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ABSTRACT

Applying standard explicit time-differencing to hyperbolic equations (i.e., which characterize convection-
dominated atmospheric flows) invariably results in rather severe stability restrictions. The primary problem
appears to be attributable to the differencing approximation of the time derivative term. In this study the authors
show that, for explicit, time-centered advection schemes, achieving higher-order temporal accuracy results in
schemes with significantly improved stability properties compared with conventional leapfrog methods. Linear
results show that marked improvement is possible in the stability properties by including in the differencing
scheme a crucial term approximating the time derivative of third order. The critical CFL number for this time-
centered Taylor (TCT) scheme is shown to exceed that of second-order leapfrog by nearly a factor of 2. Similar
results hold for the corresponding fourth-order schemes. A solid-body rotation test confirms the findings of the
two-dimensional stability analysis and compares these time-centered schemes with popular forward-in-time
methods. One-dimensional nonlinear results corroborate the fundamental stablizing effect of the TCT approach
with the TCT algorithm offering significant improvements in nonlinear stability over leapfrog methods as well
as MacCormack’s scheme—a popular nonlinear, dissipative differencing scheme.

1. Introduction

This paper explores the application of explicit, time-
centered schemes to modeling advection processes.
Along with the forward-in-time Lax–Wendroff-type
schemes, leapfrog schemes have been extensively used
in meteorological models. In fact leapfrog has been con-
sidered by many as the scheme of choice for large-scale
atmospheric models. Reasons typically cited for this
choice are its simplicity (leapfrog is a straightforward
one-step scheme), its zero implicit diffusion (which is
common to all time-centered schemes), and its conser-
vation properties. On the other hand, due to its lack of
intrinsic dissipation, it exhibits rather poor dispersive
properties that are exacerbated in the context of mod-
eling nonlinear convection. Recent work by Mendez-
Nunez and Carroll (1993) has focused on the shortcom-
ings of the leapfrog scheme, especially when applied to
nonlinear equations modeling localized, nonsmooth
phenomena. In this study we derive several alternative
time-centered schemes which will be evaluated, along
with the classic leapfrog scheme, under a variety of
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different conditions. In particular, a family of time-cen-
tered Taylor (TCT) algorithms are derived which
achieve higher temporal accuracy than standard leapfrog
schemes and exhibit superior stability characteristics.
This enhancement in stability may be demonstrated for
the linear convection problem through Von Neumann
methods. The key point appears to be the approximation
of the time derivative term in the convection equation.
For time-centered schemes the fundamental temporal
difference may be expanded in a Taylor series that in-
cludes an infinite number of odd time derivatives and
for which only the first derivative is typically retained.
In contrast, for the TCT schemes, we have retained the
next highest (third) time derivative and evaluated it di-
rectly from the original convection equation in a manner
similar to that employed by Dukowicz and Ramshaw
(1979). In section 2 the various differencing schemes
will be applied to the solution of the linear advection
equation. For a uniform velocity field the TCT method
can also be shown to follow from the Lagrangian meth-
od of polynomial fitting as employed by Leith (1965).
Pertinent stability results will be presented for this case.
In section 3, the influence of a nonuniform velocity field
is tested via the standard cone problem—a cone distri-
bution advected by solid-body rotation. The fourth sec-
tion of the paper will focus attention on applications of
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these schemes to nonlinear equations. The one-dimen-
sional Burger’s equation is analyzed, comparing the ap-
plicability of the schemes under consideration, consid-
ering various types of errors as well as the total accuracy
of the solution for a variety of Courant numbers. Finally
a summary is presented in section 5.

2. The one-dimensional linear time-centered
scheme—Derivation and stability

For convection-dominated flows it has been main-
tained that a superior approach for modeling advection
processes is based on the method of characteristics (e.g.,
Raithby 1976), which requires that

T (x, t 1 Dt) 5 T (x 2 VDt, t)

for a region of uniform velocity V. The forward-in-time,
finite-difference form of this method was developed by
Leith (1965) and Crowley (1968) and subsequently stud-
ied by numerous authors. These ‘‘Crowley’’ schemes
are popular because, at least for the case of uniform
flow, they are second-order accurate in time and require
only one time level of storage. These advantages di-
minish somewhat in importance for the case of a non-
uniform velocity field, for which the Crowley scheme
is usually considered to be first-order accurate in time,
and for multidimensional flows, where a ‘‘time split-
ting’’ form in which one full time step is divided into
successive time steps in orthogonal directions is re-
quired to avoid instabilities. Such instabilities may also
be circumvented by replacing the simultaneous appli-
cation of one-dimensional operators by a form that in-
cludes approximations to the cross-space-derivative
terms (Smolarkiewicz 1982). Douglas and Russell
(1982) have incorporated characteristics in both finite-
element-based and finite-difference-based advection
schemes to derive the modified method of characteristics
technique (MMOC), which yields much smaller time
truncation errors than standard methods.

The schemes described above fall into the general
class of Lax–Wendroff approximations in which the
temporal derivative in the advection equation [see Eq.
(1)] is approximated by forward-in-time differencing
and the second-order (temporal) derivative appearing in
the truncation error is converted to a spatial derivative
by virtue of the original equation. For the case of a
uniform velocity field this approach is equivalent to
expanding T (x 2 VDt, t) in a Taylor series of arbitrary
accuracy. Leapfrog schemes are usually associated with
the independent spatial differencing of the flux terms in
Eq. (1) to a desired order of accuracy (see Haltiner and
Williams 1980) in contrast to the Lax–Wendroff ap-
proach. In what follows we shall introduce a class of
time-centered schemes by application of the advection
characteristic approach. This may be shown to be equiv-
alent to combining forward-time and backward-time
Taylor series expansions, including time derivatives of
third-order that are evaluated from the governing partial

differential equation (we denote such schemes as TCT).
This approach results in a scheme which achieves
fourth-order accuracy in time and space. Procedures of
this type have been used in a forward-in-time context
where time derivatives of second order have been re-
tained (see Dukowicz and Ramshaw 1979) and in a finite
element context (Donea 1984). Our motivation in taking
this approach was to combine the well-established ad-
vantages of time-centered differencing (increased tem-
poral accuracy and neutral stability) with the desirable
property of point-to-point data transfer that is charac-
teristic of convection-dominated flows and is embodied
in Crowley-type schemes. A further advantage, how-
ever, is the considerably expanded stability range. Since
the TCT schemes represent a direct alternative to the
leapfrog methods, popular in large-scale numerical
models, a primary objective is the direct comparison of
the performance of our hybrid scheme with leapfrog
schemes in both linear and nonlinear advection. In this
study the effects of features such as cross-space terms
and Smolarkiewicz-type modifications to the first partial
derivatives will be investigated. Although time-centered
schemes do not suffer the long-wave instabilities as-
sociated with combined (simultaneous) 1D Crowley op-
erators in multidimensional flows, including cross-space
derivative terms will be shown to significantly expand
the stability range compared with leapfrog. Moreover,
applying Taylor expansions in several dimensions re-
quires essentially one-half the computations in the con-
text of time-centered differencing.

a. Derivation

The equation to be solved is the ‘‘color’’ equation
describing the advection of a nondiffusive quantity T
in a flow field:

]T
1 v ·¹T 5 0. (1)

]t

Consider the one-dimensional, uniform-velocity case
described by the advection equation

]T ]T
1 u 5 0. (2)

]t ]x

Using the advection characteristic approach, we begin
with the methodology of polynomial fitting, although
one could equally well apply Taylor series expansions.
Figure 1 shows two characteristic paths in space and
time of material points that are at positions xj at time
t n11 and time t n21, respectively. At time t n the former
point was at position x 5 xj 2 uDt and if we know*
the value of T 5 at time t n, we can setnT *

5 .n11 nT Tj *
However, at time t n we only know values of T at mesh
points xj21, xj and xj11, etc. and hence we must employ
an interpolation scheme to determine . Similarly,nT *
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FIG. 1. Advection characteristic diagram.

