this manner.
Step 3. Apply the FRKC scheme (2.16) and the procedure described in Section IV.A on each
space–time sub-domain (including those with coarse space–time grids and those with locally
refined grids) at the current time interval. Go to Step 1 until one reaches the last time-step.

As one can see, the above adaptive space–time local refinement algorithm is accomplished
based on a thorough understanding of all terms in the governing equation, and their influence
on the solutions as time evolves. Thus, one expects that the algorithm should perform well. In
Section VI, we perform experiments to observe its numerical performance.

Although we focus on a linear advection–reaction Eq. (2.1) in this article, we keep in mind
that in applications Eq. (2.1) is often coupled to other equations and forms a nonlinear system of
advection-dominated partial differential equations. Consequently, the regularity of the solutions
is significantly reduced and the related theoretical results are meager. The reduced regularity
in turn limits the convergence rates of numerical simulations. In the rest of this subsection,
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we explore some possible theoretical benefits of the use of adaptive refinements, by looking
at the numerical methods with or without adaptive local grid refinement from the viewpoint of
approximation theory. The numerical methods without local grid refinement correspond to linear
methods in approximation theory, where the numerical solutions are chosen from a fixed linear
space (e.g., piecewise linear functions on a fixed partition), usually using a linear projection
operator. The partition of domains is independent of the solutions being approximated. Linear
methods are relatively simple to study and implement, but they may not be very efficient when the
exact solutions being approximated have strongly local behavior (e.g., steep fronts). Furthermore,
linear methods require higher regularity of the exact solutions being approximated.

Let SI,r(a, b) be the space of all continuous functions that are piecewise polynomials of degree
r − 1 on the spatial partition given by (2.2). Set EI(f, SI,r) to be the best approximation error
given by

EI(f,SI,r) := inf
g∈SI,r(a,b)

‖f − g‖Lp(a,b). (4.1)

Here Lp(a, b) is the space of pth power, Lebesgue integrable functions on (a, b) with norm
(quasi-norms if 0 < p < 1)

‖f‖Lp(a,b) =

(∫ b

a

|f(x)|pdx
)1/p

. (4.2)

It has been proven [50, 51] that for a linear method to approximate a function f from the space
of piecewise polynomials SI,r(a, b) with a convergence rate of O(I−α) in the Lp(a, b) norm is
equivalent to f having α order of smoothness (or α order of derivatives, if α is an integer) in
Lp(a, b) (i.e., f is in the Sobolev space Wα(Lp(a, b))). Therefore, a higher convergence rate
requires higher regularity of the function f being approximated. In particular, there is no linear
method for one-dimensional nonlinear hyperbolic equations (conservation laws) that have higher
than first-order convergence rate in the L1(a, b) norm. Otherwise, the above result concludes
that the exact solution should be in W1

1 (a, b), which implies that the exact solution should be
absolutely continuous on (a, b) by the Sobolev embedding theorem. However, it is well known
that the exact solutions of conservation laws can develop shock discontinuities in finite time no
matter how smooth the initial condition may be. This is the theoretical justification that there are
no higher-order linear methods for nonlinear hyperbolic equations.

On the other hand, in a nonlinear method the spatial partition in (2.2) is allowed to depend
on the function being approximated. Let XI,r(a, b) be the space of all continuous functions that
are piecewise polynomials (of degree r − 1) with I pieces on [a, b]. Since different functions
in XI,r(a, b) may have different break points, the sum of two functions in XI,r(a, b) may not
necessarily belong to XI,r(a, b) (but does belong to X2I,r(a, b)). The space–time local grid
refinement algorithm in this section can be viewed as a practical implementation of a nonlinear
method. LetFI(f,XI,r) be the best approximation error from the nonlinear manifold XI,r(a, b):

FI(f,XI,r) := inf
g∈XI,r(a,b)

‖f − g‖Lp(a,b). (4.3)

