Weak-L^∞ and BMO

By Colin Bennett\textsuperscript{1), Ronald A. DeVore\textsuperscript{2) and Robert Sharpley1)}

Dedicated to Professor George G. Lorentz on the occasion of his seventieth birthday

1. Introduction

The Marcinkiewicz space weak-L^p properly contains L^p when $0 < p < \infty$ but it coincides with L^∞ when $p = \infty$. Consequently, the Marcinkiewicz interpolation theorem does not directly apply to operators that are unbounded on L^∞. The main purpose of this paper is to construct a rearrangement-invariant space W that will play the role of “weak-L^∞”, in the sense that it contains L^∞ and possesses the appropriate interpolation properties. The construction, which is motivated by elementary considerations in the Lions-Peetre real interpolation method, is valid for general measure spaces. However, if the underlying measure space is a cube in \mathbb{R}^n, then W has an alternative characterization in terms of the space BMO of functions of bounded mean oscillation.

The space W consists of those measurable functions f for which $f^{**} - f^*$ is bounded (where f^* is the decreasing rearrangement of f and $f^{**(t)} = t^{-1}\int_0^t f^*(s)ds$). Although no explicit use will be made of the fact, it is perhaps of some interest to note that the space W so-defined arises via the real interpolation method from the pair (L^∞, L^1) in exactly the same way that the space weak-L^1 arises from the reversed pair (L^1, L^∞). This and other properties of W are developed in Section 2. In particular, a Marcinkiewicz-type interpolation theorem is established for W and it is shown that this result gives a direct proof of the L^p-boundedness of the Hilbert transform and related singular integral operators for all values of p with $1 < p < \infty$. With these properties, and the fact that W can be realized as a limit of the familiar spaces weak-L^p as $p \to \infty$, the space W may justifiably be referred to as weak-L^∞.

The relationship between weak-L^∞ and BMO is established in Section 3. A covering argument is used to relate the oscillation of a function f to that...
of its decreasing rearrangement \(f^*\), and thereby to establish the main result that weak-\(L^{\infty}(Q)\), where \(Q\) is a cube in \(\mathbb{R}^n\), is precisely the rearrangement-invariant hull of BMO(\(Q\)).

In the final section the Hardy-Littlewood maximal operator is shown to be bounded from \(W\) into \(W\) and from BMO into BMO.

2. The space weak-\(L^{\infty}\)

The Peetre \(K\)-functional for the pair \((L^1, L^{\infty})\), with respect to an arbitrary \(\sigma\)-finite measure space \((X, \mu)\), can be explicitly identified as follows:

\[
K(f, t; L^1, L^{\infty}) = \int_0^t f^*(s) \, ds = tf^{**}(t) \quad (t > 0)
\]

(cf. [2, p. 184]). The norm in the Marcinkiewicz space weak-\(L^1\) is therefore given in terms of the \(K\)-functional by

\[
\|f\|_{\text{weak-}L^1} = \sup_{t>0} tf^*(t) = \sup_{t>0} t \frac{d}{dt} K(f, t; L^1, L^{\infty}).
\]

If the roles of \(L^1\) and \(L^{\infty}\) are now reversed, then a simple computation, together with the identity \(K(f, t; L^{\infty}, L^1) = tK(f, t^{-1}; L^1, L^{\infty})\), shows that the functional corresponding to that on the right of (2.1) is simply

\[
\sup_{t>0}[f^{**}(t) - f^*(t)].
\]

Definition 2.1. Let \(W = W(X)\) denote the set of \(\mu\)-measurable functions \(f\) on \(X\) for which \(f^*(t)\) is finite for all \(t > 0\) and for which \(f^{**}(t) - f^*(t)\) is a bounded function of \(t\). Let

\[
\|f\|_W = \sup_{t>0}[f^{**}(t) - f^*(t)] \quad (f \in W).
\]

It is clear that \(W\) contains \(L^{\infty}\), and the containment is proper on the interval \((0, 1)\) (or any nonatomic measure space) since \(\log(1/t)\), for example, belongs to \(W(0, 1)\) but not to \(L^{\infty}(0, 1)\). This logarithmic rate of growth for \(f^*\) at the origin is in fact the maximum attainable for any \(f\) in \(W\). This follows at once from the elementary identity

\[
f^{**}(t) - f^{**}(s) = \int_s^t [f^{**}(u) - f^*(u)] \frac{du}{u} \quad (0 < t \leq s < \infty)
\]

by putting \(s = 1\) and using (2.2) to estimate the integrand. But such a growth condition does not characterize \(W\), as easy examples show. The fact is that membership in \(W\) depends not on the growth of \(f^*\) or \(f^{**}\) but rather on the growth of the *derivative* of \(f^{**}\). In fact, a simple computation gives

\[
f^{**}(t) - f^*(t) = -t \frac{d}{dt} (f^{**}(t))
\]
at each point of differentiability of f^{**}, that is, at each point of continuity of f^\ast. It should also be pointed out that W is not a linear space: there are in fact nonnegative functions in W whose sum is not in W. There are also functions f in W such that neither f_+ nor f_- belongs to W.