5 ,n21 nT Tj **
where x 5 xj 1 uDt and must be again deter-nT** **
mined by polynomial interpolation. Assuming a uni-
formly spaced mesh of interval Dx, for a quadratic in-
terpolating scheme utilizing, , , , third-order-n n nT T Tj21 j j11

accurate approximations in space are given by

a(a 1 1)
n11 n nT 5 T 5 Tj j21* 2

a(a 2 1)
n 2 n 31 T (1 2 a ) 1 T 1 O(Dx )j j11 2

and

a(a 2 1)
n21 n nT 5 T 5 Tj j21** 2

a(1 1 a)
n 2 n 31 T (1 2 a ) 1 T 1 O(Dx ),j j11 2

where the Courant number a is defined as uDt /Dx.
These expressions may be subtracted to yield a cen-

tered-in-time difference scheme (referred to as LF2):

5 2 a( 2 ),n11 n21 n nT T T Tj j j11 j21 (3)

which may be recognized as the standard second-order
‘‘leapfrog’’ scheme (see Haltiner and Williams 1980).
Considering Taylor series expansions in space and time
about (xj, t n) yields the result

n11 n21]T ]T T 2 Tj j2 21 u 1 1O(Dx ) 1 O(Dt ) 5
]t ]x 2Dt

n nT 2 Tj11 j211 u ;
2Dx

that is, this scheme is second-order accurate in time and
space.

One may in principle fit a Lagrange polynomial of
arbitrary degree to an increasingly larger set of data
points. We shall, however, derive the fourth-order ex-
tension to Eq. (3) and therefore interpolate andnT *

over the values , , , , and . Ap-n n n n n nT T T T T Tj22 j21 j j11 j12**

plication of this method results in the following differ-
ence equation (referred to as the fourth-order ‘‘time-
centered Taylor’’ scheme TCT4):

a
n11 n21 n n n nT 5 T 1 (2T 1 8T 2 8T 1 T )j j j22 j21 j11 j126

3a
n n n n1 (T 2 2T 1 2T 2 T ), (4)j22 j21 j11 j126

which is O(Dx4) 1 O(Dx2 Dt 2) 1 O(Dt 4) 5 O(Dx4) 1
O(Dt 4) accurate for a uniform velocity field and O(Dx4)
1 O(Dx2 Dt 2) 1 O(Dt 2) accurate for an arbitrary ve-
locity field according to this analysis.

Spatial truncation errors of equivalent order result
from retaining only the first two terms on the right-hand
side of Eq. (4) since the neglected term is equal to 1/6
Dt 3 (]3T /]t 3)(xj, t n) 1 O(Dt 3 Dx2). This yields a simpler
fourth-order in space, second-order in time, space-cen-
tered scheme for the advection equation (referred to as
LF4):

a
n11 n21 n n n nT 5 T 1 (2T 1 8T 2 8T 1 T ).j j j22 j21 j11 j126

(5)

Following Crowley (1968), the conservation form of
the one-dimensional advection equation, assuming neg-
ligible divergence, is

]T ]F
5 2 (6)

]t ]x

for F 5 uT. The above results (3) and (4) may also be
obtained by Taylor series expansions; first in time and
then in space. Consider a semidiscretization of Eq. (6)
where we leave the spatial variable x continuous and
discretize only the time to obtain a centered, second-
order-in-time scheme

n11 n21T 2 T ]Fj j 5 2 .
2Dt ]x

If one replaces the right-hand side by a second-order-
accurate centered space approximation, we obtain the
classic leapfrog scheme in its conservative form, which
reduces to Eq. (3) for the case of uniform velocity u.
To produce more accurate temporal differencing, we
may proceed as follows: develop third-order-accurate
Taylor series expansions, which yield

n nn11 n21 2 3]T T 2 T Dt ] T
45 2 1 O(Dt ). (7)

31 2 1 2]t 2Dt 6 ]t

For a velocity field that varies slowly in time, the orig-
inal equation (6) is now used to replace the third-order
time derivative in terms of space derivatives as follows:

3] T ] ] ]
5 2 u u (F) . (8)

3 5 6[ ]]t ]x ]x ]x

Combining Eqs. (7) and (8), the original Eq. (6) may
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TABLE 1. Form of s for one-dimensional finite-difference
advection schemes tested.

Scheme Expression for s

LF2 a sin(mDx)

LF4
a sin(mDx)

[4 2 cos(mDx)]
3

TCT2
a sin(mDx)

2{3 1 a [cos(mDx) 21]}
3

TCT4

a sin(mDx)
{4 2 cos(mDx)

3
21 a [cos(mDx) 2 1]}

be approximated by the semidiscrete equation at time
level n:

nn11 n21T 2 T ]F
5 , (9)1 22Dt ]x

where

2] ]F Dt
F 5 uT 1 u u1 2]x ]x 6

2] ]F Dt
5 u T 1 u1 2[ ]]x ]x 6

represents a modified convective flux [although it actually
contains part of the difference approximation to (]T /]t )n].
This interpretation is useful if one wishes the difference
equations to satisfy the integral balance implied by the
differential system. Moreover, since Eq. (9) has been de-
rived in divergence form it lends itself naturally to the
construction of conservative difference equations.

If we make the further assumption that u 5 const,
we obtain

3 3] T ] T
35 2u ,

3 3]t ]x

which results in the following semidiscrete equation at
time level n:

n nn11 n21 2 3T 2 T Dt ] T ]T
31 u 5 2u . (10)

31 2 1 22Dt 6 ]x ]x

Hence,
n n3 3]T Dt ] T

n11 n21 3T 2 T 5 22uDt 2 u ,
31 2 1 2]x 3 ]x

which may also be obtained directly from a Taylor ex-
pansion. To obtain fourth-order accuracy in space as
well as time, we introduce higher-order approximations
for the first-order spatial derivative, yielding

a
n11 n21 n n n nT 5 T 1 (2T 1 8T 2 8T 1 T )j j j22 j21 j11 j126

3a
n n n n1 (T 2 2T 1 2T 2 T ),j22 j21 j11 j126

which is the TCT4 scheme. If one applies second-order
differencing to all spatial derivatives, we obtain the sec-
ond-order TCT2 scheme:

n11 n21 n nT 5 T 1 a(2T 1 T )j j j11 j21

3a
n n n n1 (T 2 2T 1 2T 2 T ). (11)j22 j21 j11 j126

b. Stability

The stability characteristics of the second-order leap-
frog scheme are well known (see Haltiner and Williams

1980). We shall be interested in scrutinizing the influ-
ence of higher-order approximations in the context of
centered-in-time differencing. In particular the appli-
cation of advection characteristic (or equivalently TCT)
methods versus traditional leapfrog methods will be
studied. These schemes are characterized by an ex-
panded spatial stencil relative to LF2, hence Von Neu-
mann methods will be applied for the sake of simplicity.
This approach precludes a comprehensive treatment of
boundary conditions that would require higher-order
GKS theory (see Strikwerda 1989).