In comparing the rigorous treatments of linear and nonlinear approximation, DeVore [50] and
Petrushev [51] go further and prove that a nonlinear method has a convergence rate of O(I−α)
in the Lp(a, b) norm if and only if f has α order of smoothness (or α order derivatives, if α
is an integer) in Lτ (a, b) with τ = p/(1 + αp), more precisely, f belongs to the Besov space
Bαq (Lτ (a, b)), where the parameter q(0 < q ≤ ∞) is a finer scaling of smoothness than Sobolev
spaces provide (see [52, 53] for details). Since 0 < τ < 1 is significantly smaller than p
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(as long as one allows nonlocally convex spaces Lτ (a, b)), the regularity requirement of f for
a nonlinear method is much weaker than that for a linear method. Furthermore, DeVore and
Lucier [54, 55] have proven that the Besov spaces are regularity spaces for one-dimensional
conservation laws. Namely, if the initial condition u0 is in a Besov space (which is true for
almost all the realistic applications) the solution will remain in the same space for all later time.
The importance of this result is that it shows that solutions to conservation laws retain high
orders of regularity when measured in the correct way. The combination of this result with that
for nonlinear approximation mentioned above predicts that higher-order nonlinear methods to
conservation laws can be developed with O(I−α) accuracy in the Lp(a, b) norm for any α > 0
(with r > α in XI,r(a, b)). These observations theoretically justify the use of adaptive local grid
refinement, because it can significantly increase efficiency and reduce the regularity requirement
on the exact solutions for hyperbolic equations, since they typically have strongly local behavior.
Numerical experiments are presented in Section VI to demonstrate the strong potential of the
adaptive local refinement method developed in this article.

C. Local Refinement with Patches/Nested Grids

In the previous subsection, we presented an adaptive space–time local grid refinement algorithm
and justified it from a theoretical viewpoint. We now discuss some implementational issues
for adaptive local grid refinement. A blind application of the local refinement algorithm can
significantly enhance the efficiency of the numerical simulation to problem (2.1), but it could
introduce some nonconforming grids at spatial or temporal interfaces. In that case, one has to use
an L2 projection to pass information across interfaces as described in Section III.B. This could
also require a complex coarse–fine grid, leading to complicated data structures.

To address these potential difficulties we use nested grids and patches in the local grid refine-
ment and modify the algorithm in Section IV.B as follows: We first define an underlying coarse
space–time partition given by (2.2) on the global domain Ω := (a, b) × [0, T ], with the spatial
partition being independent of time. At each time-step, we define a patch to be the cluster of
macro elements that have a nonempty overlap with a steep front region. We then use a refined
space–time grid in each of the macro elements in the patch. This way, we obtain a space–time
partition with nested space–time grids. Although this implementation enlarges the refined region
slightly (up to the size of two macro elements in each spatial coordinate direction) than the al-
gorithm presented in Section IV.B, it uses a static coarse space–time partition and dynamic local
refinement within certain patches. Therefore, globally and locally one solves problems with the
same partition and data structure, so it greatly simplifies the implementation of the adaptive local
grid refinement algorithm especially for multidimensional problems.

Finally, the above adaptive local grid refinement algorithm with patches/nested grids is a two
level (coarse–fine grid) method. This algorithm can be applied repeatedly, yielding multilevel
local refinement with nested grids.

V. DESCRIPTION OF SOME GRID REFINEMENT SCHEMES

In this section, we describe some existing finite difference local refinement schemes for problem
(2.1), which are widely used in applications [27]. In the next section, these schemes are compared
with the local refinement method developed in this article, to observe their numerical performance.
For simplicity we present these schemes for problem (2.1) with a constant velocity field, but with
no reaction or source terms involved.
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These schemes typically use a conventional finite difference scheme (e.g., Lax–Wendroff or
leapfrog) to solve problem (2.1) on a uniform coarse grid on the global domain Ω := (a, b)×[0, T ]:

xi := a+ i∆xc, ∆xc :=
b− a
I

,

tn := n∆tc, ∆tc :=
T

N
. (5.1)

For definiteness, we take the leapfrog scheme as an example. Applying the leapfrog scheme, we
advance the solution from the previous time-steps tn−1 and tn to tn+1, as follows:

