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A Characterization of the Interpolation Spaces
of H' and L” on the Line

Robert Sharpley

Abstract. The Calderdn-Mitjagin theorem characterizes all interpolation spaces
of the pair of Lebesgue spaces (L', L) as the rearrangement-invariant spaces.
The results of this paper show that the interpolation spaces of H'(R) and L®(R)
consist of elements whose nontangential maximal functions lie in rearrangement-
invariant spaces.

Let X, and X, be two Banach spaces which are continuously embedded in a
common Hausdorff topoiogical vector space. An admissible operator for the pair
(X,, X,) is a linear operator whose domain contains the union of the two spaces
and whose restrictions to X; is a bounded operator on X; (i=0,1). A space X
is called an interpolation space for the pair (X,, X,) if each admissible operator
T is bounded on X.

For a measurable function ¢ let ¢* denote its nonincreasing rearrangement
(see [4] or [2] for details). In [4] Calder6n showed that the interpolation spaces
of L' and L™ are characterized in terms of a quasi-order < (the Hardy-Littlewood-
Pélya relation) involving the rearrangements ¢™*:

t

(1) y<e@ = J.'d/*(s) ds$J’ @*(s) ds, all t>0.

0 0

In fact, Calderén showed that a necessary and sufficient condition for ¢ < ¢ to
hold is that there exists an admissible operator T for (L', L), with respective
operator norms one, such that Ty = ¢. The interpolation spaces X are spaces of
measurable functions whose norm || - ||x satisfies the condition

(2) p<o = [l¢llx=lelx-
The Peetre K-functional for (X,, X,) is defined by
K(f, t; Xo, Xl) = inf{”ﬁ)”x(,"' I"ﬁ“xﬁf:fo"'fl}

where the infimum is taken over all decompositions of f=f,+f, with f e X
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(i=0,1). Peetre proved that

t

K(p,t; L', L°°)=J @*(s) ds

0

and so (2) may be reformulated in terms of the K-functional for the pair. A pair
(X,, X,) is called a Calderdn couple if the condition

K(g, )=K(f 1), all t>0

implies the existence of an admissible operator T (whose norm depends only on
the spaces X, and X,) such that

If=g.

Brudnyi and Krugljak [3] have shown that the interpolation spaces of a Calder6n
couple (X, X,) are exactly the spaces Y (up to equivalent renorming) such that

(3) IAly = (K (£ ),

where @ is an admissible function norm. In fact, it has been proven in [1] that
this follows from the “fundamental lemma” of the K-method [6] and a lemma
of Lorentz and Shimogaki concerning the quasi-order <. We show that a com-
plementary lemma, also due to Lorentz and Shimogaki, plays a critical role in
establishing that (H', L) is a Calderén couple. In'[11] Peter Jones utilized his
constructive solutions of 3 equations with Carleson measure data to show that
(H', H®) is a Calderén couple. The general pattern of our proof follows that in
f11] but has some noticeable differences and simplifications. This is partly due
to the fact that the replacement of H™ by L™ relaxes the analyticity requirement.
In [9] Janson and Jones investigated, among other things, the complex method
for the pair (H', L) and employ similar techniques to this paper.

Let R denote the real line and U= {(Xx, y): y > 0}, the upper half plane. Let the
function f belong to L'(R)+ L™(R). We use the symbol f also to denote the
harmonic extension of f to U,

fx, )= P, * f(x),

where P, is the Poisson kernel and * denotes convolution on R. For x € R, denote
by, = {(t, y) € U: |x — t| < y} the cone with vertex at x. The nontangential maximal
function of f is defined by Nf(x):=sup{lf(z, y)|: (z, ¥)eT}. There are several
equivalent norms for the Hardy space H'. We shall use

(4) I e = NS L

An H'-atom, orin short an atom, for an interval I is any function a, which satisfies

(5 I a; =0, |az{$|1|"lxl-
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Coifman [5] has provided an ‘“‘atomic” description of H':
H' ={f:f=§ )\ja,],,% |Aj|<oo},
where the a; are atoms. Moreover, it was shown that
(6) [~ s, = inf{? l)‘j|5f=§ )‘jal,},

where ¢ ~ ¢ means that there exist positive constants ¢, and c; suchthat cip = ¢ =<
c,¢. The last expression in inequality (6) is usually referred to as the atomic H'
norm. In [13] a simple proof of (6) is presented and it is shown that

) K(f, t)=K(ﬁt;Hl,Lm)~j (NA*(s) ds, t>0.
Q

A similar result in terms of the grand maximal operator was obtained earlier in
[7], but the estimate (7) is better suited for our purposes.

