
transactions of the
american mathematical society
Volume 335, Number 2, February 1993

BESOV SPACES ON DOMAINS IN Rd

RONALD A. DEVORE AND ROBERT C. SHARPLEY

Abstract. We study Besov spaces 5°(LP(Í2)), 0<p,q,a<oo,on do-

mains Í2 in Rd . We show that there is an extension operator W which is a

bounded mapping from B°(LP(Ü.)) onto B%(Lp(Rd)). This is then used to

derive various properties of the Besov spaces such as interpolation theorems for

a pair of B%(Lp(il)), atomic decompositions for the elements of 5°(Lp(f2)),

and a description of the Besov spaces by means of spline approximation.

1. Introduction

Besov spaces B^(LP(Q)) are being applied to a variety of problems in analy-

sis and applied mathematics. Applications frequently require knowledge of the

interpolation and approximation properties of these spaces. These properties

are well understood when p > 1 or when the underlying domain Q, is Erf . The

purpose of the present paper is to show that these properties can be extended

to general nonsmooth domains Q of Rd and for all 0 < p < oo. Besov spaces

with p < 1 are becoming increasingly more important in the study of nonlinear

problems.
To a large extent the present paper is a sequel to [2 and 4] which estab-

lished various properties of the spaces Bq(Lp(Cl)), Q a cube. Among these

are atomic decompositions for the functions in Bq(Lp(Q.)), a characterization

of Bq(Lp(Çï)) through spline approximation, and a description of interpolation

spaces for a pair of Besov spaces. We establish similar results for more general

domains.
Our approach is to first define an extension operator, I?, which extends func-

tions in Bq(Lp(£l)) to all of Rd . Similar extension operators for p > 1 have

been introduced by Calderón and Stein (see [7, Chapter 6]). Our main depar-

ture from these earlier approaches is that by necessity our extension operators

are nonlinear. Moreover, whereas in the case p > 1, it is possible to take f so

that œr(ê?f, t)p < C 0)r(f, t)p with cor the rth order modulus of smoothness

(at least when Q is minimally smooth [5]), in the case 0 < p < 1, we only

obtain a weak comparison between (ar(W'f', t)p and wr(f, t)p .

We shall establish our results for two important classes of nonsmooth do-

mains: the Lipschitz graph domains, and the (e, S) domains introduced by

Jones [6]. We begin in §4 with the case of Lipschitz graph domains since the
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844 R. A. DEVORE AND R. C. SHARPLEY

geometric arguments in this case are the most obvious. We later generalize these

arguments to (e, Ô) domains in §5. Although the results of §5 contain those of

§4, we feel that this two tier presentation makes the essential arguments much

clearer.

2. Moduli of smoothness and Besov spaces

Let Q be an open subset of Rd . We can measure the smoothness of a

function / £ Lp(Çi), 0 < p < oo, by its modulus of smoothness. For any

h £ Rd, let I denote the identity operator, x(h) the translation operator

(x(h)(f, x) := f(x + h)) and Arh := (x(h) - I)r, r = 1, 2, ... , be the dif-
ference operators. We shall also use the notation

AJ(/,x),    x, x + h, ... , x + rh £ Q,

otherwise.
A£(/,x.O) :={£*'

The modulus of smoothness of order r of a function / £ LP(Q) is then

(2.1) œr(f, t)p := cor(f, t,a)p := sup \\Arh(f, -, fl)||MQ).
W<t

For any h £ Rd , we define

Q(h):={x: [x,x + «]cQ}.

A Besov space is a collection of functions / with common smoothness. If

0 < q < r and 0 < q,p < oo, the Besov space Bq(Lp(Q)) consists of all

functions / such that

(2.2) \f\Bq{L„m:= [ [\racor(f,t,Q)p]qdt/t\      <oo

with the usual change to sup when q = oo . It follows that (2.2) is a semi(quasi)-
norm for B^(LP(Q)). (Frequently, the integral in (2.2) is taken over (0, oo) ;

while this results in a different seminorm, the norms given below are equivalent.)

If we add ||/||l (Q) to (2.2), we obtain the (quasi)norm for B^(Lp(Çï)). It is well

known in the case p > 1 that different values of r > a give equivalent norms.

This remains true for p < 1 as well and can be derived from the 'Marchaud

inequalities', which compare moduli of smoothness of different orders. These

inequalities have been proved for all p > 0 and Q, either a cube or all of Rd in

[8] (see also [2]), and for more general domains Q and p > 1 by Johnen and

Scherer [5] (among others). We address this topic later in §6 for the remaining

case 0 < p < 1 and more general Q.

There are fundamental connections between smoothness and approximation

(see [2] and the references therein, especially [8]). We now describe these with-

out proofs (which can be found in [2] or [8]). If f £ LP(Q), 0 < p < oo, Q a

cube in Rd , we let

(2.3) Er(f,Q)p:=M\\f-P\\p(Q)

be the error of approximation by the elements from the space Pr of polynomials

of total degree less than r where || • \\P(Q) denotes the LP(Q) (quasi)norm.

We then have Whitney's inequality

(2.4) Er(f, Q)p < C cor(f, l(Q))p
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BESOV SPACES ON DOMAINS IN Rd 845

where l(Q) is the side length of Q and C is a constant which depends only

on r and d (also p if p is close to 0).

Sometimes (2.4) is not sufficient because it is not possible to add these esti-

mates for different cubes Q. For this purpose, the following averaged moduli

of smoothness is more convenient. For any domain Q, and / > 0, we define

(2.5) w,(/,i,Q),:= \rd I     Í \Ars(f,x,ci)\pdxds
\        J\s\<tJCl

1/P

where p < oo. Then, returning once again to cubes Q, a>r and wr are equiv-

alent:

(2.6) Cxcor(f, t,Q)„< wr(/, t,Q)P< C2cor(f, t)p

where Cx and C2 depend only on d, r and p if p is small. Therefore, the

estimate (2.4) can be improved by replacing œr by wf :

(2.7) Er(f, Q)p < C Mf, l(Q), Q)p ■

We shall use the generic notation Pq := Pq(j) to denote a polynomial in Pr

which satisfies

(2.8) \\f-PQ\\p(Q)<XEr(f,Q)p

where X > 1 is a constant which we fix. The polynomial Pq is then called a

«ew fes/ approximation to / with constant X. When X = 1, Pg is a fes/
approximation. It follows from (2.7) and (2.8) that

(2.9) \\f-PQ\\P(Q)<Cwr(f,l(Q),Q)p.

We shall use the following observation (see [2, Lemma 3.2]) about near best

approximation in the sequel. Let y > 0. If Pq £ ¥r is a near best approxima-

tion to / with constant X on Q in the Ly norm, then it is also a near best

approximation to / for all p >y:

(2.10) \\f - Pq\\p(Q) < CX Er(f, Q)p

where the constant C depends only on y, r, and d .

The estimate (2.10) leads to a characterization of Besov spaces in terms of

spline approximation. For n £ Z, let D„ be the collection of dyadic cubes

Q of side length 2~~" and let D := Unez®« De l^e collection of all dyadic
cubes. For n £ Z, let Yl„ :=Flnr be the space of piecewise polynomials S on

D„ which have degrees less than r. The error of approximation to a function

/ 6 LP(Q) by elements of n„ is

(2.11) sn(f)p:= inf \\f-SUQ).