When $1 < p < \infty$, it follows from (2.3) (with $s = \infty$) that the functional
\[
\left(\int_0^\infty \left(t^{1/p} [f^{**}(t) - f^\ast(t)] \right)^q \frac{dt}{t} \right)^{1/q} \quad (0 < q \leq \infty)
\]
is finite if and only if f belongs to the Lorentz space L^{p^\prime}. With $q = 1$, this expression converges to $\|f\|_{L^\infty}$ as $p \to \infty$. Thus L^{∞} may be regarded in this way as the limit of the Lorentz spaces L^{p^\prime}. By the same token the space W is the limit as $p \to \infty$ of the Lorentz spaces $L^{p^\prime} = \text{weak-}L^p$. This suggests the following definition.

Recall [10, p. 184] that a sublinear operator T is of weak type $(1, 1)$ if it is a bounded map from L^1 into weak-L^1:
\[(2.4) \quad \sup_{t > 0} t(Tf^\ast)(t) \leq c \int_0^\infty f^\ast(t)dt \quad (f \in L^1).\]
By analogy, T will be said to be of weak type (∞, ∞) if it is a bounded map from L^{∞} into W:
\[(2.5) \quad \sup_{t > 0} [(Tf)^{**}(t) - (Tf^\ast)(t)] \leq c \sup_{t > 0} f^\ast(t) \quad (f \in L^{\infty}).\]
Our interpolation theorem will merely require that (2.4) and (2.5) hold for characteristic functions. Hence, in accordance with the Stein-Weiss terminology [10, p. 197], a sublinear operator T will be of restricted weak type $(1, 1)$ (respectively, restricted weak type (∞, ∞)) if its domain contains all simple functions and if (2.4) (respectively, (2.5)) holds for all characteristic functions $f = \chi_E$ of sets E of finite measure. The following interpolation theorem is best formulated in terms of the Calderón maximal operator S [3, p. 288]:
\[(Sf)(t) = \frac{1}{t} \int_0^t f(u)du + \int_t^\infty f(u)\frac{du}{u} \quad (t > 0).\]

Theorem 2.2. Let T be a sublinear operator of restricted weak types $(1, 1)$ and (∞, ∞). Then, for all simple functions f,
\[(2.6) \quad (Tf)^{**}(t) \leq cS(f^{**})(t) \quad (t > 0)\]
and
\[(2.7) \quad \|Tf\|_{L^p} \leq c_p \|f\|_{L^p} \quad (1 < p < \infty),\]
where c depends only on T, and c_p only on p and T. In particular, if T is linear, then T has a unique extension to a bounded linear operator on L^p ($1 < p < \infty$).
Proof. Let E be any μ-measurable subset of X with $0 < s = \mu(E) < \infty$. Let χ denote the characteristic function of E and let $g = T\chi$. Then the hypotheses on T (cf. (2.4) and (2.5)) give

$$tg^*(t) \leq cs \quad (t > 0)$$

and

$$g^{**}(t) - g^*(t) \leq c \quad (t > 0),$$

where c is a constant depending only on T. These estimates may be combined to give

$$g^*(t) \leq 2c\left\{\left(\frac{s}{t} \wedge 1\right) + \log^+(\frac{s}{t})\right\} \quad (t > 0).$$

This follows at once from (2.8) if $t \geq s$. In the remaining case where $0 < t < s$, the estimate (2.9) may be used to estimate the integrand in (2.3) (applied to g) to give $g^{**}(t) \leq g^{**}(s) + c \log(s/t)$, and this yields (2.10) since successive applications of (2.9) and (2.8) show that $g^{**}(s) \leq g^*(s) + c \leq 2c$.

The right-hand side of (2.10) is precisely $2cS(\chi^*)(t)$, where S is the Calderón operator. Hence (2.10) may be written in the form

$$(T\chi)^*(t) \leq 2cS(\chi^*)(t) \quad (t > 0).$$

An integration of both sides and some further computation now yield the more desirable form

$$(T\chi)^{**}(t) \leq 2cS(\chi^{**})(t) \quad (t > 0),$$

the point being that the operation $f \rightarrow f^{**}$ is subadditive whereas $f \rightarrow f^*$ is not. This, together with the sublinearity of T, enables us, with standard arguments (cf. [3, pp. 286–287]), to pass from the estimate (2.11) for characteristic functions to the desired estimate (2.6) for all simple functions. The remaining assertions are routine consequences of this one.