Theorem 1. The pair (H'(R), L°(R)) is a Calderdn couple; that is, if Ng < Nf,
then there exists a linear operator T such that the conditions
(1) Tf=g,
(8) (i) [ Thljm=clh]nr, he H',
(iii) [Tl ==c|hf=, hel?,
hold. The constant c is independent of f ahd g

The definition of the H' norm (4) shows that H' consists of functions f for
which Nf belongs to L'. It is also clear that L™ is comprised of functions f such
that Nf belongs to L™. If X is a rearrangement-invariant space, then N(X) is
defined as the space of functions for which the norm

1A v = I NFll x

is finite. The question naturally arises as to whether the interpolation spaces for
N(L") and N(L™) are precisely the spaces N(X). The next result answers this
in the affirmative.

Corollary 2. If X is a rearrangement-invariant space, then N(X) is an inter-
polation space for (H'(R), L*(R)). Conversely, if Y is an interpolation space for
(H'(R), L*(R)), then there exists a unique rearrangement-invariant space X such
that Y = N(X) with equivalent norms.

In order to construct the desired operator T satisfying the properties (8), we
first assume that g satisfies the condition
(9) lim {Ng)*(t)=0.
Let O, denote the open set { Ng>2"}. Define
(10) &= L [g-1(&)lxs,

I,
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where €, is the collection of all components of O, and I(g) denotes the average
[I|7' [, g of g over the interval L It is easy to see that

(11) lim g,=g almost everywhere

n>—c0

by using the following basic estimate for averages in terms of the nontangential
maximal operator (see inequality (3) of [13] and its proof):

(12) [1(g)|=7 max Ng(x).

Indeed, since g belongs to H'+ L™ and satisfies (9), the measure of O, is finite
and O,1R as n] —. By inequality (12) it follows that, for I € €, there holds
[I(g)l=<7-2" Hence

(13) lg =&l =lexo;+ T Hehl=7-2"

which converges to 0 as n - — and so (11) holds.

Our plan is to construct operators T = T, so that (8) holds with the approxima-
tions g, replacing g and with uniform operator bounds. Using a limiting argument
we obtain an operator T to establish similar results for functions g in H'+ L%
which satisfy condition (9). Finally, we remove this last restriction to obtain the
general case.

For each integer k define

(14) A= gic— Bi+1)
then it follows by telescoping the sum that
(15) g= Y a.
k=-co
The first result indicates the connection of this decomposition with the Peetre
K-functional.

Theorem 3. Suppose that g satisfies (9) and the functions a, are chosen as in (14),
then

(16) K(g9 t)skz min(”ak”Hl)t"ak”Lm)SCK(g, t)’ I>0'

Proof. The left-hand inequality follows since K(-,?) is a norm and by the
definition of the K-functional. For the right-hand inequality, let I be any interval
in 4. Define the collection of intervals ¢, = {J € %.+,: J < I} and the set G(I)
by G(I}:=I\O,,. Next set

(17 bi=axi=gxont L J(&xs—1(g)xs

Je €
then b, satisfies | b, =0 and, by inequality (12),
|bi]=2"xGn+7- 2" T x,+7- 25 =21 2%,

Jeé,
Hence
(18) lall~=21-2"
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and
(19) ladle < claln,=e2* T [1l=c2"0

Te%€,

since b, /(21 -2¥|1|) is an H' atom. By these two estimates we see that if j is an
integer selected so that 277" <{Ng)*(¢t) =72/, then

I min(ladun flads)se T 2*min(lOd, 0

k=-—0

=c{§2"10k|+z 5 2"}

k=—c0

A

c{ ) (2““—2*)iok|+t2f}
k=j

sc{J’ Ng+t2j}
O,

= C“’ (Ng)Y*=cK(g,1).

In the fourth line we used summation by parts and the fact that Ng > 2* on the
set Ok\0k+l . |

Remark 4. Theorem 3 is actually implicit in the proof given in [13] and may
be regarded as an explicit decomposition for Cwikel’s version of the fundamental
lemma in the theory of the real method of interpolation [6]. The proof is included
for completeness.