It follows from [2] that a function / £ LP(Q.) is in B^(LP(D.)), Q. a cube,
if and only if

(2.12) \\f\\^(Lp):=(ZZ(2naSn(f)P)q)
\n€Z I

1/9

< 00.
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846 R. A. DEVORE AND R. C. SHARPLEY

Moreover, (2.12) is an equivalent seminorm for Bq(Lp(Sl)). Let us emphasize

for later use that this same result holds in the case Q = Rd with the same proof.

3. Polynomials

It will be useful to mention briefly some well-known properties of polynomials

which we shall use frequently in what follows. If ß is a cube, we let, for

0 <p < oo ,

(3.1) ii/u;(ß):=ißr1/pii/Mß)

be the normalized Lp norms. We also introduce the notation pQ to denote

the cube with the same center as ß and side length pl(Q) where l(Q) is the

side length of Q.
If r is a nonnegative integer, p > 1 and P is a polynomial of degree < r,

then (see for example [4, §3]) for a constant C depending only on d, r (this

constant and other constants in this section also depend on the distance of p

to 0), we have for any q > p :

(3.2) \\p\\q(PQ)<c\\p\\q(Q)<c\\p\\;(pQ).

We often apply this inequality in the following way. Let Qx, Q2 be two

cubes with l(Qx) > l(Qi) and Qx c pQ2 for some p > 1 . Then for a constant

c depending only on d, p, p, r, we have, for all q > p ,

(3.3) \\P\\q(Qi)<c\\P\\;(Q2).

Indeed, it is enough to compare the left side of (3.3) with ||.P||p(ßi), compare

this with ||i>||p(/?Ö2), and then finally make a comparison with ||.P||p(Q2) •

4. Extension operators, local approximation, and moduli

We shall define an extension operator If (similar to that introduced in [4])

which extends each function / £ Lp(Si) to all of Rd and has the property

that if / £ B^(LP(Q)), then g'f £ B^(Lp(Rd)) (with suitable restrictions on

a, p, q , and Í2). We assume at the outset that £2 is a Lipschitz graph domain

and treat more general domains in the next section. This means that Q =
{(u, v): u £ Rd~x, v £ R and v > <p(u)} where </> is a fixed Lip 1 function.

That is, <j> satisfies \4>(ux) - 4>(u2)\ < M\ux - u2\, for all ux,u2£ Rd~x, where

M is a fixed constant (which we can assume is greater than one).

We let F denote the Whitney decomposition of Q into dyadic cubes (see

Stein [7, p. 168]). Similarly we denote by Fc the Whitney decomposition of

Q.c\dQ. Then,

(i)    diam(ß)<dist(ß,dQ) <4diam(ß),  Q£FUFC,

(4>, ) (ii)   if Q, ßo e F U Fc touch, then l(Q0) < 4 l(Q),

(iii)      sup   \v - <p(u)\ < C l(Q),
(u,v)€Q

where C depends only on the Lipschitz constant M and the dimension d.

Here, diam(ß) = Vd l(Q) with l(Q) the side length of ß.
For each cube ß in F \J Fc let Q* := ¡ß. If ß e F, then Q* c 3ß c Q.

According to [7, p. 170] there is a partition of unity {<$>q\qzfc for the open set
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BESOV SPACES ON DOMAINS IN  Kd 847

Q.c\dd with the properties:

(i)      0 < <PQ   <   1  ,
(Ü)   Ec2e/v ̂ e = l ' on fi '

(iii)   0Q is supported in int(ß*),

(42) (ÍV)   llß^öHoo < c[/(ß)]-i"i, H</M,
v ' ' (v) if ßi, ß2 6 F U Fc with ßj n ß2* í 0, then ßi and

Q2 touch,
(vi) at most No := 12d cubes from either F or Fc may

touch a given cube from either family.

Properties (i)-(iv) and (vi) are proved in [7], while a proof of (v) can be

found in [4]. Here m is an arbitrary integer and c depends only on d, Q,

and m . We are using standard multivariate notation for the derivatives Dv :—

Dx\-D%.
If ß e Fc has center (u, v), we let Qs denote the cube in F which contains

the point (u, 2<j>(u) — v). We speak of Qs as being the cube symmetric to ß

across d£l. The symmetric cubes Of were introduced in [4, p. 77] and we recall
now some of their properties proved in [4]. While ß and Qs need not have

the same size, they are comparable; i.e. there is a constant C > 0 for which

there holds (for a proof see [4]).

(i)   C-xl(Q)<l(Qs)<Cl(Q),
(4J) (ii)   dist(Q, Q*)<Cl(Q),

(iii) each cube in F can be the symmetric cube Qs of at

most C cubes ß £ Fc.

To define our extension operators F, we fix a value y > 0 (which in appli-

cation is chosen smaller than all p under consideration), and a value r (which

in application is larger than all the a under consideration) and we let X > 1 .

If f £ Ly (loc) and ß is a cube, we let Pq(f) be a polynomial which satisfies

(2.8). We then define f by

(4.4) r/(x) := {
f(x),    xeQ,

EG6f£ PQsf(x)<pQ(x),    x £ W\dïl.

Actually, (4.4) defines a family of extension operators, since each choice of near

best approximants PQsf give an extension & . The results that follow apply to

any such extension operator F with the restriction that the constant X > 1 of

(2.8) is fixed.
We have shown in [4] that I? is a bounded mapping from LP(Q.) into

Lp(Rd), y < p < oo, and also from B^(LP(Q)) into B^(Lp(Rd)) whenever

1 < p < oo. We shall prove now the same result when 0 < p < 1 . To

study the smoothness of ê'f, we shall need estimates of how well fê f can be

approximated by polynomials on cubes R in the Lp norm for p > y .

We fix 0 < p < oo  and  r  and use the abbreviated notation  E(Q) :=

Er(f,Q)p.

Lemma 4.1. There exists a constant C > 0 so that if Qx, Q2 belong to F and

touch, then

(4.5) l|JPe1-/,o2IU(ß.)<C|ß1r1/n^(ßi) + ^(ß2)].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



848 R. A. DEVORE AND R. C. SHARPLEY

Proof. By property (4.1)(ii) of the Whitney decomposition, Qx and Q2 have

comparable side lengths and so we may select a cube ß c Q* n Q2 whose side

length is comparable to that of either cube:

/(ß) = TLmin{/(ß1),/(ß2)}.

Applying the triangle inequality in L^Qj) and using the elementary estimates

for polynomials (3.3), we have for ;' = 1, 2

\\PQj   - PqWocÍQj)   <   C[\\PQj   -  PQ] \\*piQj)  +   \\Pqj   -  PgHp(ß)] .

Using this inequality and two applications of Lemma 3.3 of [2] (applied once

to Qj and ß* and again to ß and Q*) gives

(4.6) \\PQj - Pq\UQj) < C\Qj\-x'pE(Q*).

Again using (3.3), we obtain

\\PQl - PqW^Qx) < C\\PQl - PqU(Q2)

and so together with (4.6) (applied with j = 2) and the modified triangle

inequality we obtain the desired result (4.5).   □

To estimate the smoothness of % f, we shall approximate <£ f on cubes ß

from Rd . We consider first the approximation of fê f on cubes close to dQ.

Lemma 4.2. There exists a constant c > 0 so that if I? is any of the extension

operators (4.4) and R is a cube with dist(.R, dQ) < diam(i?), then for f £

LP(Q), y < p < 1, we have

( \

(4.7) Er(ë?f,R)p<C

l/p

£  E{S'Y
S<EF

\SCcR I

where c, C depend only on d, r, y, X, and Q,.