Consider a harmonic solution to the advection equa-
tion

T (x, t) 5 eim(x2ut) 5 T (x, 0)e2imut,

where the initial distribution T (x, 0) is simply translated
a distance ut in time t and after a time Dt the solution
has phase angle f 5 2muDt. Solutions to the difference
schemes derived above that take into account the har-
monic initial condition have the form

5 rneijmDx,nT j (12)

where r represents the eigenvalue of the given difference
operator. For each of the centered-in-time difference
equations above, substituting Eq. (12) for yields annT j

eigenvalue equation of the form

r2 1 2isr 2 1 5 0, (13)

where s depends on a and mDx and varies according
to which scheme is being considered. The specific ex-
pressions for s, for the methods developed above, are
displayed in Table 1. Solving the eigenvalue equation
(13) gives

r 5 6(1 2 s2)1/2 2 is.

Thus, such time-centered methods possess neutral sta-
bility (zrz 5 1) provided

s2 # 1

and are computationally unstable if

s2 . 1.
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FIG. 2. Level lines of s for different time-centered schemes as a function of a and u (labels from upper left to lower right): (a) LF2, (b)
LF4, (c) TCT2, and (d) TCT4.

The numerical phase angle in time Dt for the time-
centered methods developed above is

Im(r)
21 21f 5 arg(r) 5 sin 5 2sin (s)num [ ]zrz

and, in general, fnum ± f 5 2muDt 5 2amDx. Thus,
the relative phase error during a time increment Dt is

Df f 2 f fnum num5 5 1 2 .
f f 2amDx

In order to examine the relationship of the solution
obtained by difference approximations to the analytic
solution, contour plots of s and relative phase error (Df/
f), as functions of a and mDx, have been constructed.
Figures 2a–d present level lines of s for the various
schemes to be considered. Since values of zsz # 1 cover
numerically stable regions it is seen in Fig. 2a that the
second-order leapfrog scheme (3) is stable for all wave-
numbers if zaz # 1 with the maximum amplitude cor-

responding to u 5 mDx 5 p/2. Figure 2b presents the
fourth-order leapfrog scheme (5), which is stable if zaz
# 6(9 1 24 6)21/2 ø 0.73 with the unstable modeÏ
shifted toward the shorter wavelengths mDx 5 arccos(1
2 6/2) ø 0.57p. Application of the fourth-order ad-Ï
vection characteristic (TCT) methods appears to en-
hance stability relative to the space-centered leapfrog
schemes. From Fig. 2d we see that, for the fourth-order
form (4), stability is insured for all u provided zaz # 1
(with maximum amplitude occurring at mDx 5 p/2),
which compares with the second-order leapfrog scheme
(3). Moreover, the region of instability, which is sig-
nificantly contracted, is shifted away from the shorter
wavelength (higher wavenumber) modes. As for the
TCT2 form (11) displayed in Fig. 2c, the maximum
Courant number compatible with stability is further in-
creased to 1.77 and the unstable wavelengths are short-
ened to a smaller region centered at mDx ø 0.72p.

Figures 3a–d are contour plots of the relative phase
error (Df/f) computed for each of the schemes dis-
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FIG. 3. Level lines of Df/f for different time-centered schemes function of a and u (labels from upper left to lower right): (a) LF2, (b)
LF4, (c) TCT2, and (d) TCT4.

cussed above. It is seen that for these schemes, in their
respective stable regions, the values along the contours
(which are between 20.1 and 1.2) indicate that waves
in the numerical solution generally lag behind the cor-
responding analytical solutions. These figures all exhibit
similar characteristics in their corresponding stable
regions. For a fixed value of a, relative phase error
increases from 0 to a maximum of 1 as mDx increases
from 0 (infinite wavelength) to p (2Dx wavelength).
This latter value is the highest wavenumber a given
mesh can support and this wave has a zero phase ve-
locity, that is, it is stationary. For a given wavenumber
relative phase error is weakly dependent on the Courant
number with the leapfrog schemes showing slight im-
provement with a (up to the stability limit) and the
advection characteristic methods exhibiting a mild de-
terioration. This tendency is somewhat more critical for
the TCT2 scheme since its region of stability extends
far beyond those of the others. However, the primary
distinction is between the performance of the second-

order schemes and the fourth-order schemes (as em-
phasized by Fromm 1968). Comparison of Figs. 3a and
3b shows that fourth-order leapfrog considerably im-
proves the phase behavior of long-wavelength modes
relative to the second-order scheme (contours are clearly
squeezed toward the stationary mode mDx 5 p with a
resulting broadening of the near-zero-phase-error re-
gion). Comparison of Fig. 3d with Fig. 3b shows that
the fourth-order TCT method possesses very similar
phase properties to that of fourth-order leapfrog except
for a triangular region of leading phase error for zaz ,
0.72 in the case of LF4, Fig. 3b (in the stable regime).
The advection TCT form exhibits no such anomalous
region, hence positive phase characteristics extend
throughout its stability region.

3. Linear advection in two dimensions

Leith (1965) and others have demonstrated that the
second-order, forward-in-time numerical approximation
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of two-dimensional advection is unstable if one-dimen-
sional operators are applied simultaneously. The cor-
responding question in the context of centered-in-time
differencing will be considered in this section.

Anticipating stability problems when combining one-
dimensional operators for modeling two-dimensional ad-
vection, we take an approach by multivariate Taylor ap-
proximations. Along an advection characteristic, we have

T (x, y, t 1 Dt ) 5 T (x 2 uDt, y 2 vDt, t) (14)

and

T (x, y, t 2 Dt ) 5 T (x 1 uDt, y 1 vDt, t). (15)

Expanding T (xj, yk, t n61) about (xj, yk, t n) to second order
and subtracting the resulting expressions gives

] ]
n11 n21 n n 3T 5 T 2 2uDt T 2 2vDt T 1 O(Dt );jk jk jk jk]x ]y

thus, to second order, no cross-derivative terms appear
in the corresponding Taylor expansion; including the
second-order-accurate approximation of the first partial
derivatives, for example,

n n] T 2 Tj11k j21kn 2T 5 1 O(Dx ),jk]x 2Dx

and retaining terms to like order yields a simple com-
bination of one-dimensional operators

5 2 a ( 2 ) 2 b ( 2 ),n11 n21 n n n nT T T T T Tjk jk j11k j21k jk11 jk21

(16)

where a 5 u Dt /Dx and b 5 v Dt /Dx and these param-
eters are specified without indices for the case of uni-
form velocity (note that a nonuniform velocity field
would require a staggered grid representation). Smo-
larkiewicz (1982) suggests that, for the case of the for-
ward-in-time advection scheme, stability is enhanced by

replacing the original second-order-accurate approxi-
mation to the first spatial partial derivative with one that
includes information about the dimensionally of the
field, for example,

n n n n] 0.5(T 1 T ) 2 0.5(T 1 T )j11k11 j11k21 j21k11 j21k21nT 5jk]x 2Dx
21 O(Dx ).