At this stage of the proof we fix n and, for notational convenience, set = g,;
that is, we first construct an operator for § and will pass to the limit at a later
stage. Rather than write this function in the form of the atomic decomposition
(see (17)) '

(20) g=Y X by,

k=n lc%,;
we utilize a stopping time argument to telescope the b,’s locally to scalar multiples
of atoms with additional nice properties. We construct recursively a subcollection
% of | J7 € in the following way. Begin by placing all the intervals from %, into
%. Next we perform the following recursive step for each interval I which has
previously been placed in €:

Define the integer m(I) by m(I):=min{k: [0, ~ I|<3I|} and €(I) to
be the collection of components of O,,;yn I. Add all intervals J from
%(I) to the collection €.

Let F(I)< I be defined by
(21) F(I)=I\ U J=IN\Ouq),

Jegl)
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then (Ng)xr,<2™". Note that the F(I)’s are disjoint and
o0,=U F().

fe€

In analogy with the decomposition (17) we define

(22) g =@E—axent T a(DNxew,
JeEn

where

(23) oz(I):=|F(I)|"Ig‘, Ic%

Notice that g, is supported in I and that

(24) J-g:=J‘ §-I g+ X J§=0-
F(I 1 Jeey Js

Moreover, the recursive criteria guarantee that
(25) |F(DI=111/2.

Recall that for each I € 4, there is an I,€ 6, (the ancestor of I) which contains
I and so by inequality {12) we have

la(D|=2l1(g)|=2(1()]|+|1u(2)])
<2(7-2%+7-2")=28-2%
It follows that
(26) lg:|=28-2"Vxe)
if E(I) is defined as the disjoint union of F(I) with those at the next level
27N E(I):=F(I)u( U F(J)).
Je€(l)

Now E(I)< I and at most two of them overlap

(28) Y Xen=2
1c%

since the F(I)’s are disjoint. As a consequence, we may write

(29) g(x)= Y g(x),

1<%

where for each x there are at most two nonzero terms in the sum. The sum in
(29) is our desired decomposition of g. It follows that

(30) lgolls = c2™ 01|

since the function (28|I]2™"))"'g; is an H'-atom by the estimates (24) and (26).
Define

(31) g= ’Z(gzmmXFm,
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then, obviously,
Ng=g on O,.

Conversely, the next result shows that ¢ is controlled by Ng. In order to
establish this result we will need the notion of the “median™ of a function |A]
over an interval I:

my(h)=inf{A: [{|h]> A}~ I|<3|1}}
and the corresponding maximal operator »h defined by

mh(x)=sup m;(h).

Isx
From the definitions it is clear that
{x:mh(x)>A}={x: M(xn>a))(x)>13},
where M denotes the Hardy-Littlewood maximal operator. As was pointed out
in [10], it follows that
Homh > A} =3G) " xqn=arll e = 64> A},

since M is weak type (1, 1). Hence the corresponding decreasing rearrangements
must satisfy

(32) (mh)*(t) =< h*(1/6).
Proposition 5. If g is defined by equation (31), then
(33) (€)*(1)=2(Ng)*(¢/6),  t>0.
Hence, if Ng < Nf, then

(34) g <cNf

Proof. Inequality (33) follows immediately from inequality (32) and the fact
that ¢ < 2,x( Ng). Relation (34) follows by changing variables. [ ]

By (34) a variant (see Coroliary V.10.5 of [2]) of a decomposition lemma of
Lorentz and Shimogaki [12] for the quasi-order < implies the existence of pairwise
disjoint sets {E (I)},c« such that |E(I)|=|F(I)| and

(35) 2j N(NH=|FDH]2"",  Ie%

E(I)
There exists a Borel measurable function ¢:R->U (¢(x)eI'y) such that

(g (x)[=3Nf(x), so

(36) 4 J |f(g(s)l ds=|F(D)]2"",  Te%

Define the unimodularE (f;)nction w(x)=sgn f(¥(x)) and the weights w(I) so that
(37) w(I) Lm Lf(g(s)) ds =|1]2™ ",

then inequalities (36) and (25) show that the w(I) are uniformly bounded with
a bound independent of the functions f and g.
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Lemma 6. Suppose that Ng < Nf and g is defined as the g, in equation (10). If
the linear functionals A, are defined by

J_ h(¥(s))w(s) ds

o JEU)
(38) M) = . Ieg,
then the operator T defined by
(39) Th(x)= Z{g w(I)A;(h)gi(x)
Ie

satisfies the conditions (8) but with Tf = g.