U(xi, tn+1) = U(xi, tn−1)− λ[U(xi+1, tn)− U(xi−1, tn)], (5.2)

where λ = V∆tc/∆xc is the Courant number.
Then one uses a locally refined space–time grid that is nested in the coarse grid (5.1). We

define the refined grid size and time-step to be

∆xf :=
∆xc

Mx
, ∆tf :=

∆tc

Mt
, (5.3)

where the positive integers Mx and Mt are the space and time refinement ratio, respectively.
Notice that the first node xf0 in the fine mesh is also a coarse grid node xī for some ī (since

the grids are nested), which could be either a cell center or a grid point, depending on the type of
scheme used. To apply the leapfrog scheme (5.2) on the refined grid, one has to provide the values
of the solution at xf0 for all the fine time-steps, which is an interface due to the use of locally
refined spatial grids and temporal steps. Different interface schemes were developed previously
to treat these interfaces, including the Clark–Farley scheme, a characteristic interface scheme,
and two integration schemes: a node integration and a cell-centered integration scheme. Let

xf−k := xf0 − k∆xc, k = 0, 1, 2, . . . ,

xfk := xf0 + k∆xf , k = 0, 1, 2, . . . ,

tn,m := n∆tc +m∆tf , m = 0, 1, . . . ,Mt (5.4)

be the refined spatial grids and time-steps. These interface schemes may require the values of U
at xf−k for different fine time-steps tn,m. With the values ofU at the coarse space–time grid being
known, the values of U at fine time-steps are approximated by a second-order Taylor polynomial
in time, with the time derivatives being replaced by centered differences as follows:

U(xf−k, tn,m) : = U(xf−k, tn) +
[U(xf−k, tn+1)− U(xf−k, tn−1)]

2∆tc
(m∆tf )

+
[U(xf−k, tn+1)− 2U(xf−k, tn) + U(xf−k, tn−1)]

2(∆tc)2 (m∆tf )2. (5.5)

The solution procedure goes as follows: First one applies the leapfrog scheme (5.2) on the
coarse grid to advance the solution from the previous time levels tn−1 and tn to tn+1. Second,
with the values ofU(xf−1, tn,m) andU(xf−2, tn,m) evaluated by (5.5), the solutionU(xf0 , tn,m) at

the interface xf0 at fine time-steps can be obtained by the interface schemes described below. The
treatment at the other end of the fine grid is similar. Then these values are used as the artificial
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boundary conditions for the leapfrog scheme (5.2) applied on the refined grid for all the fine
time-steps within the coarse time level. Below we present the different interface schemes.

1. Clark–Farley Scheme

The Clark–Farley scheme solves a least square fit with quadratic collocation to generate the
solution at the interface xf0 for fine time-steps as follows:

U(xf0 , tn,m+1) :=
[
α+

1
8

(
1
M2
t

− 1
)]

U(xf−2, tn,m)

+
[(

3
2
− 1

2Mt

)(
1
2

+
1

2Mt

)
− 2α

]
U(xf−1, tn,m)

+
[

1
2

(
1
2
− 1

2Mt

)(
3
2
− 1

2Mt

)
+ α

]
U(xf0 , tn,m), (5.6)

where the value α = [ 1
M2
t
− 1]/24 is chosen to ensure local mass conservation [56]. In the event

that α is chosen to be zero, Eq. (5.6) is reduced to the Lagrange interpolation.