Proof. For such an R, if (m0 > ̂ o) denotes its center, then we let Ro be the

member of F containing a point of the form («o, v) suchthat l(Ro) > 16 l(R)

and v is smallest. It is clear (see property (4.1)(i)) that R and Ro have

comparable side lengths and so we may choose a constant c > 0 so that

cR D R0. Let Q £ F intersect R. We shall estimate \\f - Pr0\\pÍQ) . Since
dist(ß, dQ) < diam^) + dist(i?, dQ) < 2diam(/î), from (4.1)(i) it follows
that l(Q) < 2l(R).

Our next step is to construct a 'chain' of cubes {Rj}q from F which connect

Ro to ß = Rm with each Rj touching Rj+X. We accomplish this as follows.

Let xt = («i ,vi) be the center of Ro and X3 := («3, V3) be a point from

ß n R. We consider the path consisting of a 'horizontal' followed by a 'vertical'
linear segment which connects first xx to the point x2 = («3, vx) and then x2

to X3. The point x2 is in |i?0 = ^q an(^ *s therefore in a cube R £ F which

touches Ro . If R ^ Ro , we define Rx :- R, otherwise Rx is not yet defined.

The remaining cubes Rj are obtained from the vertical segment which connects

X2 to X3, namely the cubes we encounter (in order) as v changes from vx to
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■Ü3. Since all these cubes are in F, they have disjoint interiors. From property

(4.1)(iii), we obtain Y^%oKRj) is comparable to l(Ro) ; moreover,

m

(4.8) I{Rk)<Y,l(Rj)<cl{Rk),        0<k<m.
j=k

In particular, we have ß c cRj and Rj c cR, where c has been increased

as necessary but remains independent of /.

Since ß c cRj, the inequalities (3.3) for polynomials, give that for any

polynomial P, \\P\\oo(Q) < C\\P\\p(Rj), j = 0, ... , m, for a constant C

depending only on p, d, Q and the degree of P but not on j. We now write

PQ - PRo = (PRm -PRm_,) + ■■■ + (PR¡ - PRo) and find from Lemma 4.1 that

m—\

\\Pq - Pr0\UQ) < C £ \\PRj+l - PRj\URj)
j=o
m-\

(4.9) <cYi\RJ\-x/p[E(R*) + E(Rj+l)]
j=o
m

<cY/\Rj\-l/pE(R*j).

Hence, |ß|"1/p||i3Q _ pr0\\p(Q) also does not exceed the right side of (4.9). If

we write f - PRo = (f - PQ) + (PQ - PRo), we obtain
m

(4.10) \\f-PRJp(Q)<C\Q\x'PY/\RJrl/PE(R*j).
j=0

Since an /) norm does not exceed an lp norm for 0 < p < 1, we have

m

(4.11) \\f-PRo\\pp(Q)<C\Q\J2\Rj\~lE(R*)p.
7=0

We denote the 'chain' from ß to R0 by TQ := (Rj)f=o- Summing (4.11)
over all ß belonging to F such that Q n R ^ 0, we then obtain

(4.12) £    M-PrX(Q)<C    E     Y,\Q\\S\-xEiS*)p.
Q€F Q€F     S<ETQ

QnR¿0 QnR^sz

Next we interchange the order of summation in (4.12) and note that while an

S that appears in the sum of (4.12) may occur in more than one Tq , each such

ß is contained in cS and therefore ]T){q : ser } Ißl - Cl^l. Since % f = f on

such ß, we obtain

(4.13) £ rz-^jp-tß^c e ¿w-
QeF seF

QC\Ries SCcR

We can prove a similar estimate to (4.13) for cubes Q £ Fc for which QílR ^

0:

(4.14) £    lir/"-/«(ß)<C E £(ST-

J** #!cR
ßnR^0
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Indeed, for a cube ß which appears in the left sum of (4.14), we have from

the definition of % in (4.4):

\\%f-PRJp(Q)<   E   \\Pq>-PrJp(Q)

(4.15)

ß"nß^0

<     £    \\PQs - PrJppÍQs)

Q'nQ¿0
QeFc

where we have used the fact that the 4>q are positive and sum to one and we have

used (3.3Hfor g = p) to replace \\Pq, - PrJpp(Q) by \\Pq. - PrJpp(Qs) (recall

that ß, ß, and Qs all have comparable size and the distance between any two

of these cubes does not exceed Cdiam(ß)). Now, by (4.2)(v), Q* n ß ^ 0

only if ß and ß touch. Therefore by (4.2)(iv) there are at most N terms in

the sum (4.15) and YV depends only on d and Q. Also a given Qs appears

for at most C cubes ß (see the remark following (4.3)). Furthermore Qs

is contained in cR and therefore the estimate (4.9) holds (with the ß there

replaced by Qs). Finally, if we use (3.2) to replace the Looiß*) norm by an

LPiQs) norm on the left side of (4.9) and then use this in the terms of the right

sum of (4.15), we arrive at (4.14) in the same way that we have derived (4.13).

To complete the proof, it is enough to add the estimates (4.13) and (4.14).   □

We are now in a position to give an estimate for fc)r(<f/, t)p for each of the

extension operators I?.

Theorem 4.3. If y < p < 1 and t > 0 then

(4.16) a>r(gf, t)p < Cp E wr(/, 2% + fp £ 2-**wr(/, 2%
V<c\l V>t

where wr is the averaged modulus of smoothness (2.5) and the constants cx and

C depend only on d, r, y, X, and Q.

Proof. We write Rd\dQ = Q0 U Q- U Q+ , where Q0 := lj{ß &FuFc: l(Q) <
16r/}, Q+ := r2\(Q0 U da), Q- := rr\(f20 U dQ). It follows that for each
x £ fio and for the appropriate cube ß e F U Fc which contains x , we have

(4.17) dist(x, dQ) < diam(ß) + dist(ß, dQ) < 5 diam(ß) < 80v^a-/ .

We shall consider three cases. Let \h\ < t.

Case 1 (x £ Q+). In this instance, there is a cube Q £ F containing x and

l(Q) > I6rt. Therefore the expanded cube Q* := |ß c Q contains the line

segment [x, x + rh], which shows for x £ Q+ , that Arh(%f, x) = Arh(f, x).

Hence, by (2.6),

/ \Arh(gf,x,Q)\pdx < [   \A'h(f,x, Q*)\"dx < cor(f, t, (?)pp
Jq Jq>

<Cyvr(f,t,Q*)p.