This modification leads, in combination with central
time-differencing, to a second-order finite-difference al-
gorithm for Eq. (1) in the form

n11 n21 n nT 5 T 2 a[0.5(T 1 T )jk jk j11k11 j11k21

n n2 0.5(T 1 T )]j21k11 j21k21

n n2b[0.5(T 1 T )j11k11 j21k11

n n2 0.5(T 1 T )]. (17)j11k21 j21k21

Next we derive a two-dimensional, fourth-order scheme
by combining fourth-order Taylor expansions for the
right-hand sides of Eqs. (14) and (15). This yields

] ]
n11 n21 n nT 5 T 2 2uDt T 2 2vDt Tjk jk jk jk]x ]y

3 3 3 3u Dt ] ]
n 2 3 n2 2 T 2 u vDt Tjk jk3 26 ]x ]x ]y

3 3 3 3] v Dt ]
2 3 n n2uv Dt T 2 2 Tjk jk2 3]x]y 6 ]y

51 O(Dt ). (18)

Replacing the first-order derivatives in Eq. (18) with
fourth-order-accurate approximations and all remaining
higher-order derivatives with second-order-accurate ex-
pressions leads to the following form:

a b
n11 n21 n n n n n n n nT 5 T 1 (2T 1 8T 2 8T 1 T ) 1 (2T 1 8T 2 8T 1 T )jk jk j22k j21k j11k j12k jk22 jk21 jk11 jk126 6

3a
n n n n1 (T 2 2T 1 2T 2 T )j22k j21k j11k j12k6

2a b
n n n n n n2 [(T 2 2T 1 T ) 2 (T 2 2T 1 T )]j11k11 jk11 j21k11 j11k21 jk21 j21k212

2ab
n n n n n n2 [(T 2 2T 1 T ) 2 (T 2 2T 1 T )]j11k11 j11k j11k21 j21k11 j21k j21k212

3b
n n n n1 (T 2 2T 1 2T 2 T ), (19)jk22 jk21 jk11 jk126

which is a fourth-order scheme. We obtain the two-di-
mensional TCT2 scheme by applying second-order-ac-

curate approximations to all spatial derivatives in Eq. (18):
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3a
n11 n21 n n n n n n n nT 5 T 2 a(T 2 T ) 2 b(T 2 T ) 1 (T 2 2T 1 2T 2 T )jk jk j11k j21k jk11 jk21 j22k j21k j11k j12k6

2a b
n n n n n n2 [(T 2 2T 1 T ) 2 (T 2 2T 1 T )]j11k11 jk11 j21k11 j11k21 jk21 j21k212

2ab
n n n n n n2 [(T 2 2T 1 T ) 2 (T 2 2T 1 T )]j11k11 j11k j11k21 j21k11 j21k j21k212

3b
n n n n1 (T 2 2T 1 2T 2 T ). (20)jk22 jk21 jk11 jk126

If we average over neighboring points (in a plane) when approximating the first spatial partial derivatives (per
Smolarkiewicz), we obtain [as an alternative to Eq. (19)]

a
n11 n21 n n n nT 5 T 1 [20.5(T 1 T ) 1 8(0.5)(T 1 T )jk jk j22k21 j22k11 j21k21 j21k116

n n n n28(0.5)(T 1 T ) 1 0.5(T 1 T )]j11k21 j11k11 j12k21 j12k11

b
n n n n1 [20.5(T 1 T ) 1 8(0.5)(T 1 T )j21k22 j11k22 j21k21 j11k216

n n n n28(0.5)(T 1 T ) 1 0.5(T 1 T )]j21k11 j11k11 j21k12 j11k12

3a
n n n n1 (T 2 2T 1 2T 2 T )j22k j21k j11k j12k6

2a b
n n n n n2 [(T 2 2T 1 T ) 2 (T 2 2T 1 T )]j11k11 jk11 j21k11 j11k21 jk21 j21k212

2ab
n n n n n2 [(T 2 2T 1 T ) 2 (T 2 2T 1 T )]j11k11 j11k j11k21 j21k11 j21k j21k212

3b
n n n n1 (T 2 2T 1 2T 2 T ). (21)jk22 jk21 jk11 jk126

Finally, to test the efficacy of our approach we will
consider the standard nonconservative fourth-order,
space-centered approximation:

a
n11 n21 n n n nT 5 T 1 (2T 1 8T 2 8T 1 T )jk jk j22k j21k j11k j12k6

b
n n n n1 (2T 1 8T 2 8T 1 T ). (22)jk22 jk22 jk11 jk126

In order to easily reference the various difference
schemes being considered in this paper we will desig-
nate the two-dimensional schemes defined by Eqs. (16),
(17), (19), (20), (21), and (22) by LF2, SM2, TCT4,
TCT2, TCT4Sm, and LF4, respectively. Although sev-
eral of these labels have been previously used to specify
one-dimensional difference schemes, we assert that the
context will obviate any ambiguity.

a. Flux conservative form

As in the one-dimensional case, one may demonstrate
the equivalence of the preceding derivation with an ap-

proach based on a conservative flux form of Eq. (1).
Consider the conservation form of Eq. (1) assuming
negligible divergence,

]T
1 ¹ ·F 5 0, (23)

]t

where F 5 (Tv). We proceed by considering the tem-
poral differencing separately from the spatial differenc-
ing. Accordingly, we leave the spatial variable contin-
uous and discretize only the time to obtain the centered
temporal difference approximation to Eq. (23):

n11 n21T 2 T
n1 (¹ ·F) 5 0. (24)

2Dt

A numerical algorithm can be described as follows.
Develop a third-order Taylor series expansion in time
about t n in the form



JUNE 1997 1285B A B A R S K Y A N D S H A R P L E Y

n n2 2]T Dt ] T
n11 nT 5 T 1 Dt 1

21 2 1 2]t 2 ]t
n3 3Dt ] T

1 1 · · · .
31 26 ]t

Similarly,
n n2 2]T Dt ] T

n21 nT 5 T 2 Dt 1
21 2 1 2]t 2 ]t

n3 3Dt ] T
2 1 · · · .

31 26 ]t

Thus we obtain

n nn11 n21 2 3T 2 T ]T Dt ] T
45 1 1 O(Dt ).

31 2 1 22Dt ]t 6 ]t

Using Eq. (23) and assuming a slowly varying ve-
locity field, we may estimate the time truncation error
as follows:

nn11 n21 2T 2 T ]T Dt
5 2 ¹ · {vv ·¹[¹ · (Tv)]1 22Dt ]t 6

42 ¹ · (Tv)v(¹ ·v)} 1 O(Dt ). (25)

Now if one applies reasoning consistent with Dukowicz
and Ramshaw (1979), the term of crucial importance
should be proportional to v (rather than derivatives of
v) since enhanced stability characteristics will be shown
to persist even when v is independent of position and
time. Hence, neglecting terms of the form ¹· v or ]v /]t,
we replace the expression in braces by

vv·(v·¹)¹T ;

that is, we approximate (]T /]t )n by

n11 n21 2T 2 T Dt
1 ¹ · [vv · (v ·¹)¹T].