Proof. By equation (37) we have that w(I)A,;(f) = 1 and so equation (29) implies
that Tf = g By inequality (30), the facts that the E{I)’s are disjoint, and #(s)
belongs to I'; it follows that

(40) | Thljgisc ¥ J: |h(g(s))| ds=c j Nh(s) ds.
Ie€ E(D)
Hence T satisfies part (ii) of (8).
Suppose now that h belongs to L™, then by inequality (26) and the fact that

|E(I)|=|F(I)|=<|1| we have that
'Th(x)| =c ’Z(g |)‘l(h)'2m”)XE(l)(x)

=cllhlj,~ l):(g'XEmS cllhfle=

holds. The last inequality follows from inequality (28). Hence T satisfies the
estimate (iii) of (8) and the lemma is established. [ ]

Lemma 7. Suppose now that g satisfies condition (9) and Ng < Nf, then there
exists an admissible operator T such that Tf = g.

Proof. We use Lemma 6 to produceé a sequence of operators 7, such that
T.f = g.- The T,’s have uniformly bounded operator norms on H' and L™ which
are independent of n, f, and g Recall that the functions g, are defined in (10).
We employ Calderén’s technique [4] to supply the limit operator T with the
desired properties (8). Let y be a Banach limit. Suppose that k belongs to H' + L™,
For each measurable set E of finite measure, let

orms{{[m)7 ).

then v is absolutely continuous with respect to Lebesgue measure on R. Hence
there exists a locally integrable function Th such that

J’ Th=v(E)
E

for each set E of finite measure. It follows by the continuity of y that
(41) Py*Th(t)=-y({Py* T.h(1)},Z-0).



Interpolation Spaces 207

In particular, equation (41) holds with (¢, y) = ¢(x) where ¢ is an arbitrary Borel
measurable function from R to U with (x)eT,. So for each set E of finite
measure it follows that

J vem=({[ v} ")

|E|
=c J (Nh)*(s) ds,

0

since ¥ is a positive linear functional on I”. Hence
N(Th) < cNh.

By this last fact, the definition of Th and equation (11) it follows that T satisfies
the desired properties. [

Proof of Theorem 1. Suppose that fe H'+ L™ and Ng < Nf. In view of Lemma
7 we may assume that

lim (Ng)*(1)= a >0,
1~
since this is the only case that remains to be proved. Observe that

J (Ng)* J‘ (Nf)*

a<lim=> <1lim =2 =1im (Nf)*(1),
10 t 100 t t—>00
since both integrands are nonincreasing. Hence there exist sets F,< F,< - - - of

finite measure increasing to c© and a Borel measurable function ¢ :R- U such
that ¢y(x)eTl, and

| f((x))|>3a for xelJ F.
Jj=1
Let y be a Banach limit and define the linear functional A by

A(h)= ‘y({l}-’-}l" ,L. h(g(s))w(s) ds} 3 ),

where o(s)=sgn f(¢(s)). Now y is a Banach limit so it follows that

(42) [A(h)|=y({llhall=};Z0) = | Al =
and
(43) A(f)=3a

Next select the largest integer n, such that

2o o < 2MF!,
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Let g,, be defined as in (10) and set b, = g — g,,. Now g, satisfies the hypothesis
of Lemma 6 so there exists an admissible operator T, such that

(44) T0f= gno*
For the portion b, of g we define the operator T, by
A(h) «
Tlh(x)!=mb,,o, he H'+ L™,

then T,f= b, . By inequalities (42), (43), and (13) it follows that
I Tkl == 14} h] .

Moreover, A vanishes on H'. To verify this, note that Nh is integrable and so
|F;|™' [ Nh—>0 as j->co. But y was chosen to take convergent sequences to their
limits. éonsequently, T, is trivially bounded on H'. The operator T:= Ty+ T,
fulfills the statement of the theorem. |

Proof of Corollary 2. The fact that N(X) is an interpolation space is straightfor-
ward since the estimate (7) holds and

K(Tf, )< cK(f, 1), t>0,

for all admissible operators T. For the converse, the Brudnyi-Krugljak theory
asserts that Theorem 1 is enough to guarantee that the interpolation spaces Y of
(H', L*) arise as spaces generated by function norms &, applied to the K-
functional:

)

llf||y~<I>y(K(ﬁ-))~<I>y< (Nf)*(s)ds),

[

with constants independent of the functions f. Define the norm

()
u<pnx:=<1>y(f0 o) ds)

and X as the rearrangement-invariant space of functions for which this norm is
finite. It follows that Y = N(X) with equivalent norms. ||
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