We now sum over all ß which intersect Q+ and use the fact that a point

x £ Rd can appear in at most /Vo of the cubes Q* (see (4.2)(vi)) to find

(4.18) /   \Arh(gf,x)\»dx<Cv*r(f,t)p.
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Case 2 (x € ßrj) • In this case we are near the boundary and employ Lemma

4.2. We take a tiling Ao of Rd into pairwise disjoint cubes R of side length

80/7. Next we obtain additional staggered tilings by translating A0 in coordi-

nate directions. Namely, if v is a vector in Rd with coordinates 0 or 1, then

Av := {40rtu + R}R£A0 is also a tiling. We let A denote the collection of those

JR such that R n Í20 ̂  0 and R £ A„ for one of these v . We note that there

are 2d such v and for each point x £ Qo there is a cube R £ A such that

[x, x + rh] c R. Hence,

/  \A'h(gf, x)pWx < W      |A£(r/\ x)|^x
(419) ^ ttEA7*«'*)

ASA

where the last inequality follows since the rth difference annihilates polynomials

of degree less than r. The multiple 80 was chosen so that the cubes R in A

satisfy dist(i?, dQ) < diam(iî) as follows from (4.17) because Q0 n R ¿ 0.
We may therefore estimate E(^f, R)p by Lemma 4.2 to give

(4.20) f  \Arh(gf,x)\pdx<CY,  E E^'y-
Jil° ReA seF

SCcR

Next, we observe that F is the disjoint union of the Fj := F n D; and so

(4.20) becomes

(4

. oo

21)       /   \A\(%f,x)\pdx<C E VJ VJ £(5-)'    =: C VJ /,
i /?eA 5e/7, J ;'=-oo
\ 5CC/? /

Let Sj := \J{S*: S £ Fj}. By properties (4.2)(v) and (vi) of Whitney decom-
positions, it follows that for each j

(4.22) £   £  xs- < CN0 xsj,
REA SCcR

sef,

where No is the constant of (4.2)(vi), and C is a constant which depends only

on d and c counting the number of times a cube S £ F can appear in distinct

cubes cR, R £ A. Therefore, from (2.7), we obtain for each j £ Z,

(4.23) /, < CN Vd i i \Arh(f,x,Sj)\pdxdh < C wr(f, 2-J+l)p.
J\h\<p-iJSj

Furthermore, if S £ Fj satisfies S c cR for some R £ A, then l(S) <

cl(R) = SOcrt. Hence, if cx > I60cr we have from (4.1)(i) that 2~J+X < cxt.
Using this together with inequalities (4.21) and (4.23), we obtain

(4.24) f  \Arh(i?f,x)\pdx<C    £    Ij<C   Y,   Mf,2-j)pP-
Jil° 2-'<%0crt 2-J<Clt

Case 3 (x e Q_). Let R £ Fc with R n Q- f 0, then /(/?) > 16r/ and
so [x, x + rh] c R* whenever x £ R. We consider any other cube Q £ Fc

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



852 R. A. DEVORE AND R. C. SHARPLEY

such that ß* intersects [x, x 4- rh] for some x £ R and \h\ < t. By (4.2)(v),

we have that ß and R touch. Next we let AR := {Q £ Fc: Q touches R}

denote the collection consisting of R and its neighbors from Fc, then all cubes

Q £ AR have side length comparable to /(/?). The number of cubes in AR

does not exceed the constant No of (4.2)(vi). We can use (4.2)(iv) to majorize

derivatives of the 4>q . Hence, from the definition of ¿? and Leibniz' formula,

we have for \p\ — r:

iiz^r/iu/n = iiz>"[F/-/v]iu(/o
< C max  £ l(R)~k max  \\D»[PQs - ¿V]IUß*)

(4.25) °-k-rojA„ Wl=r~k

<Cl(R)-r £ HPg.-^llooiÄ4)
ß€A„

where the last inequality uses Markov's inequality and (3.3). We next choose

a constant c > 0 so large that it exceeds the constant in (4.3) and also cRs

contains each of the cubes Qs, for ß e AR . We shall possibly increase the size

of the constant c in the remainder of the proof but it will end up to be a fixed

constant depending at most on d, Q, and previous constants.

For each Qs, such that ß e AR , there is a 'chain' Tq connecting Rs with Qs

which can be obtained from the proof of Lemma 4.2. Namely, if the constant

C > 0 is large enough then R := CR will contain Rs and all of the Of. We
choose Rq £ F as in Lemma 4.2 for the cube R. The chain Tq then consists

of the cubes in F which connect Qf to Ro and then Ro to Rs. Each cube in

the chain Tq will have side length larger than c~xl(R) where c may have to be

increased appropriately. Of course each cube in the chain also has side length

< Cl(Ro) < Cl(R). Because of the size condition on the cubes in Tq , the fact
that they have disjoint interiors, and dist(ßJ, Rs) < Cl(Rs), the number of
cubes in Tq is no larger than a fixed constant depending only on d and Q.

Therefore, we can estimate Pqs - PR¡ as in (4.9) of Lemma 4.2 and obtain

Up

11% - ^lloo(^) < c\\pQs - AHUß1)

< c\R\-l/p ( E E(s*y

\SETQ

Now, from (4.25) and (4.26), we obtain for x £ R,

\Arh(£f, x)\ < maxIl^r/IU/n \h\r
\f\=r

(4.27) /
< Cfl(R)-r\R\~xlp E      E E(S*ÎP

QeAR  \S€T0

Now let AR denote the collection of all cubes S from F which are contained

in cRs and have side length l(S) > c_1/(i?). Then, by again enlarging c if

necessary, we can guarantee that any cube S appearing on the right side of

(4.27) is contained in AR.   Therefore, if we take pth powers of (4.27) and

Up
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integrate over R and then sum over all R, we obtain

(4.28) f   \Arh(%f,x)\pdx<Cf»    Y    W E E^S^P
a- /?nn_/0 S€Ar

where we have used the fact that the number of cubes in AR is bounded inde-

pendent of R.
We now proceed in a similar fashion to the way we derived (4.24). Since (as

we have derived earlier) cl(R) < ¡iS) < CliR), every cube S appearing in the

sum of (4.28) satisfies ct < l(S) < cxt provided cx is sufficiently large. We

majorize EiS*) by (2.5) and (2.7). This gives (compare with the derivation of

(4.21) through (4.24)):

E /(*rpE^y = E E ^rpYE(s*)p
/?nn_^0 se\R J  Rníi-¿0       se\R

(4.29) R€°j
<c Y vrpy*r(f,2-%.

2-J>c,t

We use (4.29) in (4.28) to obtain

(4.30) /   \A'h(gf, x)\pdx < Cfp   Y   Mf,2~X-
Ja~ 2-J>Cit

The proof of the theorem is completed by adding the estimates (4.18), (4.24),

and (4.30) and making the observation that v/r(f, s, Q) < adlpvirif, as, Q)p

for any a > 1 to put the resulting sum in the form (4.16).   □

5. Extension theorems for (e, S) domains

The techniques of §4 also apply to more general domains. We shall indicate

in this section the adjustments required in §4 to execute the extension theorem

for (e, S) domains as introduced by P. Jones [6]. Such domains include as
special cases the minimally smooth domains in the sense of Stein [S, p. 189].

The latter are equivalent to domains with the uniform cone property [Sh].

We say an open set Q is called an (e, S) domain if:

for any x, y £ Q satisfying |x - y\ <S, there exists a rectifiable path F,

of length < Crj|x - y\, connecting x and y, such that for each z e F,

(5.1) dist(z, dQ) > emin(|z-x|, \z - y\).

We shall also assume that the diameter of Q is larger than ô which, of course,

will be true, if we take 5 small enough.