2Dt 6

The difference scheme then becomes, instead of Eq.
(25), a second-order approximation (in time) overall but
fourth order in the most important effect. Thus, anal-
ogous to Eq. (9), we have

n11 n21 2T 2 T Dt
n1 ¹ · (Tv) 5 2 ¹

2Dt 6
n· [vv · (v ·¹)¹T] ,

where vv 5 vvT is a second-order tensor (see Bird et al.
1960). This can also be placed in a conservative flux form:

n11 n21T 2 T
n5 2¹ · F , (26)

2Dt

where
2Dt

nF 5 Tv 1 vv · (v·¹)¹T.
6

The two-dimensional formulation in Cartesian coordi-
nates yields, in component form,

2 2 2 2Dt ] T ] T ] T
n 3 2 2F 5 uT 1 u 1 2vu 1 uv (27)1 2 25 66 ]x ]x]y ]y

and

2 2 2 2Dt ] T ] T ] T
n 2 2 3F 5 vT 1 u v 1 2uv 1 v . (28)2 2 25 66 ]x ]x]y ]y

Replacing the derivatives in Eqs. (27) and (28) with
second-order-accurate approximation leads to the fol-
lowing discretized expressions for the modified hori-
zontal flux component at the u stagger points and the
modified vertical flux component at the v stagger points:

2(T 1 T ) Dt (T 2 T 2 T 1 T )j11k j,k j12k j11k jk j21k3F 5 u 1 u1 jk jk 252 6 2Dx

(v 1 v 1 v 1 v ) (T 2 T 2 T 1 T )jk j11k jk21 j11k21 j11k11 jk11 j11k21 jk2121 2ujk 4 2DxDy

2(v 1 v 1 v 1 v ) [T 1 T 2 2(T 11 T ) 1 T 1 T ]jk j11k jk21 j11k21 jk11 j11k11 jk j11k jk21 j11k211 2ujk 2 64 2Dy

2(T 1 T ) Dt (T 2 T 2 T 1 T )jk11 jk jk12 jk11 jk jk213F 5 v 1 v2 jk jk 252 6 2Dy

(u 1 u 1 u 1 u ) (T 2 T 2 T 1 T )j21k jk j21k11 jk11 j11k11 j21k11 j11k j21k21 2vjk 4 2DxDy

2u 1 u 1 u 1 u [T 1 T 2 2(T 11T ) 1 T 1 T ]j21k jk j21k11 jk11 j11k j11k11 jk jk11 j21k j21k111 2v .jk 21 2 64 2Dx
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TABLE 2. Form of s for two-dimensional finite-difference advection schemes tested.

Scheme Expression for s

LF2 a sin(mDx) 1 b sin(nDy)

SM2 a sin(mDx) cos(nDy) 1 b sin(nDy) cos(mDx)

TCT2

a sin(mDx) b sin(nDy)
2 2{3 1 a [cos(mDx) 2 1]} 1 {3 1 b [cos(nDy) 2 1]}

3 3
2 3 22a b sin(nDy)[1 2 cos(mDx)] 2 ab sin(mDx)][1 2 cos(nDy)]

TCT4

a sin(mDx) b sin(nDy)
2 2{4 2 cos(mDx) 1 a [cos(mDx) 2 1]} 1 {4 2 cos(nDy) 1 b [cos(nDy) 2 1]}

3 3
2 3 22a b sin(nDy)[1 2 cos(mDx)] 2 ab sin(mDx)[1 2 cos(nDy)]

TCT4SM

a sin(mDx) b sin(nDy)
2 2{[4 2 cos(mDx)] cos(nDy) 1 a [cos(mDx) 2 1] 1 3b [cos(nDy) 2 1]} 1

3 3
2 23 {[4 2 cos(nDy)]cos(nDx) 1 b [cos(nDy) 2 1] 1 3a [cos(mDx) 2 1]}

LF4
a sin(mDx) b sin(nDy)

[4 2 cos(mDx)] 1 [4 2 cos(nDy)]
3 3

Thus Eq. (26) may be approximated by the following
scheme:

n n(F ) 2 (F )1 j,k 1 j21,kn11 n21T 2 T 5 2 2Dtj,k j,k Dx
n n(F ) 2 (F )2 j,k 2 j,k212 2Dt , (29)

Dy

where, for the case of a uniform velocity field, Eq. (29)
reduces to (20). Alternatively, when considering con-
stant velocity, a fourth-order approximation for the ad-
vected quantity T leads to Eq. (22).

b. Stability

Wave-type solutions exist for the finite difference ap-
proximations to Eq. (1) for uniform flow provided
boundary considerations may be neglected. These so-
lutions are of the form

5 rnei(jmDx1knDy),nT jk

where mDx and nDy are the components of the wave-
number in the x and y directions. As with the one-di-
mensional case r the amplification factor or eigenvalue
satisfies a quadratic equation (13) and, hence, neutral
stability follows provided s2 # 1 and the numerical
solution is unstable otherwise.

The relative phase error per time step is given by

Df f num5 1 2 .
f f

The phase shift f of the true solution is 2(amDx 1
bnDy), and fnum, the numerical phase shift, is given once
again by

arg(r) 5 sin21(2s).

The stability characteristics of each of the numerical
schemes described above is dictated by the parameter
s, where s depends on the Courant numbers a and b
and the wavenumbers mDx and nDy. The specific form
of s for these methods is displayed in Table 2.

We begin by investigating the behavior of s as a
function of a and b. Recall that values of s such that
zsz # 1 preserve amplitude, while values of s exceeding
1 in magnitude indicate an unstable mode. Following
Fromm (1968) we will restrict our attention to modes
satisfying

u 5 mDx 5 nDy.

These symmetrical modes have been identified with
maximum instability, and it is assumed that an emphasis
on the behavior of crucial short waves will provide a
critical view of the linear behavior of the schemes being
studied. Moreover, by examining the expressions for s
included in Table 2, we see that for such symmetric
modes all schemes exhibit isotropic behavior along the
lines j 5 a 1 b 5 constant.

The results of the linear analysis for each scheme are
shown in Figs. 4a–f and Figs. 5a–f. In these figures the
quantity of interest, either s or Df/f, is plotted in (j,
u) space with j increasing from 0 to 2 rightward along
the abscissas and u increasing from 0 to p upward along
the ordinate. Note that in the case of 2D wavelength
(i.e., u 5 p) the waves are stationary since each of the
expressions in Table 2 has sinu as a factor implying s
[ 0.

Figures 4a,b and 5a,b contrast the well-known sta-
bility properties of LF2 and its modified (per Smolar-
kiewicz) counterpart SM2. The modified scheme is char-
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FIG. 4. Level lines of s for the different two-dimensional, time-centered schemes as a function of j 5 a 1 b and u (labels from upper
left to lower right): (a) LF2, (b) SM2, (c) TCT2, (d) LF4, (e) TCT4SM, and (f) TCT4.

FIG. 5. Level lines Df/f for the different two-dimensional, time-centered schemes as a function of j 5 a 1 b and u (labels from upper
left to lower right): (a) LF2, (b) SM2, (c) TCT2, (d) LF4, (e) TCT4SM, and (f) TCT4.

acterized by a substantially expanded stability range, c
5 (a2 1 b2)1/2 # 1.4 with critical behavior for 8D (2,
p/4) and 8D/3 (2, 3p/4) waves. LF2 is stable for c #
0.71 with the minimum unstable Courant number oc-
curring for u 5 p/2. Contrasting these with similar re-

sults for Crowley-type (single step, forward-in-time)
schemes shows that, in contradistinction with the latter,
where stability is limited by longer waves, c passes
through a minimum in the short wavelength range.

Although the stability region for SM2 is less restricted
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than for LF2, Fig. 5b shows the pronounced dispersive
phase lag that afflicts this scheme. In fact, one can ob-
serve from the appropriate expressions for s in Table
2 that terms involving sin u in sLF2 are replaced by terms
involving cos u sin u in s SM2 and hence for p/2 # u
# p (i.e., short waves for which l # 4D) the phase
velocity of the SM2 numerical solution changes sign
while the LF2 solution simply lags the true solution.
This means that short-wavelength modes are either sta-
tionary or traveling in a direction opposite to that of the
actual wave. This feature is particularly damaging for
time-centered schemes in which neutral stability
throughout a significant range of the a–b plane means
that large phase errors will not be compensated for by
large-amplitude damping as is the case for Crowley-
type schemes (see Smolarkiewicz 1982).

