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^-DIVISIBILITY AND A THEOREM
OF LORENTZ AND SHIMOGAKI

COLIN BENNETT AND ROBERT SHARPLEY1

ABSTRACT. The Brudnyi-Krugljak theorem on the if-divisibility of Gagliardo

couples is derived by elementary means from earlier results of Lorentz-

Shimogaki on equimeasurable rearrangements of measurable functions. A

slightly stronger form of Calderón's theorem describing the Hardy-Littlewood-

Pólya relation in terms of substochastic operators (which itself generalizes the

classical Hardy-Littlewood-Pólya result for substochastic matrices) is obtained.

1. Introduction. When (Xo, Xi) is a compatible couple of Banach spaces, the

Peetre K-functional K(f, t) = K(f, t; Xo, Xi) of an element / in Xr, + Xi is defined

by

(1) K(f,t) = M{\\g\\0 + t\\h\\1: f = g + h,geX0,heXi}

(cf. [2, Chapter III]).
DEFINITION 1. A compatible couple (Xo, Xi) is said to be K-divisible if there is

a constant c such that, whenever f £ Xo+Xi and $fc, k = 1,2,_, are nonnegative,

increasing, concave functions on (0, oo) with Ylk $fc(l) < oo and

(2) K(f,t)<^$k(t)       (t>0),
k

then there exist elements fk,k = i,2,...,mXo + Xi for which / = J2k fk
(convergence in Xr, + Xi ) and

(3) K(fk,t)<c$k{t)       (k = l,2,...;t>0).

Notice from (1) (by taking g = f and h = 0) that K(f, t) is bounded from above

(by ||/ilo) whenever / G Xo- Similarly (by taking g = 0 and h = /), K(f,t)/t is
bounded from above (by ||/||i) whenever / G X\. Couples (Xq,Xi) for which the

converse results hold, that is,

(4) K(f, t)<M    (f > 0)     =►     / € Xo and ||/||0 < M

and

(5) K(f,t)/t<M   (t>0)    =>    /eXiand||/||i<M,

are called Gagliardo couples. Ju. A. Brudnyi and N. Ja. Krugljak [1] have estab-

lished the following result.

THEOREM 1.   Every Gagliardo couple is K-divisible.

Another proof of Theorem 1 has been given by M. Cwikel [4]. The purpose of

the present paper is to show that Theorem 1 can be derived rather simply from

some of the fundamental properties of rearrangements of measurable functions.
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2. Rearrangements of measurable functions. For our purposes, it will suf-

fice to consider Lebesgue-measurable functions F, G, etc., defined on the positive

real axis (0, oo); the Lebesgue measure of a measurable subset E of (0, oo) will

be denoted by | JS7|. The distribution function m = tuf of such a function F is

given by m(s) = \{\F\ > s}\ (s > 0) and the decreasing rearrangement F* of F by

F*(t) = inf{s: m(s) < t} (cf. [2, 5] for further details).

The Hardy-Littlewood-Pólya relation -< is defined as follows: we say that F <G

if, for all í > 0,

(6) / F*(s)ds< [ G*(s)ds.
Jo Jo

The Hardy-Littlewood-Pólya relation can be characterized as follows in terms of

positive substochastic operators (that is, positive operators that are contractions

on Lx and L°°). This form of the result, due to Calderón [3] (see also Mitjagin [8]),

generalizes the original finite-dimensional result of Hardy, Littlewood and Pólya [5,

pp. 44-48].

LEMMA 2. Nonnegative functions F and G satisfy F < G if and only if there

is a positive substochastic operator T such that TG = F a.e.

By incorporating a technique developed by Lorentz and Shimogaki [6] (cf. also

[7]), we obtain the following variant of Lemma 2.

LEMMA 3. Let F and G be nonnegative decreasing functions in (Lx+L°°)(0, oo).

Suppose, in addition, that F is a step function and that F < G. Then there exists

a positive substochastic operator T such that TG = F and T is "monotone " in the

sense that TH is decreasing whenever H is.

Proof. Write
n

J=l

where bi > b% > ■ ■ ■ > bn > 0 and 0 = to < t\ < ■ ■ • < tn < oo. Let To be the
linear operator defined by

r0/f = X>w,

where H¡j denotes the average of H over the interval Ij = (tj-\,tj). It is easy to

verify that To is substochastic, "monotone" in the sense described in the statement

of the lemma, and satisfies

F < ToG < G,    \ToH\ < T0\H\    (for all 77).