Let F be a Whitney decomposition of Q and Fc be a Whitney decompo-

sition of Qc\dQ; that is (4.1)(i) and (ii) hold for the cubes ß £ F U Fc. We
shall often make use of the following two properties which hold for a constant

C depending only on d :

(i)   if ß, Q! £ F do not touch, then C dist(ß, ß') > diam(ß),

(ii)   if ß £ F, then C dist(ß, dQ) > supzeß d(z, dQ).
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The first of these properties follow from the fact that the neighbors of ß all

have size comparable to that of ß (property (4.1)(ii)), while the second is a

consequence of (4.1)(i).
For a cube ß € Fc, we let Of be any cube from F of maximal diameter such

that dist(ß*, ß) < 2dist(ß, dQ). The cube Of will be called the reflection
of ß and plays the same role as the reflected cubes for the Lipschitz graph

domains of §4. We note for further use that from (4.1 )(i) and the definition of

reflected cubes, it follows that if Qx, Q2 £ Fc, then

(5.3) dist(Öf, ßf) < C(dist(ß!, ß2) + maxtdiamtß, ), diam(ß2)))

with C depending only on d .
Since there are not necessarily arbitrarily large cubes in Q, for large cubes

Q £ Fc, the reflected cube Of may have small diameter compared to that

of ß. On the other hand, if ^ denotes the collection of cubes Q £ Fc

whose diameters are no larger than ô, then for each ß in 3Ç its reflection

will satisfy properties (4.3) for a fixed constant C depending only on e, ô,

and d. To see this, we take a point xo £ dQ which is closest to ß from

the boundary and let x £ Q be a point close to xn (to be described in more

detail shortly). Since diam(f2) > S > diam(ß), there is a y £ Q such that

S > |x - y\ > Ô/2 > dist(ß, öQ)/8. Let T be a path connecting x to y
satisfying the (e, 3) property. Then, we can find a point z e F such that

|x - z| = dist(ß, <9r2)/16 and \y - z\ > dist(ß, <9f2)/16. Therefore, by (5.1),
dist(z, dQ) > Cdist(ß, dQ). Now let Q' £ F be the cube which contains
z. Then by (4.1)(ii) and (5.2)(ii) diam(ß') > Cdist(ß, dQ) > Cdiam(ß).
If x is close enough to xn (e.g., |x - Xo| < jdist(ß, dQ) will be fine), then

dist(ß', ß) < 2dist(ß, dQ). Hence ß' is one of the candidates for Qs which

means that diam(ß5) > diam(ß') > Cdiam(ß) from which the properties in

(4.3) easily follow.
The key to generalizing the extension theorem from Lipschitz graph domains

to (e, a) domains is to find chains which connect cubes of F. For this we

shall use the following.

Lemma 5.1. Let Rq and Q be two cubes from F with diam(ß) < diam(iîo)

and dist(ß, Ro) < min(r5, Cxdiam(Ro)) with Cx a fixed constant. Then, there

is a sequence of cubes Q =: Rm, Rm-X, ... , Ro, from F, such that each R¡

touches Rj-X, j - I, ... ,m, and for each j = I, ... , m, Rj c cRq and for

each j = 0,..., m — 1, ßc cR¡ with c depending only on Cx and Q.

Proof. Let z £ Q and z0 £ Ro satisfy \z - z0\ < ô and let F(t), 0 < / < 1,
be a path connecting z0 to z guaranteed by the definition of (e, ô) domains.

We claim that any cube S £ F which intersects F has diameter > Cdiam(ß).

Indeed, if S touches ß or Ro, this is clear. If S does not touch ß or R0

and w £ FnS, then, by (4.1)(ii), \w - z0| > /(/?o)/4 and \w - z\ > l(Q)/4.
Hence, by (5.1), dist(t/;, 9Q) > el(Q)/4 and therefore our claim follows from

(5.2)(ii)and(4.1)(i).
We let So, Sx, S2, ... be the cubes from F met by the path F as / in-

creases; by the above remarks this sequence is finite. If two cubes are identical,

Si = Sj, we delete S¡+\, ... , Sj from this sequence. It is clear that Rj touches

Rj-1 for each j = 1,2, ... , m. We take points z¡ £ Fn R¡■, j = 0, ... , m .
Since the path F has length < C|z0 - z\ < Cdiam(^0), all points z¡ satisfy
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dist(zj, dQ) < C diam(Ro). Therefore, properties (4.1 )(i) and (5.2)(ii) give

that diam(Rj) < Cdiam(i?o) • Hence Rj c cRo for some constant depending

only on Cx and Q. We also claim that ß c cRj. This is clear if Rj touches

ß or R0 (see (4.1)(ii)). On the other hand, if Rj does not touch ß or Ro,

then by (5.1) and (4.1)(ii), we have

dist(zj, dQ) > emin(|z - Zj\, \zj - zq\) > C l(Q).

Hence, by (5.1)(ii) and (4.1)(i), diam(Rj) > Cdiam(ß) and our claim follows

in this case as well.   D

We shall now define our extension operator for the (e, ô) domain Q. Let

<pq, Q £ Fc, be a partition of unity for Qc which satisfies (4.2). Recall that

SFC is the collection of all cubes Q £ Fc for which diam(ß) < ô . If y > 0 and
r is a positive integer, we define

(5.4) ^f:=fXa+YPQ^Q

where as before Pq* denotes a near best approximation to / in the met-

ric Ly(Qs). We let Qi := {x £ Rd: dist(x, Q) < 3/4} and Q2 := {x £

Rd: dist(x, Q) < 63}. Then, ïïf(x) = 0, for x e Qc2, while on Qx, we
have Yl,Qç.grc <I>q{x) = 1 ■ F°r example, to prove the first of these statements, let

ß € &c. Then suppig) c Q*. Since any point x 6 ß* satisfies

dist(x, dQ) < f diam(ß) + dist(ß, Q) < f diam(ß),

our claim follows. A similar argument proves the second statement.

The proof of the smoothness preserving property of the extension operator

W is now very similar to the proof in §4. We first consider the analogue of

Lemma 4.2.

Lemma 5.2. Let Q be an (e, ô) domain, y > 0, r be a positive integer and I?

be any extension operator defined by (5.4). Let R be a cube with dist(R, dQ) <

diam(/î) < aô where a is a fixed sufficiently small constant depending only on
e, ô, and d. Then for f e LP(Q), y < p < 1, we have

(5.5) Erijgf, R)P<C Y E(sy
sef
SCcR

where c, C depend only on d, r, y, X, e, and ô.

Proof. Let

S := {ß: ß e F and ß n R ¿ 0} U {ß* : ß £ Fc and ß n R ¿ 0}.

If a is small enough then the properties (4.1) and (5.3) give that dist(xo, xi) <

yjaà for the centers x0, xi of ßo, ßi respectively with these cubes chosen

arbitrarily from S. We want to find a cube Ro to be used in conjunction

with Lemma 5.1. Let ßo be the largest cube in S. If all other cubes in if

touch ßo, we can take J^o '■— ßo • Otherwise, we pick a cube Qx £ & such

that the centers xo, xi of ßo, ßi respectively have the largest distance, say

IXo - Xi I = n. If T is a path that connects the centers Xo, Xi of these two

cubes and satisfies the (e, ô) condition, then there is a point z £ F such that
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\z - x,| > n/2, i = 0, 1. If S is the cube in F which contains z, then we

can take Ro as the largest of the cubes S, Qo .

We next check that Ro satisfies the conditions of Lemma 5.1 relative to any

Q£@. It is clear that diam(ß) < diam(ß0) < diam(/?0) for all ß £ @. Since

n := \xq - Xi | < \fàô and the length of F is < Cn, we have

(5.6)    dist(ß, Ro) < dist(ß, ß0) + diam(ßo) + dist(ß0, R0) < n + 2Cn < ô

provided a is sufficiently small. Also, by (4.1)(i) and (5.1)

diam(/?0) > diam(Ä) > dist(Ä, dQ)/4 > en/B.