As stated by Fromm (1968), higher-order methods
are required in order to significantly improve the phase
properties of centered difference schemes. Since all
methods being compared possess neutral stability, de-
fining a best method must focus on expanding the sta-
bility region and/or reducing dispersion.

Figures 4c–f and 5c–f compare the stability charac-
teristics of the various fourth-order schemes being con-
sidered (LF4, TCT4, and TCT4SM), as well as the hy-
brid TCT2 scheme. The most significant result for these
schemes concerns the expanded stability regions
achieved by the advection characteristic methods. In
particular, the TCT2 algorithm achieves neutral stability
in the range a 1 b # 1.82 or c 5 (a2 1 b2)1/2 # 1.82/

2 5 1.29 with superior dispersion characteristics rel-Ï
ative to the SM2 scheme. On the other hand the LF4,
TCT4Sm, and TCT4 schemes are stable for c # 0.72/

2, c # 0.90/ 2 and c # 1/ 2, respectively. For smallÏ Ï Ï
values of a and b, scheme LF4 has a stability region
whose contours are determined by the sum a 1 b ap-
proximately constant. It is seen from Figs. 4c, 4d, (re-
spectively, Fig. 4e), and 4f that, as with second-order
methods, stable regions are limited primarily by 4D (re-
spectively, 8D) waves rather than by the shortest waves
as is true for forward-in-time schemes.

In spite of the improved stability conditions of the
advection characteristic methods, Figs. 5a–f show that
these schemes do not significantly improve upon the
dispersive phase errors. The dispersion characteristics
associated with the TCT2 scheme reflect the second-
order spatial differencing that it shares with the LF2
scheme. LF4 and TCT4 exhibit phase errors that are
comparable in all essential respects with some slight
differences. The TCT schemes are characterized by a
mild deterioration in phase properties with increasing
Courant number and the LF4 scheme is subject to very
slight negative phase errors. The TCT4SM scheme is
characterized by severe dispersion errors that plague
both short- and medium-range waves, thereby removing
this algorithm from serious consideration.

c. Rotational flow tests

The approximation schemes developed above were
tested for the case of solid-body rotation. A standard
cone distribution is advected about an axis through the
origin with a pure rotational, nondivergent velocity field
having an angular velocity of 0.25 rad s21. The com-
putational domain consists of a uniform grid of 51 3
51 points (Dx 5 0.02 and Dy 5 0.02) and the initial
distribution, which has unit height and a diameter of
0.16 is centered at xc 5 0.5 and yc 5 0.34 (see Fig. 6a).
The nominal maximum Courant number, ( 12amax

)1/2, is equal to 0.60 and one full rotation around the2bmax

origin requires 430 time steps. Time smoothing is im-
plemented via an Asselin filter (Asselin 1972) with tun-
able coefficient e as an option to remove the compu-
tational mode generated by the three time-level schemes
being considered. Implementation of the TCT schemes
at the boundaries follows standard higher-order meth-
ods, which consist of applying lower-order schemes at
the boundary cells.

We shall consider, in addition to the time-centered
schemes, several forward-in-time advection schemes
that are commonly used in meteorological numerical
models. In particular, the original Crowley scheme mod-
ified to include the cross-space term and reflect the di-
mensionality of the geometry (Smolarkiewicz 1982)
and, for higher-order accuracy, Schlesinger’s (1985)
scheme 4 with type I correction (an upstream-biased,
third-order phase correction) will be tested. These
schemes will be designated CSM and SCH1, respec-
tively.

Figure 6b presents the results after one full rotation
for the LF2 scheme, which is equivalent to the conser-
vative form of the classic second-order leapfrog scheme
and should be compared to the scheme CSM (Fig. 6c).
Both schemes are characterized by severe dispersive
phase error that results from the space-centered ap-
proximation to the first partial derivatives. Despite neu-
tral stability, dispersion of short waves leads to a max-
imum amplitude of 0.57 for the leapfrog scheme. The
dissipative properties of the Crowley scheme, however,
reduce the maximum amplitude to a value of 0.42. The
Smolarkiewicz modification to leapfrog (SM2) (Fig. 6d)
degrades the approximation by virtue of the severe
short-wave dispersive error (as predicted by the linear
analysis). The results at one rotation show an amplitude
preservation of only 0.44 with extreme dispersion. One
must, however, consider the expanded stability range
afforded by this scheme. Dependence on Courant num-
ber is depicted in Table 3, which summarizes the cone
test results for all schemes. The results for the TCT2,
TCT4, and LF4 schemes are shown in Figs. 6e–g, and
as can be seen, the TCT4 and LF4 schemes preserve
both phase and amplitude well. TCT4 preserves 83%
of the amplitude after one revolution and LF4 preserves
82%, with nearly identical dispersive patterns. These
tendencies are clearly consistent with the linear stability
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FIG. 6. Rotational flow tests (figures are labeled from upper left to lower right). Numerical solutions for CFL 5 0.6 for various time-
centered and forward-in-time schemes: (a) initial condition, (b) LF2, (c) CSM, (d) SM2, (e) TCT2, (f) TCT4, (g) LF4, and (h) Sch1. Numerical
solutions at the stability limits for (i) LF2 at CFL 5 0.8 and (j) TCT2 at CFL 5 1.4. Numerical solutions for CFL 5 0.6 for TCT conservative-
flux schemes (k) FTCT2 and (l) FTCT4.

analysis. Very little dispersion is produced by Schle-
singer’s scheme that is based on a third-order phase
correction. However, this scheme preserves only 53%
of the amplitude after one revolution (see Fig. 6h).

The results for the fourth-order, centered-in-time
schemes reflect the presence of short waves (2D–5D
wavelength) propagating upstream because of the com-
putational mode. Increasing the filter coefficient e sup-
presses this mode with a maximum value of e 5 0.25,
effectively removing all stationary waves. Table 4
shows the influence of e, which, in addition to smooth-
ing dispersion error and to a lesser degree increasing

dissipation, has a destabilizing effect. Referring again
to Table 3, all schemes were tested, employing no fil-
tering, for dependence on Courant number. A series of
time steps yielding maximum Courant numbers of 0.6–
1.6 were used. The SM2 scheme exhibits stable behavior
for c 5 1.7, surpassing all other schemes. However, as
emphasized in the linear analysis and Fig. 6c, although
the domain as a whole remains stable, dispersive waves
severely degrade its performance. The superior stability
characteristics of the TCT2 scheme are apparent as all
other schemes (except SM2) exhibit highly unstable be-
havior at or below c 5 1.5—a Courant number at which
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FIG. 6. (Continued)

it continues to perform stably. This particular scheme
stands out as providing significantly enhanced stability
characteristics with comparable accuracy to the popular
LF2 scheme. Figures 6i and 6j compare the results of
the LF2 and TCT2 schemes at their respective stability
limits, that is, CFL 5 0.8 and CFL 5 1.4.

In section 3a conservative versions of the TCT
schemes (denoted FTCT) are derived and the corre-
sponding second-order algorithm is listed. These con-
servative algorithms have been applied to the solid-body
rotation test and yield comparable results to the nonflux
form (see Figs. 6k and 6l and Table 4). These results
support the contention that the term of crucial impor-
tance on the right-hand side of Eq. (25) is

vv·(v·¹)¹T,

and hence the FTCT difference approximations appro-
priately incorporate this effect. Moreover, we may iden-
tify this term with Dukowicz and Ramshaw’s (1979)
tensor viscosity term or Crowley’s diffusion term, which
have been shown to have an analogous stabilizing in-
fluence upon the canonical forward-in-time difference
scheme.