Furthermore, To77 is a step function relative to the intervals Ij. Composition

preserves these properties so, in order to prove the lemma, it will suffice to show

that there are finitely many such operators T3 such that

(7) T = Tno---oT1oT0   and   TG = F.

Suppose 1 < j < n and that T\,T%,... ,Tj-\ have been defined this way. We

show how Tj is determined. Set Gk = TkGk-i, k = 1,2,...,j — 1, and Go = TqG.
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By the induction hypothesis, the functions Gk are step functions relative to the

intervals Ij and satisfy

F<Gj-i <---<Gi<Go<G.

Let nj be the largest integer such that

(8) F = Gj-i    on(0,tnj)

and let n'j be the largest integer such that Gj-i is constant on Ej = (tnj,tni.). If

n' = n, then there exists a nonnegative decreasing function w such that wGj-i =

F. In this case, (7) holds with T^ii = wH and Tj+i,Tj+2,... ,Tn equal to the
identity operator. Similarly, if rij = n, then Tj-\ ■ ■ ■ TqG = F and again (7) holds

if we set the remaining operators equal to the identity. In the remaining case where

both nj < n and n'j < n, we construct Tj with the desired properties and in such a

way that at least one of rij or n' increases by at least one. By induction, the proof

will then be complete since there are at most n steps.

Let E'3 = (*»'.»<n'.+i) and set K =\Ej\/\E'j\. Let

(9) p = mm{l/(K + l),(a-b)/(a-a')},

where o is the value of Gj-\ on Ej, a' is the value of Gj-\ on Ej, and b is the

largest value of F on Ej, that is, the value of F on (tn., in .+i). Note that a' < a

because of the way in which n'j was defined. Since F -< Gj-i and (8) holds, we also

have b < a. It follows that 0 < p < 1 and 0 < Kp < 1.
Define the operator Tj by

(H, x&EjUE'j,
(10) TjH=l{l- P)HEj + pHB>., xeEj,

{{l-Kp)HE'+KpHEj,       xGE'3.

Note that Tj changes the values of H only on the sets Ej and Ej. Since p <

l/(K + 1), a computation shows that TjH is decreasing whenever H is. Hence, Tj

is "monotone". It is obvious that Tj is linear, positive, and satisfies \TjH\ < Tj\H\.

Furthermore, simple calculations show that Tj is a contraction on L1 and L°° so that

Tj is substochastic. Hence, by Lemma 2, the function Gj defined by Gj = TjGj-i

satisfies Gj < Gj-i. The condition p < (a — b)/(a - a'), which follows from (9),

guarantees that F < Gj.

Finally, if in (9) we have p = (a - b)/(a - a'), then F = Gj on (0, tw,-+i) so that

ttj+i £Ï nj + 1- Ifj on the other hand, we have p = 1/(K + 1) in (9), then Gj is
constant on Ej U Ej = Ej+i so n'+1 = n'■ + 1. In either case, at least one of n3 or

n'j increases. With this the proof is complete.

If F < Gi + G2, we shall need to find a representation F = F\ + £2 of F with

Fk<Gk(k = l, 2). Since

K(f, t;Ll,L°°) =//*(«) d»      (i>0)
Jo

(cf. [2, p. 184]), such results, which were first established by Lorentz and Shimogaki

[6, 7], may be regarded as primitive forms of /^-divisibility for the couple (Ll,L°°).

We shall need the following variant in order to establish Theorem 1.
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LEMMA     4.   Suppose   Gi,    G2    are   nonnegative   decreasing   functions   in

(L1 + L°°)(0,00) and that F is a function of the form

00

F = £&iX(o,t3)       {tj > 0,b3 >0,j = l,2,...).