Hence, as in (5.6) dist(ß, R0) < (C + \)n < Cx diam(i?0) with Cx a fixed

constant.

We have verified the hypothesis of Lemma 5.1. Therefore, there is a chain of

cubes Rj, j = 0, ... , m , connecting R0 to ß. By our assumptions, Q cQx

whenever Q £ ^ and ß n R =¿ 0 (provided a is sufficiently small). Hence

Tjqe^c ^Q — 1 on R. We can therefore apply exactly the same proof as for

Lemma 4.2 (namely from (4.9) on) to derive (5.5).    D

Theorem 5.3. Let Q be an (e, S) domain and let y > 0 and r be a positive

integer. If f is any extension operator defined by (5.4), then for each 1 > p > y

and f £ LP(Q), we have for 0 < / < 1,

[5.7) (Or(Wf, t)p < a Y  wr(/,2^ + ,rM||/||£(í2)+   Y   2-Jrp"r(f,2%

y<c,t

with the constants C and cx depending only on d, r, X, y, e, and ô .

Proof. The proof of (5.7) is very similar to that of (4.16) and we shall only

highlight the differences. We first observe that (5.7) automatically holds if / >

aô and a is a fixed constant because ||^/||p < C||/||p . Therefore, we need only
consider / < aô with a a sufficiently small but fixed constant to be prescribed in

more detail as we proceed. As in the proof of Theorem 4.3, we write Rd\dQ =

n0UQ-UQ+, where Q0 := U{ß G FuFc: l(Q) < \6rt) , Q+ := Q\(Q0Udf2),
Q- := Qc\(Q0UdQ). We estimate /s |AJ(f f)\pdx for the three sets S = Q± ,

ß0 and for \h\ < t.
We proceed as in the proof of Theorem 4.3 and consider three cases. Case

1 which estimates the integral over Q+ is identical to the proof in Theorem

4.3 and yields the estimate (4.18). Case 2 is also the same since if a is small

enough the cube R which contains [x, x + rh] will be one of the cubes to

which we can apply Lemma 5.2. We obtain in this way the estimate (4.24) for

the integral over Q0.
In Case 3, that is x £ Q- , we let R £ Fc have nontrivial intersection with

Q- . If x £ R , then [x, x + rh] C R*. We have two possibilities for R . If

dist(R, dQ) < aô and a is small enough, then Y1,q^9 <t>Q - 1 on R*. We

consider € := {Of: Q £ FC,Q touches R}. We can take R0 as the largest

cube in &. Then R0 and any other cube Qf in S will satisfy the hypothesis

of Lemma 5.1. We take a chain (Rf) connecting Qf and Ro and proceed as

in Theorem 4.3 to obtain

(5.8) £||A£(r/)||S(Ä)<CT'    E    2'""wr(/,2-%
R \>2~i>l
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where the sum is taken over all cubes R of this type.

The second possibility is that dist(i?,9Q) > aô. Whenever ß £ &~c is

such that (j)Q does not identically vanish on R, then 6ô > l(Q), C/(ß) >

ô and therefore from (4.2), HD"^!,» < C, \v\ < r, with C a constant

depending only on ô and r. Also ||JDßi||p(ßi) < C||/||p(ßi) by the definition
of Pqs as a near best approximation. From this and by Markov's inequality

for polynomials, we obtain ||Z>"(i>e,)||00(öI) < C\\f\\p(Qs), \v\<r. Therefore,
Leibniz' rule for differentiation gives that

\\LV{gf)\\<x>{R) < C\\f\\p(R')
where R' is the union of all the cubes Qf such that </>e does not vanish on R .
Here we are using the fact that the number of cubes which appear nontrivially

in £ fix) does not exceed a constant which depends only on d. This gives

(5.9) \\A\(ïïf)\\p(R) < \h\rma*Wi%f)\UR) < C|Ani/||p(Ä').
\u\=r

Since a point x £ Q can appear in at most C of the sets R' with C
depending only on d, we can raise the inequality (5.9) to the power p and

sum over all R of this type and obtain

(5.10) Ell^-W*) ^ C\hn\f\\piQ) < Ctrp\\f\\p(Q).
R

We add (5.8) and (5.10) to obtain that fa_ \A\(% f)\pdx does not exceed the
sum of the right sides of (5.8) and (5.10). The proof is then completed by

adding the estimates in the three cases.   □

6. Applications of the extension theorem

In this section, we establish the boundedness of the extension operator % on

Besov spaces and apply this to obtain other characterizations of these spaces.

Given 0 < q < oo and 0 < q < oo and a sequence {ak}keN of real numbers,
we define

(6.1) \\iak)\\l? := (E [2*a|fl*|]fl)      ,
\fc€N /

with the usual adjustment when q = oo. We shall need the following discrete

Hardy inequalities (for a proof see [2]). If for sequences iak)keN and ibk)kefi
of real numbers, we have either

(i)|fe|<c2-M£[2^|H or

iii)\bk\< K>,|
\j=k

then for all q > p and 0 < a < r, in case (i), and all q > p and 0 < a < oo,

in case (ii), we have

(6.3) \\(bk)\\,!<C\\(ak)\\,,..

Therefore, (6.3) holds for q > p and 0 < a < r, if \bk\ does not exceed the
sum of the right sides of (6.2).
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Theorem 6.1. If Q is an (e, ô) domain, y > 0, and r is positive integer, then

the extension operator % of (5.4) is a bounded mapping from Bq(Lp(Q)) into

B°iLPiRd)) for all y <p < 1, 0 < # < oo, and a<r:

(6-4) l|£7"bj(Lí(R'0) ^ c\\fh-(Lp(a))

with the constant C depending only on d, r, X, y, e, and ô.

Proof. Let p < min((7, p). Since an lp norm is less than an lp norm and since

v/r < cor, from (5.7) for / = 2~k , we have

cori^f,2-k,Rd)p<C

(6.5)

Uß

+ C2-kr

E>r(/\2-;,n)£
j=ck

$(n) + Yvir°>r(f,2-J,a)Pr
7=0

Un

We can therefore apply (6.3) and obtain

(6.6)        \\(cor(%f, 2-k , Rd)p)\\,„ < C[\\f\\p(Q) + Wicorif, 2~k , Q)„)||/;].

The monotonicity of cor shows that the left side of (6.6) is equivalent to

\f\Ba(L„(R.<i)) while the right side is equivalent \\f\\B«iLPiQ)). Since f is a

bounded map from Lp(£2) into Lp(Ri/), (6.6) establishes the theorem.   D

If follows from Theorem 6.1 that for each 0 < p < I , 0 < <? < oo, a>0
and any (e, ô) domain Q, we have

(6.7) ll/IU,°(L,(n)) < W^fWrnLpCRO)) < C\\f\\B°(Lp(ÇÏ))

with constant C depending only on d, r, y, X, and Q .

We next show that functions in BqiLPiQ)) have atomic or wavelet decom-

positions. Let N = Nr be the tensor product B spline in Rd obtained from

the univariate B spline of degree r - 1 which has knots at 0, 1, ... , r.

Let O*, denote the collection of all dyadic cubes for Rd which have side

length 2~k and 0+ := Ua:>o % • With /V, we can associate to any dyadic

cube / := \jl~k, (J + 1)2_1] £ B>k, j £ Zd, k £ N, the dilated functions
Niix) := Ni2kx - j). This function has support on an expansion of the cube

/.