4. Nonlinear advection

The effectiveness of the TCT schemes (relative to
leapfrog methods) in solving the linear advection equa-
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TABLE 3. Maximum and minimum of advected scalar T after one revolution of rotating cone as function of
CFL number with Asselin filter off.

Scheme

CFL

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

LF2 max
min

0.5639
20.2194

0.5656
20.2275

0.5653
20.2258

unstable unstable unstable unstable unstable unstable unstable unstable

SM2 max
min

0.4373
20.2309

0.4356
20.2297

0.4348
20.2285

0.4349
20.2284

0.4357
20.2290

0.4359
20.2284

0.4350
20.2284

0.4407
20.2251

0.4402
20.2250

0.4425
20.2237

0.4430
20.2264

TCT4 max
min

0.8253
20.1095

0.8211
20.1110

0.8094
20.1088

0.8024
20.1047

0.7908
20.1046

0.7872
20.1055

unstable unstable unstable unstable unstable

TCT2 max
min

0.5638
20.2107

0.5735
20.2095

0.5740
20.2126

0.5744
20.2162

0.5717
20.2228

0.5704
20.2221

0.5673
20.2187

0.5622
20.2168

0.5609
20.2234

unstable unstable

LF4 max
min

0.8196
20.0988

unstable unstable unstable unstable unstable unstable unstable unstable unstable unstable

CSM max
min

0.4183
20.2059

0.4152
20.2030

0.4111
20.2001

0.4083
20.1966

0.4009
20.1991

0.3991
20.1900

unstable unstable unstable unstable unstable

Sch1 max
min

0.5313
20.0231

0.5324
20.0227

0.5326
20.0222

0.5335
20.0407

unstable unstable unstable unstable unstable unstable unstable

TABLE 4. Maximum and minimum of advected scalar T after one
revolution of rotating cone as function of the Asselin filter parameter
with Courant number a 5 0.6.

Scheme

e

0 0.1 0.2 0.25

LF2 max
min

0.5639
20.2194

0.5426
20.1954

0.5182
20.1749

0.5046
20.1641

SM2 max
min

0.4373
20.2309

0.4264
20.2210

0.4143
20.2129

0.4092
20.2093

TCT4 max
min

0.8253
20.1095

0.7502
20.0629

0.6894
20.0445

0.6600
20.0417

TCT2 max
min

0.5638
20.2107

0.5442
20.1926

0.5203
20.1739

0.5069
20.1636

LF4 max
min

0.8196
20.0988

0.7646
20.1584

unstable unstable

tion does not certify them for general use. In realistic
atmospheric problems the momentum equations exhibit
highly nonlinear behavior and methods preferable for
scalar equations may perform poorly. In particular, the
approximation of highly nonlinear convection terms like
u]u/]x is problematic, especially for nonconservative
schemes (in the context of highly nonlinear atmospheric
models, the treatment of certain equations requires the
conservation of quadratic quantities). In the next section
we shall confirm the linear results for the case of
Burger’s equation in one dimension. This equation is a
prototype equation for the nonlinear momentum equa-
tions. It will be shown, however, that when applied in
its conservative form the TCT2 scheme appears to be
superior to the second-order leapfrog scheme in its treat-
ment of nonlinear equations.

In this section we will compare the results obtained
by the conservative leapfrog scheme and the proposed
TCT method when nonlinear systems are solved. Ini-

tially, we will consider the following 1D nonlinear wave
equation:

]u ]u ]u ]F
1 u 5 1 5 0, (30)

]t ]x ]t ]x

where F 5 u2/2. This equation is referred to as the
inviscid Burger’s equation and describes a wave in
which each point may have different phase speed. Equa-
tion (30) describes how an initial distribution steepens
in regions of negative gradients and levels off in regions
of positive gradients. For an initial distribution char-
acterized by a steep negative gradient (see Fig. 7a) the
analytical solution develops a mathematical disconti-
nuity similar to a shock wave in supersonic flows. In
this case numerical solutions will not converge unless
sufficient implicit numerical viscosity is introduced, as
usually encountered in the approximation of localized
phenomena of atmospheric problems.

The second-order leapfrog scheme applied to the 1D
nonlinear wave equation can be expressed as

2n nu 1 uj j21nflx 5 0.5 ,j 1 2[ ]2

2Dt
n11 n21 n nu 2 u 5 2 (flx 2 flx ). (31)j j j11 jDx

The nonlinear version of the TCT2 scheme is based on
the conservative flux form. Discretizing in time yields

n11 n21u 2 u ]F
5 2 , (32)

2Dt ]x

where F 5 u2/2. As with the linear case, we introduce
forward-time and backward-time Taylor expansions,

n11 n21 3u 2 u Dt
n n(u ) 5 2 (u ) ,t ttt2Dt 6
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TABLE 5. Maximum and minimum of advected scalar T for the flux-conservative TCT schemes after one revolution of rotating cone as
function of CFL number with Asselin filter off.

Scheme

CFL

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

FTCT2 max
min

0.5587
20.2133

0.5641
20.2118

0.5716
20.2124

0.5729
20.2144

0.5653
20.2151

0.5709
20.2177

0.5677
20.2166

0.5579
20.2099

0.5563
20.2115

0.5593
20.2139

unstable

FTCT4 max
min

0.8104
20.1029

0.8163
20.1060

0.8146
20.1090

0.8138
20.1089

0.7898
20.1033

0.7833
20.1026

unstable unstable unstable unstable unstable

FIG. 7. Numerical solutions of the 1D inviscid Burger’s equation by leapfrog, TCT, and MacCormack schemes for moderately steep negative
gradient at CFL 5 0.8 shown at 30 and 187 time steps (labels from upper left to lower right): (a) initial condition, (b) LF2 at 30 time steps,
(c) FTCT2 at 30 time steps, (d) MacCormack at 30 time steps, (e) FTCT2 at 187 time steps, and (f) MacCormack at 187 time steps.

and a semidiscrete approximation to Eq. (30) at time
level n is

n11 n21 2u 2 u ]F Dt
5 2 1 u . (33)ttt2Dt ]x 6

Successive approximations using Eq. (30) yields

2 3 3 2] u ] ]F ] u ] (F )
5 u and 5 2 . (34)

2 3 31 2]t ]x ]x ]t ]x

Combining Eqs. (33) and (34) the semidiscrete approx-
imation may be replaced by

n11 n21 n 2 3 2 nu 2 u ]F Dt ] (F )
5 2 ,

32Dt ]x 6 ]x

or in conservative flux form

nn11 n21u 2 u ]F
5 ,1 22Dt ]x

where

2 2 2Dt ] (F )
F 5 F 2 .

26 ]x

Finally, to obtain a fully discrete equation we apply
centered differences to the spatial derivatives, employ-
ing second-order accurate approximations. This scheme
can be expressed as

2Dt
n n2flx 5 0.5u 2j j5 6

n 2 2 n2 2 n 2 2[(0.5u ) 2 2(0.5u ) 1 (0.5u ) ]j11 j j213 .
2 6Dx

We shall compare the performance of the second-
order time-centered schemes described above with the
MacCormack scheme (MacCormack 1969), a two-step,
Lax–Wendroff-type finite difference technique widely
used in aerospace simulations. Mendez-Nunez and Car-
roll (1993) compared the MacCormack scheme with sec-
ond-order leapfrog and positive-definite Smolarkiewicz
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TABLE 6. Nonlinear stability as a function of initial maximum
Courant number for compression wave.

