INTERPOLATION OF H^1 AND H^∞

Robert Sharples
Department of Mathematics and Statistics
University of South Carolina
Columbia

The interpolation spaces for H^1 and H^∞ are characterized as the Hardy spaces of the interpolation spaces for L^1 and L^∞. This description is provided by recent work of Peter Jones on constructive solutions of $\bar{\partial}$ problems and of Brudnyi-Krugljak in the general theory of interpolation.

A Banach space X is called an interpolation space of a Banach couple (X_0, X_1) if each linear operator T, whose restriction to X_i is a bounded operator from X_i into itself ($i=0,1$), is also a bounded operator on X. In [4] Calderón characterized the interpolation spaces of L^1 and L^∞ as the spaces X of measurable functions whose norms satisfy a rearrangement condition; specifically, there must exist a constant $c > 0$ so that

$$f \in X \quad \text{and} \quad g \preceq f \implies \|g\|_X \leq c \|f\|_X.$$ \hfill (1)

Here $g \preceq f$ (the Hardy-Littlewood-Polya preorder) means

$$\int_0^t g^*(s)ds \leq \int_0^t f^*(s)ds, \quad \forall \ t > 0$$

and g^* denotes the decreasing rearrangement of $|g|$ [4]. We call such spaces X rearrangement-invariant function spaces. In this brief note we will provide a description of the interpolation spaces for the Banach couple of Hardy spaces (H^1, H^∞). For simplicity we work on \mathbb{R} and the upper half plane \mathbb{R}_+^2, but similar results hold for T and the disc. The Hardy space

Research supported in part by NSF Grant MCS-8301360.
$H(X)$ of a rearrangement-invariant function space X over \mathbb{R} is defined to be the collection of functions f in X which have analytic extensions into the upper half plane and whose norm is given by

$$||f||_{H(X)} = ||f||_X.$$

The standard notation of $H^p (\mathbb{R})$ will be used for $H(L^p)$. The main ingredients of the proof are identification of the K-functional for (H^1, H^∞) by Peter Jones [5], using rather deep constructive results for δ^3 problems, together with recent work in general interpolation theory by Brudnyi and Krugljak [3].

THEOREM. A necessary and sufficient condition for a space Y to be an interpolation space for the pair (H^1, H^∞) is that Y be equal (with equivalent norms) to a Hardy space $H(X)$ for some interpolation space X of the pair (L^{1},L^{∞}) (i.e., for some rearrangement-invariant function space X).

Proof. From the proof of Theorem 3 in Jones [5] it follows immediately that the Peetre K-functional (see [3], [7] page 261) for the pair (H^1, H^∞) can be estimated by

$$c_1 K(f,t) \leq \int_{0}^{t}(Nf)^*(s)ds \leq c_2 K(f,t), \text{ all } t > 0$$

for some fixed positive constants c_i (i=1,2). Here Nf is the nontangential maximal function of f in R^2_+; i.e. if F is the harmonic extension of f into R^2_+, then Nf is defined by

$$Nf(x) = \text{sup}(|F(t,y)| : (t,y) \in R^2_+, |x-t| \leq y).$$

For our purposes, a slight improvement of (3) is required, namely

$$c_1 K(f,t) \leq \int_{0}^{t} f^*(s)ds \leq c_2 K(f,t), \text{ all } t > 0.$$

The right hand inequality follows immediately from (3) since $|f| \leq Nf$ a.e. The inequality is evident directly as well since $\int_{0}^{t} f^*$ is a subadditive functional of f, $\int_{0}^{t} g^* \leq ||g||_{L^1} = ||g||_{H^1}$ and $\int_{0}^{t} h^* \leq t||h||_{L^\infty} = t||h||_{H^\infty}$.
Hence
\[\int_0^t f^*(s)ds \leq \inf_{f=g+h} \{ ||g||_{H^1} + t||h||_{H^\infty} \} = K(f,t). \]