Theorem 6.2. Let Q be an (e, 6) domain and 0 < p < 1, 0<^<oo, a > 0.
Then each function f £ B^(LPiQ)) has a decomposition

(6.8) f(X)=    E«/(/WW: X 6 Q,

where the coefficients a¡if) satisfy

(6.9) H/HajtMO))Ä

?//>\1/9

E2koi Ei^(/)n/i
jt=o \/eDt
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with constants of equivalency independent of f and the usual change on the right

side of (6.9) when q = oo.

Proof. By (6.7), / 6 B°(Q) if and only if ïïf £ B^iRd) with equivalent

norms. It was shown in [D-P] that Wf has a decomposition (6.8) on R'*

with coefficients a¡iWf) satisfying (6.9). Since Wf = f on Q, the theorem
follows.   D

We next discuss the interpolation of Besov spaces using the real method of

Peetre. If Xo and Xx are a pair of quasi-normed spaces which are continuously

embedded in a linear Hausdorff space Sf, their AT-functional is defined for any

f£Xo + Xx by

(6.10) Kif, t) :=Kif, t; X0,XX) :=   inf   ||/0|U0 + 4/illx, •
J=J0+jl

For each 0 < 0 < 1, 0 < <? < oo, the space Xe q := (X0, Xx)e q is the
collection of all functions / £ Xq + Xx for which

a°° dt\ Xlq(t-eK(f, 0)«yj

is finite (with again the usual adjustment on the right side of (6.11) when q =

oo ). This is an interpolation space since it follows easily from the definition of

the A^-functional that each linear operator which is bounded on Xo and Xx is

also bounded on Xe q .
We are interested in interpolation for a pair of Besov spaces. Suppose that

0 < Po,P\ < 1. and 0 < q0, qx < oo and a0, ax > 0. We let Xi(Q) :=
BqÜLp¡iQ)), i' = 0,l, with the understanding that this space is Lp.iQ) when
a,■■ = 0. If we choose r > max(ao, ax ) and y < min(po, Pi ) then the extension

operators 8? of (5.4) are defined and (6.7) holds for each of these extensions.

In fact, we observe that

Kif, t;XoiQ),XxiQ)) < K{Zf, t; X0(Rd), X^d))

<C^(/,/;^0(n),^i(ß)).

The left inequality in (6.12) is clear. The usual proof of the right inequality relies
on the linearity of the operator, which as we have previously mentioned may

fail for % since near best approximations PqíP) are used in its definition (5.4).

However, given any decomposition / = fo + fx, we may decompose %f as

.F0+.F1 where F¡ is a norm bounded extension (in X¡) of f-, (z' = 0, 1). To see

this, we recall Lemma 6.2 of [2] which established that if / = fo+f\ and /q(/)
is any near best approximation to /, then there exist near best approximations

RiQ to fj (/ = 0, 1) so that PQif) = RQ + RXQ. We then use R'Qs in place of

Pqs in (5.4) to define F¡ from which we may conclude that (6.12) holds. From

(6.12) it follows, therefore, that the interpolation spaces (X0(Í2), XxiQ))e¡q

and (X0(Rd), Xx(Rd))etq are identical with equivalent norms. From known

results for the latter spaces (see [D-P]) we obtain the following.

Theorem 6.3. Let Q be an (e, ô) domain. If 0 < p < 1 and a, q0> 0, then
for any 0 < 6 < 1, 0 <q < 00, we have

(6.13) iLPiQ),BliLp))e,q = B6qaiLp)
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with equivalent norms. If 0 < p < I, we let riß) := iß/d + l/p)~x, ß > 0,

then for any a > 0 and 0 < 9 < 1, 0 < q < oo, we have

(6.14) iLPiQ), B?{a)iLT{a)iQ)))e,T{ea) = 5T%a)(LT(ea)(Q))

with equivalent norms.

Remark 6.4. The proof in [2] of interpolation of Besov spaces relies on estab-

lishing the equivalence of the AT-functional of / with that of its retract. We

take this opportunity to correct the proof of the lower inequality of that equiva-

lence. The sentences in lines 3 through 7 on page 411 of [2] should be replaced

by:
"We may estimate each term of the last sum as

\\tj - gj\\Po < c(\\tj - aj\\Po + \\aj - Tjiaj)\\Po),

and apply Corollary 4.7 to obtain

IK - Fj(aj)\\po < csjia¡)p0 < c\\tj - aj\\Po.

Hence,

\\tj-gj\\Po<c\\tj-aj\\PQ.n

While preparing the present paper, Ridgway Scott posed to us a question

concerning interpolation of Besov spaces for 1 < p < oo. It is rather easy to

settle this question given the machinery developed in §4 of the present paper.

We shall from here on assume that Q is a minimally smooth domain in the

sense of Stein (it may be that Theorem 6.6 that follows also holds for (e, ô)

domains, however our proof does not seem to apply in this generality). A

minimally smooth domain in Rd is an open set for which there is a number

n > 0 and open sets U¡, i = 1, 2, ... , such that: (i) for each x £ dQ,

the ball ß(x, n) is contained in one of the U¡ ; (ii) a point x £ Rd is in at

most N of the sets U¡ where N is an absolute constant; and (iii) for each i,
U¡ n Q = U¡ n Q¡ for some domain Q, which is the rotation of a Lipschitz

graph domain with Lipschitz constant M independent of z (see §4).

We recall the fractional order Sobolev spaces. Let 1 < p < oo and a > 0. If a

is not an integer, we write a = ß + r where 0 < ß < 1 and r is a nonnegative

integer. Let Wpa be the collection of all functions / in the Sobolev space

WpriQ), for which

(6.15) l/ftyw-E /
\Dvf(x) - LVfjy)

\x-y\ß>+ä
-dxdy

is finite.
If Q = Rd and a is not an integer, then it is well known that (6.15) is equiv-

alent to \f\pB«,L j ■ We want to show this remains true for minimally smooth

domains Q. For this purpose, we define for / £ Wpr(Q),

(6.16) wr+lif, t)p := trp Y *>\{Jrf, tfp
\u\=r

with wi , as before, the averaged modulus of smoothness (2.5).
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Lemma 6.5. Let Q be any open set. For 1 < p < oo and a > 0 not an integer,

we have
f°° dt

(6.17) \f\Pvp°{rl) = (ßP + drl Jo   [rawr+x(f,t)p]p^

where a = ß + r as above.

Proof. For any g £ LP(Q), we have for 0 < ß < 1, by a change of variables

and Fubini's theorem,

,dt
i
Jo

(6.18)

[rßp*x(g,t)Pr-

= ¡°° I      I \Asig,x,Q)\prßp-d-xdxdsdt
Jo   J\s\<t Ja

= i Í I"   nip-d-xdt\g(x)-g(y)\pdxdy
JaJilJ\x-y\

= (ßd+pyx [ [ \x-y\-ßp-d\g(x)-g(y)\pdxdy.
Ja Ja

We take g = Dv f, \v\ = r, and add the identities (6.18) to obtain (6.17).   □

We shall next show that an analogue of inequality (5.7) holds for p > 1. It

is well known that if / £ Wp~x then for the error E(S)P for approximating /

in the norm LP(S) on a cube S by polynomials of degree < r, we have

E(SY < C liS)*r~l)   Y   (oxiD"f,liS),S)p

(6.19) 'tr
<c/(iS)^-D   Y   yvx(D"f,l(S),S)pp = Cwr(f,l(S),S)p

\u\=r-\

where as before w is the averaged modulus of smoothness given by (2.5) and

wr is defined by (6.16).