3=1

If C, Ci, C2 are nonnegative constants with C = Gi + G2 and

(H) f F(s)ds<C+ [ [Gi(s) + G2(s)}ds,
Jo Jo

then, for k = 1,2, there exist numbers 0k(j) in [0,1] with

(12) Oi(j) + e2(j) = l       (¿ = 1,2,...)

and nonnegative decreasing functions

00

(13) *k = £0fcO>¿X(o,tj),
j'=i

w/iic/i satisfy Fi + F2 = F and

(14) / Fk(s) ds<Ck+ [ Gk(s) ds       (k = 1,2).
Jo Jo

PROOF. Suppose first that G = 0. Let G = Gi + G2 and, for each JV = 1,2,...,
let

(15) F(N) = Eb^(0,ti).
3=1

Then, by (11), we have F^ < F < G and so, according to Lemma 3, there is a

positive, "monotone", substochastic operator Sn such that S^G = F^N'. Denote

by ^4o the averaging operator

N

AoH = Y,HhXh>
i=i

where the Ij are the intervals of constancy of F^N\ Then T/v = Aq o Sn is a

positive, "monotone", substochastic operator such that T/v77 is constant on each

of the intervals Ij (j = 1,2,... ,N). Consequently, the step-functions Fk =

TNGk (k = 1,2) satisfy

(16) FlN)<Gk   (Jb = l,2),       F[N)+F(2N) = F(N\

and may be expressed in the form

FiN) = tiN)(^X(o,ti),
3 = 1

where 0X ' (j)+92 (j) = 1. Now letting 7V vary, we use a standard diagonalization

argument to obtain a subsequence 6k (j) which, for each j = 1,2,... and each

k = 1,2, converges to a limit 9k(j), say, as m —> 00. Defining 7^ by (13), we note
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that 7^ m' —> Fk. Hence from (16) and the dominated convergence theorem, we

see that (14) holds (with Gi = G2 = 0).

The proof is similar in the case where C^O. With FW defined again by (15),

we claim that the estimate

(17) / FiN)(s) ds < Cmin(t/K, 1) + [ G(s) ds
Jo Jo

holds for all t > 0, where K = mi{t3: j = 1,2,... ,N} > 0. Indeed, (17) holds for
all t > K by virtue of the hypothesis (11) so we need only verify it on the interval

[0, K\. As we just remarked, it is true for t = K and it is trivially true for t = 0.

But F'^' is constant on [0, K] so the left-hand side of (17) is linear there. The

right-hand side is concave. Since (17) is true at the endpoints, it is therefore true

in all of [0, üf], and this establishes the claim made above. Now observe that the

minimum in (17) is the integral of a characteristic function so that (17) can be

rewritten in the form

F^ < [(Ci/K)x(o,k) + Gi] + [(C2/K)x(o,K) + G2].

Since this is an estimate of the form (11) with G = 0, we can now apply the result

established in the first part of the proof. From this, the desired result (14) follows

immediately.

3. Proof of Theorem 1. Let (Xo,Xi) be a Gagliardo couple and fix / in

Xo + X\. Let $fc, k = 1,2,..., be nonnegative, increasing, concave functions on

(0, oo) satisfying (2). We shall construct elements fk, k = 1,2,..., with / = Ylfk
for which (3) holds.

As in Cwikel [4, Theorem 4], we may represent / in the form / = ^ aj (the

series converging in Xo + Xi ) in such a way that the estimates

(18) K(f,t) < £min(|K||o,i|hl|i) < ™K(f,t)
3

hold for all t > 0. Furthermore, the elements aj can be chosen so that one of the

following conditions holds:

(I) aj £ X0 n Xi for all j;

(II) there is an index Q such that aj = 0 if j < Q and aj £ Xo H Xi if j > Q;
the element üq £ Xo;

(III) there is an index P such that aj = 0 if j > P and a3 £ Xo fl Xi if j < P;
the element ap £ Xi ;

(IV) there are indices P and Q with P > Q such that aj £ Xo flXi if Q < j < P,
a3 = 0 if j < Q or j > P, and üq £ Xo, ap € X\.

We suppose first that (I) holds. Then, with c = 1/18, the function

9(t) =c£min(||aj||o,i||aj||i)

3

vanishes at the origin. Set

tf(i) = (d/dt)V(t) = cJ2 ||aJiX(o,t3-),
3
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where tj = ||oj||o/||oj||i. Observe from (1) that for all j,

(19) K(aj,t) <min(\\aJ\\o,t\\aj\\i)=       \\aJ\\iX(o,t])(s)ds.
Jo

If 4>k = (d/dt)$k (k = 1,2,...), then, using (18), we may express the hypothesis

(2) in the form

(20) f V(s)^<y>fc(0)+ /
Jo I Jo

l>i{s) + J2<l>k{s)
fc>2

ds.