Scheme

Initial CFL

0–0.7 0.8–1.0 1.1–1.3 1.4–`

LF2 stable unstable unstable unstable
TCT2 stable stable stable unstable
MacCormack stable stable unstable unstable

(1985) for solving the nonlinear advection equation and
found it to be superior based on a variety of stability
criteria. Chief among these was the modest amounts of
numerical diffusion (an advantage when treating prob-
lems involving steep gradients) that permitted damping
of high-frequency oscillations that characteristically
arise in approximating nonlinear phenomena. In addi-
tion, the MacCormack scheme behaves well for larger
CFL numbers, while LF2 produced better results for
smaller CFL numbers. Although a portion of our results,
in effect, reproduce the work of Mendez-Nunez and
Carroll, it is the comparison of the TCT scheme that we
are emphasizing both relative to leapfrog and the
MacCormack schemes.

We first compare the behavior of the various schemes
using an initial disturbance spread across 25 grid points
located between grid points 0 and 25 in a 100-point
domain (see Fig. 7a). Time smoothing is implemented
for the time-centered schemes via the Asselin filter with
coefficient e 5 0.25. The analytical solution moves at
a speed proportional to height across the wave front;
hence, the initial gradient steepens with time. Boundary
values are constrained to the analytical solution and in-
tegration times are limited to avoid boundary effects.
Emphasizing large CFL number behavior, numerical re-
sults for an initial CFL 5 0.8 are shown in Figs. 7b–f.
Each scheme exhibits some numerical dispersion with
the MacCormack scheme producing modest amounts of
implicit numerical diffusion. Diffusion may be identi-
fied with a spreading of the steep gradient zone at the
downstream side and also intrinsic damping of the com-
putationally generated modes. Numerical dispersion is
reflected in the overshoot immediately upstream of the
steep gradient with accompanying oscillations. For
time-centered schemes (i.e., both leapfrog and TCT) we
would expect the presence of high-frequency oscilla-
tions mollified by the application of Asselin smoothing
filters. These essentially nonlinear phenomena become
increasingly important relative to the linear dispersion
effects predicted in the stability analysis of section 3b.
The number and magnitude of the high-frequency os-
cillations in the leapfrog solution are significantly great-
er than the MacCormack scheme (as shown by Mendez-
Nunez and Carroll) as well as the TCT schemes (com-
pare Figs. 7b–d). Mendez-Nunez and Carroll attribute
the MacCormack result to its intrinsic diffusion. How-
ever, the TCT result must be associated with the sta-
bilizing effect of the higher-order temporal term that
was evident in the linear results. Comparison of the
results generated by the MacCormack scheme (which
is recommended by Mendez-Nunez and Carroll for non-
linear equations) and those of the TCT2 scheme are
striking—both exhibit a very modest overshoot with
negligible upstream oscillations.

If integration is carried out far enough in time the
gradient steepens to a virtual discontinuity. The
MacCormack and FTCT2 schemes remain stable over
such long-term integration times (see Figs. 7e and 7f)

that, since we are neglecting diffusion, the near-shock
conditions lead to numerical dispersion, which partic-
ularly distorts the TCT2 solution.

The influence of the CFL number on the stability
(boundedness) of the solutions was examined by con-
sidering the same initial disturbance and varying the
time step while integrating over 1.75 time units. Qual-
itative results that indicate the boundedness of the so-
lution over the course of long-term integration are
shown in Table 6. Stability limits for the leapfrog and
MacCormack’s scheme are consistent with previous re-
sults, while the TCT2 scheme exhibits bounded solu-
tions for significantly larger CFL numbers (stability is
defined for CFL # 1.4).

The inverse phenomenon to a continually steepening
waveform (i.e., shock), more common in atmospheric
flows, is that of a positive gradient weakening with time
(i.e., rarefaction). The approximate solution to Eq. (30),
obtained with each of the schemes (with an initial dis-
turbance as in Fig. 8a), exhibits the same qualitative
behavior as for the steepening gradient case with the
leapfrog algorithm plagued by high-frequency oscilla-
tions. Figures 8b–d show the solution obtained at one
time unit with the leapfrog, TCT2, and MacCormack
schemes, respectively. Mendez-Nunez and Carroll
(1993) found that for Courant numbers greater than 0.5
the leapfrog scheme invariably induces large oscilla-
tions and suggest that, in real flow simulations in which
weakening gradients are likely to occur, the CFL number
should be reduced. The TCT2 and MacCormack
schemes again perform quite well, yielding proper wave
speed with some spreading of the discontinuity and a
modest amount of numerical dispersion. Table 7 pro-
vides an indication of the boundedness of solutions over
a range of CFL numbers (for an integration time of one
unit). The enhanced stability characteristics associated
with the TCT2 scheme are striking. In fact, when applied
to the evolving rarefaction wave the maximum CFL
number compatible with stability exceeds that associ-
ated with the LF2 scheme by a factor of 2 while ex-
ceeding that associated with MacCormack’s scheme by
55%.

5. Summary

The goal of this paper was to describe and examine
the effectiveness of time-centered advection algorithms
employed in explicit atmospheric models. The standard
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FIG. 8. Numerical solutions of the 1D inviscid Burger’s equation by leapfrog, TCT, and MacCormack schemes for moderately steep positive
gradient at CFL 5 0.9 shown at 30 time steps (labels from upper left to lower right): (a) initial condition, (b) LF2 at 30 time steps, (c)
FTCT2 at 30 time steps, and (d) MacCormack at 30 time steps.

TABLE 7. Nonlinear stability as a function of initial maximum
Courant number for rarefaction wave.

Scheme

Initial CFL

0–0.8 0.9–1.1 1.2–1.7 1.8–`

LF2 stable unstable unstable unstable
TCT2 stable stable stable unstable
MacCormack stable stable unstable unstable

techniques consist of second-order and fourth-order
forms of the conservative leapfrog scheme. At the same
time we considered alternative algorithms consistent
with this formulation, that is, explicit and time-centered,
and present a detailed comparison with the leapfrog
schemes.

Applying standard second-order time-differencing to
hyperbolic equations (i.e., which characterize convec-
tion-dominated atmospheric flows) invariably results in
rather severe stability restrictions. The primary problem

appears to be attributable to the differencing approxi-
mation of the time derivative term (Donea 1984). We
have shown in this paper that producing higher order
temporal accuracy (TCT) results in schemes with im-
proved stability properties compared with conventional
leapfrog methods.

The linear results show that marked improvement is
possible in the stability properties of explicit, time-cen-
tered advection schemes by including, in the differenc-
ing scheme, a crucial term approximating the time de-
rivative of third order. The critical CFL number for the
TCT2 scheme was shown to exceed that of LF2 by
nearly a factor of 2. Similar results hold for the cor-
responding fourth-order schemes. A simpler but signif-
icantly more dispersive scheme is obtained by Shuman
averaging (Smolarkiewicz 1982). This scheme was
characterized by the largest maximum critical CFL num-
ber surpassing even the TCT2. The solid body rotation
test (section 3c) confirmed the findings of the 2D sta-
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bility analysis and compared these time-centered
schemes with popular forward-in-time methods.

The 1D nonlinear results corroborate the fundamental
stabilizing effect of the TCT approach with the stability
range of the conservative TCT2 algorithm exceeding
leapfrog by a factor of 2 and MacCormack’s scheme, a
popular nonlinear, dissipative differencing scheme (see
Mendez-Nunez and Carroll), by 50%.

On the basis of the results presented in this paper the
TCT methods represent an attractive alternative to the
leapfrog schemes currently used in many explicit, time-
centered models where stability considerations are crit-
ical.
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