2. Characteristic Interface Scheme

In the characteristic interface scheme [43] the values of U at the interface xf0 are obtained by
backtracking the characteristic at a distance of |V |∆tf and then using a linear interpolation in
space as follows:

U(xf0 , tn,m+1) :=

{ −2λ
Mt−1U(xf−1, tn,m) + Mt−1+2λ

Mt−1 U(xf0 , tn,m), if V > 0,

(1 + λ)U(xf0 , tn,m)− λU(xf1 , tn,m), if V < 0.
(5.7)

3. Node-Based Interface Integration Scheme

FIG. 1. Partition of the domain in Experiment 6.1
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The node integration scheme is obtained by integrating Eq. (2.1) over the element [xf0 −
∆xc

2 , xf0 + ∆xf
2 ] as follows [27]:

U(xf0 , tn,m+1) := U(xf0 , tn,m−1)− V 2∆tf

∆xc + ∆xf
[U(xf1 , tn,m)− U(xf−1, tn,m)]. (5.8)

4. Cell-Centered Interface Integration Scheme

The cell-centered integration scheme is obtained by integrating Eq. (2.1) over the element
[xf−1, x

f
1 ] as follows [27]:

U(xf0 , tn,m+1) := U(xf0 , tn,m−1)− V 4∆tf

∆xc + ∆xf
[U(xf1 , tn,m)− U(xf−1, tn,m)]. (5.9)

In this case, xf0 is a cell center.

VI. NUMERICAL EXPERIMENTS

In this section, we carry out various numerical experiments to test the performance of the domain
decomposition and space–time local refinement method developed in this article. Three types
of experiments are included: (1) a comparison of the method with the local refinement methods
reviewed in the previous section; (2) a comparison of the domain decomposition method for
problem (2.1) with discontinuous coefficients with the results reported in [57]; and finally (3) a
comparison of the adaptive local refinement method with a globally refined grid.

A. Space––––––Time Local Refinement on a Static Domain Decomposition

The numerical experiments for the Eulerian finite difference local refinement method described
in the previous section (including the Clark–Farley interface scheme, a characteristic interface
scheme, and two integration interface schemes) were reported in [27]. In this section, we test
the same example to compare the performance of the local refinement method developed in this
article with those.

In this example, the velocity field is V (x, t) = −1 and no reaction or source term is involved
(i.e., K(x, t) = 0 and f(x, t) = 0). The initial condition is a Gaussian distribution given by

u0(x) := exp
[
− (x− xc)2

2σ2

]
, (6.1)

where xc and σ are the center and standard deviation of the pulse. The corresponding analytic
solution of Eq. (2.1) is given by

u(x, t) = exp
[
− (x+ t− xc)2

2σ2

]
. (6.2)

The data for this simulation are illustrated in Fig. 1 and are as follows [27]: The global spatial
domain is (a, b) = (0, 250) with a uniform coarse grid of ∆xc = 1.0. The refined region is
[d1, d2] = [75, 105] with a spatial refinement ratio of Mx = 10 in (5.3) (so ∆xf = 0.1). To
insure the CFL-stability of the finite difference local refinement methods, a coarse time-step of
∆tc = 0.9 was chosen [27]. The global time interval is [0, T ] = [0, 51.3], which is the time after
57 time-steps. In the refined region [75, 105], a fine time-step of ∆tf = 0.09 was used. In the
simulation, a homogeneous Dirichlet boundary condition is imposed at the inflow boundary of



A DOMAIN DECOMPOSITION AND LOCAL REFINEMENT METHOD 19

the global domain. Initially, the Gaussian pulse is centered at xc = 90 with a standard deviation
of σ = 1. These values ensure that the Gaussian pulse is initially contained in the refined region.
The numerical experiments were reported in [27] for different time-steps. In Figs. 2 and 3 (a)–(d),
we cite those results at t = 18.9 (21 time-steps), which corresponds to the time when the solution
moved out of the refined region, and the final time t = 51.3 (57 time-steps).

In these experiments, we are able to use a much larger time-step with our method to generate
accurate solutions, but otherwise retain the same data parameters as the other methods. The
first of the experiment run is to compare with their solutions at time t = 18.9 (21 time-steps),
which is the time when the solution has moved out of the fine region. Any effects due to the
interface treatment will be apparent. We use two time-steps, which gives a coarse time-step of
∆tcFRKC = 9.45. In the refined region [75, 105] we still use a refinement of ratio Mt = 10 as
in [27], to observe the performance of the method across an interface with a considerable mesh
difference. This yields a fine time step of ∆tfFRKC = 0.945, instead of ∆tf = 0.09 for the finite
difference local refinement method. The numerical solution is plotted against the analytical one
in Fig. 2(e). The second run is to compare with their solutions at the final time t = 51.3 (57
time-steps). We use four time-steps, yielding a coarse time step of ∆tcFRKC = 12.825. On the
refined region [75, 105] the refinement ratio Mt is still chosen to be 10 as in [27], so the fine
time-step ∆tfFRKC = 1.2825. The numerical solution is plotted against the analytical one in
Fig. 3(e).