For the left hand inequality in (4), let F denote the analytic extension of f into the upper half plane. Factor F as BG^2 where B is a Blaschke product and G is a zero-free analytic function in R^2_+. Let g be the function on R of boundary values of G, then $N_f \leq (Ng)^2$. Hence
\[
\int_0^t (Nf)^*(s)ds \leq \int_0^t (Ng)^*(s)^2ds
\]
\[
\leq c \int_0^t (Mg)^*(s)^2ds
\]
(5)
since Ng is no larger than a constant multiple of the Hardy-Littlewood maximal function Mg (see page 197 of [8]). In addition, Herz's inequality (see, for example,[1]) states that $(Mg)^*(s) \leq \frac{5}{5} \int_0^s g^*(r)dr$, so using the specialized Hardy inequality
\[
\int_0^t [\int_0^s g^*(r)dr/s]^2ds \leq 4 \int_0^t g^*(s)^2ds
\]
(obtained from integration by parts), we obtain
\[
\int_0^t (Mg)^*(s)^2ds \leq c \int_0^t g^*(s)^2ds.
\]
Together with (5) and the fact that $|g|^2 = |f|$ a.e. this shows that for all $t > 0$
\[
\int_0^t (Nf)^*(s)ds \leq c \int_0^t f^*(s)ds
\]
for each f belonging to $H^1 + H^\infty$. This inequality together with Jones' inequality (3) establishes (4).

Suppose now that X is a rearrangement-invariant function space and $H(X)$ is its corresponding Hardy space. If T is a bounded linear operator on both H^1 and H^∞, then obviously
\[
K(Tf,t) \leq A K(f,t) \quad \text{all } t > 0
\]
where A is the maximum of the two operator norms. If the estimate (4) is
applied to each side of the last inequality, then Calderón's result (1) shows that $H(X)$ is an interpolation space. Conversely, let Y be an interpolation space for the pair (H^1, H^∞). Jones has shown [6] that if both f and g belong to $H^1 + H^\infty$ and $g \prec f$, then there exists a linear operator T such that $Tf = g$ and T is bounded on both H^1 and H^∞. Applying Corollary 3 of [3], Y is equal to the space $K_\phi(H^1, H^\infty)$ and

$$||f||_Y = \phi(K(f, \cdot))$$

where ϕ is the function norm of some interpolation space for the pair $(L^\infty, L^{1/t}_1)$. It follows from (1) that $\phi(\int_0^t g^*(s)ds) = ||g||_X$ is a rearrangement-invariant function norm. Hence by the estimates in (4),

$$c_1 ||f||_Y \leq ||f||_X \leq c_2 ||f||_Y.$$

This result may be rephrased in terms of real Hardy spaces in an obvious way. Recall that ReH^p is the space of functions in L^p whose Hilbert transforms also belong to L^p. For $1 < p \leq \infty$, Riesz's theorem shows that ReH^p is L^p with an equivalent norm. In general, for a rearrangement-invariant function space X, the real Hardy space of X is defined by

$$ReH(X) = \{f \in X : Hf \in X\}$$

with norm

$$||f||_{ReH(X)} = ||f||_X + ||Hf||_X.$$

Here Hf denotes the Hilbert transform of f.

COROLLARY. The K-functional for the pair (ReH^1, ReH^∞) is equivalent within constants to the expression

$$\int_0^t f^*(s)ds + \int_0^t (Hf)^*(s)ds.$$

The collection of interpolation spaces for this pair are precisely the real
Hardy spaces of the interpolation spaces of \((L^1, L^\infty)\). A necessary and sufficient condition for a rearrangement-invariant Banach function space \(X\) to be an interpolation space for \((\text{Re}H^1, \text{Re}H^\infty)\) is that the Boyd indices of \(X\) satisfy \(0 < \beta_X < \alpha_X < 1\).

Proof. Only the last statement requires verification, but in view of (6), this is precisely the content of [2].

REFERENCES

