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ON THE ATOMIC DECOMPOSITION OF Hl

AND INTERPOLATION

ROBERT SHARPLEY1

In [1] Coifman used the Fefferman-Stein theory of Hp spaces [4] to decompose

the functions of these spaces into basic building blocks (atoms), further clarifying

their real variable nature. Coifman and Weiss have provided a comprehensive

treatment of these ideas and many applications to harmonic analysis in [2]. In this

note, we use the nontangential maximal function Nf to give an elementary proof

of the decomposition of H1 functions on the line and then characterize the Peetre

rï-functional for H1 and L°° in terms of Nf.

Let u be the harmonic extension [5] of / to the upper half plane R+. For

x G R, denote by Y2 — {(z, y) G R+ : \x — z\ < y} the cone with vertex at x. The

nontangential maximal function of / is defined by Nf(x) — sup{\u(z,y)\: (z,y) G

Yx}. We define the (real) H1 norm of / to be the standard H1 norm of u + iv,

where v is the harmonic conjugate of u which satisfies v(0) = 0. A classical result

of Hardy and Littlewood asserts that ||AT/||¿i < c||/||#i. For an interval / an

r71-atom is any function a¡ such that f a¡ = 0 and |a/| < |/|_1x/ a.e.

PROPOSITION.2 Suppose u is harmonic on an open square S and continuous

on S.  Then its average on dS equals the average over the two diagonals.

PROOF. By dilating to a subcube of S and then expanding back, we may assume

that both u and its harmonic conjugate v are continuous on S. Now S is composed

of four 15° right triangles with common vertex the center of S. Let T be the lower

triangle and denote its edges by L, B and R, where B is the hypotenuse. Applying

Cauchy's theorem to u + iv on T and taking real parts of the integrals gives

0 = é    udx — vdy— I  u-■=. I  /       u+ I v - I v
JdT JB v2  \JR+L Jr Jl

Using rotations and symmetry, applying this argument to the three remaining sub-

triangles of S, and summing the resulting equations, we see that the terms involving

v cancel and we are left with our stated result.    G

THEOREM. If Nf G L1, then we may write f = J2j ^jaj so ^na^ the ai's are

atoms and the coefficients Xj satisfy

(1) El^l^lWli'
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PROOF. Since u is continuous in R2^, then Ek — {x: Nf(x) > 2fc} is open in R.

Let /(/) = Jj f dx/\I\ and define Fk as the complement in R of Ek- We write Ek
as the disjoint union of its collection Ck of open components and then decompose

/ as a sum, f = gk + hk, where

(2) gk = ¿ [/ - l(f)]xi,     hk = fXFk + E i(f)xi-
i€Ck ieCk

We claim that \hkZ\ < 7 x 2k a.e. Clearly, the estimate holds on Fk since Nf < 2k

there and |/| < Nf a.e. For the remaining set Ek, we fix an interval / in Ck and

show that

(3) |/(/)|<7x2fc.

Let S£ be the open square I x (e, \I\ + e) in R^_. By the Proposition and letting

£ | 0, /(/) is seen to equal four times the average of u over the union of the two

main diagonals less the sum of its averages over the three remaining sides. But the

endpoints of / belong to Fk, so the diagonals, sides and top of S all belong to the

"good" set for u, namely Y = {(z, y) G Yx : x G Fk}. The definitions of Fk and Nf

imply that u is bounded by 2k on Y which establishes (3).

Following Coifman [1] and Herz [6f], the atoms are defined by

(4) ajXj^gk-gk+ihi,        A, = 21 x 2fc|/|,

for each I G Ck and all integers k. By telescoping and using both that gk — gk+i —

hk+i — hk and that gk+i is supported in Ek+i C Ek, it follows that
oo

/ = ^2 (9k- 9k+i) = E EA/a/-
k=oo k    ItSCk

Each a¡ is an atom since it is supported in 7" and the estimate Ho/Hoo < I-/]-1

follows from our L°° estimate on the hk,

lift - fffc+illoo = ||Äfc=i - Moo < 7(2fc+1 + 2fc) = 21 x 2fc.

To see that aj has mean value zero, it suffices to write it in the form

/ \

a¡ = Xj
-i

[f-i(f)]xi-   E  if-J(f)}xj
JECk+l I

V jci 1

To establish inequality (1) (subject to relabeling) we use

(5)   EE iA/i + 2iE2fcE i/i = 2iE2fci£fci = 2iE(2fc+1-2fc)i^i-
k   ieCk k        IeCk k k

Indeed by (5), summation by parts, and the fact Nf > 2k on Ek, we have

(6) EE |A/|<42E2fc|£fc\£fc+il<42 /iV/(x)dx.    □
k   ieCk k •*

Fefferman, Rivière and Sagher [3] estimated the /i-functional

*■(/, Í) = inf{||g||Hi + t\\h\\L~ :g€H1,h€L0O,f = g + h}

in terms of the "grand maximal" operator to describe interpolation spaces for the

pair. We provide a description in terms of Nf. Let g* denote the decreasing

rearrangement of \g\.
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Corollary (of the proof of the Theorem). /// belongs to H1 + L°°,
then

(7) K(f,t)~ [ (Nf)*(s)ds,        t>0.
Jo

PROOF. The subadditivity of the integral operator in (7) implies that it is

dominated by K(f,t). To establish the opposite estimate, we fix t > 0 and select

an integer j so that 2J_1 < (Nf)*(t) < 23. From the constructions in (2), we see

oo oo    / \

(8) 9] = E^ " 9k+i) = E ( EXiai ) •
k=j k=j \ieCk        J

The estimate ||/ij||oo < 14(iV/)*(i) follows by our selection of the index j, while

(9) \\gj\\m < 42c f   Nf(x)dx < 42c [ (Nfy(s)ds
JEj JO

is derived as in (5)-(6) using the identity (8). Combining these estimates completes

the proof.    D

Minor modifications using p-atoms permit extension of these results to Hp spaces

(^ < p < 1) on R. Beginning with Nf and using classical techniques (theorems of

Spanne-Stein and Hardy-Littlewood), these results provide a simplified approach

to the various descriptions of i/"p(R) (duality, grand maximal operator). By con-

formally mapping the unit disc onto R+ and estimating the appropriate integrals

obtained from the Proposition, one obtains the expected results for the circle. Ex-

ploiting a Fourier analytical technique of Calderón, Wilson has given a proof of

the atomic decomposition into L2 atoms for higher dimensions in [8], while the

condition N(u + iv) G L1 is required in [7]. Finally, the author extends his thanks

to Colin Bennett and Guido Weiss for valuable discussions related to this paper.
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