FIG. 2. Comparative plots of the schemes at time 18.9. (a) Clark-Farley Method; (b) Characteristic Method;
(c) Nodal Integration Method; (d) Cell Integration Method; (e) FRKC − Local Refinement



20 WANG, AL LAWATIA, AND SHARPLEY

FIG. 3. Comparative plots of the schemes at time 51.3. (a) Clark-Farley Method; (b) Characteristic Method;
(c) Nodal Integration Method; (d) Cell Integration Method; (e) FRKC − Local Refinement

These numerical comparisons show that the solutions with the method in this article pass
an interface smoothly without any numerical artifacts, even though a much larger time-step has
been used. In contrast, the finite difference local refinement method has started to develop trailing
disturbances in the form of oscillations. The Clark–Farley solution has the greatest such reflections
among the four interface schemes, while the solution with the characteristic interface scheme has
the least. As the time of the simulation evolves, the trailing disturbances in the Clark–Farley and
the two integration schemes are reflected toward the fine region. Figure 3 is a plot of the solutions
of the five methods at time t = 51.3. At this time, the trailing oscillations in the solutions of
the Clark–Farley and the two integration schemes have reached the fine region boundary where
they are amplified. The solution with the characteristic interface method continues to have large
trailing oscillations. The solution with the method developed in this article is very accurate
without any numerical artifacts.

B. Domain Decomposition for Problem (2.1) with Discontinuous Coefficients

In this experiment, we use the domain decomposition method developed in Section III.D to solve
problem (2.1) with discontinuous coefficients. We choose the same test problem used in [57]: a
space domain (a, b) = (−1, 1), 0 ≤ t ≤ 0.56, and a velocity field V (x, t) defined by

V (x, t) =
{

1, if x ∈ (−1, 0),
2, if x ∈ (0, 1). (6.3)
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Homogeneous reaction and source terms are used (i.e., K(x, t) = f(x, t) = 0). Also, a homo-
geneous inflow Dirichlet boundary condition is specified at x = −1. The initial condition is set
to

uo(x) =

{
exp

(
−1

10000(x+0.3)2(x+0.1)2

)
, if x ∈ (−0.3,−0.1),

0, otherwise.
(6.4)

Since V (x, t) has a jump discontinuity at x = 0, the interface condition (3.1) is reduced to the
following condition:

u(0−, t) = 2u(0+, t), t ∈ [0, T ], (6.5)

which leads to the analytical solution

u(x, t) =
{
uo(x− t), if x ∈ (−1, 0),
1
2uo

(
x−2t

2

)
, if x ∈ (0, 1). (6.6)

A natural domain decomposition is given by the physical interface at x = 0, i.e., Ω1 :=
(−1, 0) × [0, T ] and Ω2 := (0, 1) × [0, T ]. This problem was simulated using some finite
difference interface schemes [57] with a spatial grid size of ∆x(1) = 1/200 for Ω1 and with
∆x(2) = 1/400 for Ω2. Time-steps of ∆t = 0.004 and ∆t = 0.002 were chosen for the
simulation with numerical solutions plotted at times t = 0.2, 0.32, and 0.56.