Theorem 6.6. Let Q be a minimally smooth domain, let r be a positive integer

and let 1 < p < oo. Then for any f £ Wp~x(Q) and 0 < / < 1, we have

cor(gf, tfp < C"

(6.20)

YWr(f,V) >PP

2><t

+ fP[\\f\\Pp(Q) + Y^ÍrP^r(f,2')Pp

with C a constant depending only on d, r, X and Q.

Proof. We first recall that a minimally smooth domain is an (e, ô) domain.

Since Q will be an (e, ô) domain for any e and ô sufficiently small, we can

assume that r\ in the definition of minimally smooth domains is > Qá with

Co arbitrary but fixed. We shall prescribe n in more detail as we continue

through the proof.
We proceed as in Theorems 4.3 and 5.3. The first case, namely the estimate

of Jn |A£(f/, x)\pdx is as before, but we use standard estimates of rth dif-

ferences in terms of a first order difference of (r - l)th derivatives. This gives

that the integral does not exceed wr(f, t, Q)pp .
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For the estimate in the second case, that is over Q0, we need first to derive

an analogue of Lemma 5.2 for wr. With the same constructions and notation

as in Lemma 5.2 and the same argument, we arrive at the estimate (4.10), where

now 1 < p < oo . We need to observe that for each k, at most C of the cubes

Rj appearing in (4.10) belong to Bk. To see this, we recall that these cubes
meet the path F which connects a point z £ Q to a point z0 £ Rq ■ From

(4.1)(i), letting S be such an Rj, any point loëSnT satisfies

dist(w , dQ) < diam(5) + dist(5, dQ)) < 5 diam(5) = 5Vd2~k .

Therefore, by the definition of (e, r5) domain (property (5.1)), we have

min(|w; - z\,\w - z0\) < e~x dist(u;, dQ) < 5\/de~x2~k .

That is, each of these cubes S meets one of the balls of radius 5\fde~x2~k

about z and zo . Since the cubes S are disjoint there are at most C of them

with C depending only on e and d .
We now write \Rj\~x/p = \Rj\-alp\Rj\-blp where a + b = 1 and ad > d- 1.

We then apply Holder's inequality to (4.10) and use the observation above for

l(Rj) = 2*/(ß) to conclude that

(\ plp' /m \ /  m

Y\Rj\-bp'lp\       lY\Rj\-aE{RjY

<C\Q\l-b lY\Rj\-aE(R*)p) =C\Q\a ÍY\Rj\-aE(R*)p

(6.21)

We now sum over all Q £ F such that Q(~)R^ 0 in (5.12), reverse the order

of summation to obtain that (5.5) is valid for this range of p provided that we

can show that for fixed S = Rj, we have

(6.22) Y  lßlu^Cl5la
Q€F
QCcS

with c > 1 a fixed constant and C depending only on d, e, ô and n .

We postpone for a moment the proof of (6.22) and conclude the proof of the

theorem. Now that we have established (5.5) of Lemma 5.2 for 1 < p < oo, the

estimate of Ja \Arh(f, x)\pdx can be made exactly as in the proof of Theorem

4.3 with (6.19) used in place of (2.7) and œr used in place of wr. Finally,

the proof in Case 3, that is the estimate of /n \Arh(f, x)\pdx, can be made

exactly as in the proof of Theorem 4.3 because the number of cubes in the sums

appearing in (4.26), (4.27), and (4.28) is bounded by a constant C depending

only on d, e , and ô . This then completes the proof of the theorem subject to

the verification of (6.22).
To prove (6.22), we count the number Nk of cubes Q £ F with Q c cS

and l(Q) = 2~kl(S). There are only a finite number of values of k < 0 and

for each of these Nk < C with C depending only on d (because the cubes ß

are pairwise disjoint). Therefore, this portion of the sum appearing in (6.22)

does not exceed the right side of (6.22).
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To estimate Nk for k > 1, we recall that the cubes S have side length
< l(Po) < Cl(R) < Cô. Therefore, by choosing ô sufficiently small, we can
assume that 2cdiam(5') < n with c the constant in the summation index of

(6.22) and n of course the constant in the definition of minimally smooth

domains. Therefore, by property (ii) of minimally smooth domains, we may

assume that (4cdS) nQ= (4cdS) n Qj for one of the domains Qj. Since

c > 1 and dist(ß, dQ) < 4diam(ß) < 2diam(5'), we have dist(ß, <9Q) =
dist(ß, dQj). From property (4.1)(i) of Whiney cubes, we have ß C Ak :=

{x: dist(x, dQj) < 5 2_* diam(S)} n cS. Now from the fact that Qj is a

Lipschitz graph domain, we have that \Ak\ < C2~k\S\ with the constant C

depending only on d and the Lipschitz constant M. Hence Ak can contain

at most C2*(</-1' cubes ß of side length 2~kl(S). This shows that Nk <

Ç2k(d-U . Using this estimate for Nk , we find that the portion of the sum on

the left side of (6.22) that remains to be estimated does not exceed
oo oo

YNk(2~kl(S))da < cYlk(d~X)l~käa\S\a < C\S\"

k=l k=l

because ad > d - 1.   D

Using Theorem 6.6 we are able to easily establish the equivalent of the

fractional Sobolev spaces   W^Q)with the special family of Besov spaces
Bap(Lp(Q)).

Theorem 6.7. Let Q be a minimally smooth domain in Rd, and 1 < p < oo,

0 < a, then WpaiQ) = Bp(Lp(Q)) and there exist positive constants cx, c2

independent of f so that

(6-23) dll/II^O) < 11/11^(1,(0)) < c2\\f\\ma).
Proof. The upper inequality in (6.23) is obtained by applying the lp norm to

both sides of inequality (6.20) and using Hardy's inequality (6.3) together with

Lemma 6.5. The lower inequality is confirmed by recalling that the correspond-

ing result holds on Rd, and then following with an application of Theorem

6.1:

11/11 fv«(a) < \\&f\\ivfi*t) < cII^/Hí^ír")) < cll/H^z^a)). D
As we previously mentioned, when 1 < p the extension operators may be

taken to be linear. It then follows that \ß f\Ra(L (r<<)) is equivalent (within con-

stants independent of /) to ||/||b«(l,,(£î)) • Applying the interpolation theorem

Corollary 6.3 of [2] to B°iLPiRd)), we obtain the following interpolation result

for the fractional order Sobolev spaces WpaiQ) :

Corollary 6.8. Let Q be a minimally smooth domain in Rd, and 1 <Po,P\ <

oo, 0 < qo. a\ > then for p satisfying \/p = (1 - 6)/po + 0/px and a =

( 1 - 0)c*o + 6ax, we have

(6.24) (W°°(Q), W^(Q))e,p = Wp*(Q)

with equivalent norms.

Remark 6.9. While preparing this paper, we were informed by O. V. Besov that

Ju. A. Brudnyi and P. A. Shvartzman have also considered extension theorems

for Besov spaces on domains (including the case 0 < p < 1 ). We have not been

able yet to obtain a publication of those results to compare to ours.
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