By Lemma 4, there exist numbers #i (j) and 0'x (j) in [0,1] with #i (j) + 9[ (j) = 1

and with the property that if

then

(21)

and

(22)

Hence, if we now define

x¡)i = c£f?i(¿)||aj||iX(o,t3).    ^i = c£f?i(j')||aj||iX(o,t3)'

3 3

f ^i(a)ds<$,(0)+ f Ma)ds = $i(t)
Jo Jo

f #(«)«** <£*fc(0) + f J2^(s)ds.
^° fe>2 J°   fc>2

e

fi = ¿20i(j>j,       fí = ¿Z^U)aj
3 3

so that

(23) f = h + fi,

we see from (19) and (21) that

(24) cK(fi,t)< [ Ms)ds<^i(t),
Jo

and from (19) and (22) that

(25) cK(f[,t)< [ !/»i(s)d5<y>fc(i).
Jo k>2

The next step in the inductive procedure is to repeat the argument above with

f[ in place of / and with (22) in place of (20). This produces a decomposition

/{ = fi + f2, where f2 and f2 have properties analogous to (24) and (25). At the

nth step of the induction, we obtain

(26)

with

(27)

Jn-l  — Jn + Jn,

cK(fn,t)< f ^n(s)ds<<i>n(t)
Jo
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and

(28) cK(f'n,t)< fvn(s)ds<   £   **(*)•

It follows from (23) and (26) that

(29) f = JZfk + fn,
i

so, using (28), we have

/-£/* = cjf(/;,i)< £ *fc(i),
Xo+Xj fc>n+l

which tends to 0 as n —► oo. Hence, / = J2k fk m Xo + Xi and (27) shows that the

elements fk satisfy the desired estimate (3). This completes the proof in case (I).

Suppose now that (II) holds. We may assume that the element oq in Xo does

not belong to Xi and in this case we interpret its norm in Xi as being infinite.

With this interpretation, we define $ exactly as before. Note, however, that <£ no

longer vanishes at the origin (in fact, ^(0) = c||oq||o). The derivative tb is given by

the same expression as before, the sum extending over all j > Q. The estimate (19)

remains valid for all j > Q, and when j = Q it is replaced by K(aç,t) < ||oq||o.

The constant £ $fc(0) in (20) is now replaced by G = £ $fc(0) - $(0), and in order

to apply Lemma 4 we have to determine how to represent G as a sum G = Ci + C2

of positive quantities Ci and G2. We do this as follows. For each k = 1,2,..., set

W) = **(o)/X>(o).
3

Then $fe(0) - 0fc(Q)¥(O) > 0 for all k. We set

Ci = »i(0) - 0i(Q)tf(0),       G2 = £[§fe(0) - fffc(Q)*(0)]
fc>2

and apply Lemma 4. The functions V>i and V'i have exactly the same form as before,

the sum in each case extending over all j > Q. The estimates (21) and (22) now

contain an extra constant term -öi(<5)*(0) and -J2k>2^{Q)^{0), respectively,

in the right-hand side. However, if /i and /{ are defined as before, with sums

extending over all j > Q, then the conclusions of (23), (24) and (25) are valid as

stated. The inductive procedure now follows the same pattern as above.

Similar modifications are necessary in cases (III) and (IV). The details are

straightforward and we omit them.

4. Calderón's theorem. We remarked earlier that Calderón's theorem (Lem-

ma 2) is a generalization of an earlier result due to Hardy, Littlewood, and Pólya.

The latter result is in fact a finite-dimensional version of Lemma 2 involving sub-

stochastic matrices. Calderón reformulated it as a result for substochastic operators

acting on step-functions and then obtained the result in its full generality by an

approximation process involving Banach limits. It is interesting to note that the

same procedure can be applied to Lemma 3 to derive the following generalization

of Calderón's theorem. We shall not make use of it here and we omit the proof.
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THEOREM   5.   Suppose F  and G  are  nonnegative  decreasing functions in

(L1+L°°)(0,oc) with F <G.
(a) There exists a positive stochastic operator S such that S G > F a.e. and with

the property that S H is monotone decreasing (respectively, increasing) whenever 77

¿5.

(b) There exists a positive substochastic operator T such that TG = F a.e. and

with the property that TH is decreasing whenever H is.
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