In our numerical simulation we use a uniform space grid of ∆x = 1/120 and have chosen
a time-step of ∆t = 0.04, which is the largest time-step that can be used as a common divisor
of t = 0.2, t = 0.32, and t = 0.56 for the bases of comparison to the results in [57]. The
corresponding numerical solutions are plotted against the analytical one in Fig. 4 for t = 0.2, 0.32,
and 0.56. The time t = 0.2 corresponds to the time when the solution moves across the interface.
The right half of the pulse has only half the height of the left half, due to the effect of the interface
condition (6.5). At the same time the right half of the solution has twice the width of the solution
on the left half, because of the change of the velocity field and mass conservation. The solutions
at time t = 0.32 and t = 0.56 move completely into Ω2.

FIG. 4. Results for Experiment 6.2 at time t = 0.2, 0.32, and 0.56
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Even though we use a much larger time-step (∆t = 0.04) and spatial grid (∆x = 1/120) with
our method than those in [57] (∆x(1) = 1/200 on Ω1,∆x(2) = 1/400 on Ω2, and ∆t = 0.004
or 0.002), our method generates comparable solutions.

C. Adaptive Space––––––Time Local Grid Refinement

In our previous work [36], we developed the FRKC scheme for problem (2.1) with continuous
coefficients and conducted extensive numerical experiments to compare the FRKC scheme with
many well received and widely used methods. The compared schemes include the Galerkin
and Petrov–Galerkin finite element method [16–18], the streamline diffusion method [20, 22],
the continuous and discontinuous Galerkin method [19, 21], the monotonic upstream-centered
scheme for conservation laws (MUSCL), and the essentially nonoscillatory (ENO) scheme [23–
26]. The results show that the FRKC method outperforms these methods in terms of both accuracy
and efficiency in solving problem (2.1).

In this subsection, we show that the adaptive local grid refinement method, which is developed
in this article based on the FRKC scheme, can further improve the efficiency of the numeri-
cal simulation by fully utilizing the transient and strongly local behavior of the solution. In
this experiment, a variable velocity field V (x, t) := V0 + V1x is used, and a negative reaction

FIG. 5. Results for Experiment 6.3. (a) uniformly coarse grid, ∆xc = 1
2 and ∆tc = 1; (b) uniformly

fine grid, ∆xf = 1
12 and ∆tf = 1

8 ; (c) adaptive local refinement, ∆xc = 1
2 ,∆t

c = 1,∆xf = 1
12 , and

∆tf = 1
8 .
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K(x, t) := −0.75V1 is imposed to prevent the exact solution from decaying too rapidly. We again
choose a homogeneous source term. For the initial condition uo(x) given by (6.1), the analytic
solution is given by

u(x, t) = exp

[
− 1

2σ2

[(
x+

V0

V1

)
exp(−V1t)− V0

V1
− xc

]2
]

exp(−0.25V1t). (6.7)

The global spatial domain and time interval are (a, b) = (0, 160) and [0, T ] = [0, 16], respectively.
In the expression of V (x, t) and K(x, t), V0 = 5 and V1 = 0.05 are chosen, yielding a velocity
field of V (x, t) = 5 + 0.05x and K(x, t) = −0.0375. In the initial configuration (6.1), the
standard deviation σ = 0.35 and the centered deviation xc = 10 are chosen. A homogeneous
Dirichlet boundary condition is specified at the inflow boundary x = 0.

The first test run applies the FRKC scheme (2.16) using a uniform coarse grid of ∆xc = 1/2
and a coarse time-step of ∆tc = 1. The Courant number of this simulation is 26. Figure 5(a) is
a plot of the numerical and analytic solutions at the final time T = 16. Table I contains the L2
and the L1 norms of the truncation error of the solution as well as the CPU time used, which is
measured on a SUN Sparc LX workstation. Figure 5(a) shows that the numerical solution has
some slight wiggles around the bottom of the solution and some error near the top. Because the
standard deviation σ = 0.35, the coarse grid ∆xc = 1/2 is not fine enough to resolve the steep
front of the solution accurately. This introduces the numerical artifacts, which in turn show the
need for refinement.

The second test run uses a uniformly refined spatial grid of ∆xf = 1
12 and time-step of

∆tf = 1
8 , i.e., with space and time refinement ratios of Mx = 6 and Mt = 8. Figure 5(b)

shows the plot of the numerical solution at the final time vs. the analytic one, while the error
information and the CPU time used are presented in Table I. The accuracy of the numerical
solution is significantly improved over the coarse grid solution (e.g., the L2 error is reduced from
1.082 × 10−1 to 1.826 × 10−3). However, the CPU time used increased from 2.1 s to 81.9 s,
approximately 4,000% increase. This is understandable, since the size of the problem has been
increased 48 times. Although this CPU time might at first seem high, we have shown in [36] that
significantly higher (one to two orders of magnitude) CPU times than this must be consumed for
many other well-regarded methods to generate comparably accurate solutions.

To improve the efficiency of the numerical simulation while maintaining its accuracy, the third
test run uses the adaptive local grid refinement method developed in Section IV.B. To begin,
we use a uniformly coarse grid of ∆xc = 1

2 and time-step of ∆tc = 1, as in the first test run.
The same refined grid size of ∆xf = 1

12 and time-step of ∆tf = 1
8 , as in the second test run,

is used locally in the steep front region. In the numerical simulation we used the second-order
Runge–Kutta quadrature (2.8) to track the spatial boundaries of the steep front regions forward
from the current coarse time-step tcn−1 to the next coarse time-step tcn to predict the future location
of the steep front region. Next we use a nested locally refined grid of ∆xf = 1

12 and time-step of
∆tf = 1

8 to refine the space–time sub-domain that contains the steep front of the solution during
the time period [tcn−1, t

c
n]. Figure 6 contains the space-time partition information used in this

TABLE I. Comparison of the L2 and L1 norms of the error and the CPU time (s).

∆x ∆t L2 error L1 error CPU

∆xc = 1
2 ∆tc = 1 1.081939× 10−1 2.044497× 10−1 2.1

∆xf = 1
12 ∆tf = 1

8 1.826050× 10−3 2.961247× 10−3 81.9
∆xc = 1

2 ,∆x
f = 1

12 ∆tc = 1,∆tf = 1
8 1.831953× 10−3 3.083958× 10−3 14.5
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FIG. 6. Moving grid for adaptive local refinement (Experiment 6.3)

simulation. The numerical solution obtained with the adaptive local grid refinement is plotted in
Fig. 5(c). The error and CPU time information appears in Table I. Observe that the adaptive local
refinement method generates a numerical solution with the same accuracy as the uniformly fine
grid solution, but uses a CPU time of only 14.5 s. This is about 18% of the CPU time used by
the uniform grid refinement and shows the strong potential of the adaptive local grid refinement
method developed in this article.

VII. SUMMARY

In this article, we develop a characteristic-based domain decomposition and space–time local
refinement method for first-order linear hyperbolic equations (possibly including various physical
and numerical interfaces) based on a forward Runge–Kutta characteristic (FRKC) scheme we
have developed previously [36]. In the context of first-order linear hyperbolic equations with
continuous coefficients, it was shown [36] that the FRKC scheme outperforms many well received
and widely used methods, including the Galerkin and Petrov–Galerkin finite element methods
[16–18], the streamline diffusion method [20, 22], the continuous and discontinuous Galerkin
methods [19, 21], the monotonic upstream-centered scheme for conservation laws (MUSCL),
and the essentially nonoscillatory (ENO) scheme [23–26]. The domain decomposition and local
refinement method developed in this article is naturally implemented in the FRKC framework
and has the following advantages:

1. It retains the numerical advantages of the FRKC scheme and generates accurate numerical
solutions even if large time-steps are used.

2. The method fully utilizes the transient and strongly local behavior of the solutions to further
improve the efficiency of the FRKC scheme while maintaining its accuracy.
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3. It treats the physical interfaces and various numerical interfaces with a universal scheme.
In contrast, many previous finite difference local refinement methods require additional
interface schemes to treat the interfaces between different sub-domains or coarse–fine sub-
domains, but still do not provide a comparable accuracy.

The authors would like to extend their appreciation to the referees for their useful comments and for
additional references which have been incorporated into the final manuscript.
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