The Hilbert transform H may be interpolated directly by the previous theorem. All that is needed is the Stein-Weiss estimate [10, p. 240]

$$(H\chi_E)^*(t) = \frac{1}{\pi} \sinh^{-1}\left(\frac{2|E|}{t}\right) \quad (t > 0),$$

valid for any subset E of $(-\infty, \infty)$ with finite measure $|E|$. It follows at once from this identity that H is of restricted weak types $(1, 1)$ and (∞, ∞), and hence that H may be interpolated by Theorem 2.2. The interpolation theorem applies also to the maximal Hilbert transform and, more generally, to the maximal operators associated with arbitrary Calderón-Zygmund singular integrals (cf. [9, p. 35]).

It is worth pointing out that Herz [5] has an interpolation theorem
which is somewhat loosely related to ours. The functional $f^{**} - f^*$ is implicit in the proof and it plays a prominent role in some of Herz’ applications to martingales. Our interpolation theorem may also be compared with a result of N. M. Riviére [6], to the effect that if T is of weak type $(1, 1)$ and maps L^∞ into BMO, then T is bounded on every L^p with $1 < p < \infty$. In view of Theorem 3.1 of the next section, this result is contained in ours, at least when the underlying measure space is a cube in \mathbb{R}^n.

3. Weak-L^∞ and BMO

In this section the underlying measure space will be a fixed cube Q (with sides parallel to the coordinate axes) in \mathbb{R}^n with Lebesgue measure. For each integrable function f on Q, the sharp function of f relative to Q is defined by

$$(3.1) \quad f^*_Q(x) = \sup_{Q' \ni x \subset Q} \frac{1}{|Q'|} \int_{Q'} |f'(y) - f_Q| \, dy$$

where $f_Q = 1/|Q'| \int_{Q'} f(y) \, dy$ and the supremum is taken over all cubes Q' that contain x and are contained in Q. If f^*_Q is a bounded function of x, then f is said to belong to BMO(Q). The norm is given by

$$(3.2) \quad \|f\|_{\text{BMO}(Q)} = \sup_{x \in Q} f^*_Q(x) .$$

It is well-known that BMO can serve as a useful substitute for L^∞ (cf. [4], [6], [7], [8], [11]). The next theorem shows that BMO for a cube Q is intimately connected with $W(Q)$.

Theorem 3.1. (a) If f belongs to $L^1(Q)$, then

$$(3.3) \quad f^{**}(t) - f^*(t) \leq c(f^*_Q)^*(t) \quad (0 < t < \frac{1}{6} |Q|),$$

where c is a constant depending only on n.

(b) The space $W(Q)$ is the rearrangement-invariant hull of BMO(Q) in the sense that an integrable function f belongs to $W(Q)$ if and only if f is equimeasurable with some function g in BMO(Q).

The following covering lemma, which is a variant of Lemma 1.1 in [1], will be needed. The proof is similar so we omit it.

Lemma 3.2. Let \mathcal{O} be a relatively open subset of Q such that $|\mathcal{O}| < (1/2)|Q|$. Then there is a family of cubes Q_j ($j = 1, 2, \cdots$) with pairwise disjoint interiors such that

(i) $|\mathcal{O} \cap Q_j| \leq 2^{-i} |Q_j| < |\mathcal{O}^* \cap Q_j|$ \hspace{1cm} $(j = 1, 2, \cdots)$;

(ii) $\mathcal{O} \subset \bigcup_{j=1}^\infty Q_j \subset Q$;

(iii) $|\mathcal{O}| \leq \sum_{j=1}^{\infty} |Q_j| \leq 2^{k+1} |\mathcal{O}|$.

This content downloaded from 129.252.86.83 on Mon, 9 Dec 2013 22:49:32 PM
All use subject to JSTOR Terms and Conditions
Proof of Theorem 3.1. Since \(|f|_c \leq 2f_0^\prime\), it is enough to establish (3.3) for nonnegative \(f\). In that case, fix \(t\) with \(0 < t < (1/6)|Q|\) and let
\[E = \{x \in Q : f(x) > f^\prime(t)\}, \quad F = \{x \in Q : f^\prime_0(x) > (f^\prime_0)^\prime(t)\}. \]
Then \(|E \cup F| \leq 2t\) so there is a relatively open subset \(\emptyset\) of \(Q\) with \(|\emptyset| \leq 3t\) and \(E \cup F \subset \emptyset \subset Q\). In particular \(|\emptyset| \leq (1/2)|Q|\) so by Lemma 3.2 there is a covering \(\{Q_j\}_{j=1}^\infty\) of \(\emptyset\) satisfying conditions (i), (ii), and (iii) above. Now
\[
\begin{align*}
t\{f^{**}(t) - f^*(t)\} &= \int_Q \{f(x) - f^*(t)\}dx = \sum_{j=1}^\infty \int_{Q \cap Q_j} \{f(x) - f^*(t)\}dx \\
&\leq \sum_j \int_{Q_j} |f(x) - f_{Q_j}^\prime|dx + \sum_j E \cap Q_j \{f_{Q_j} - f^*(t)\} \\
&= A + B, \text{ say.}
\end{align*}
\]
If \(\Sigma^\prime\) denotes the sum over those indices \(j\) for which \(f_{Q_j}^\prime > f^*(t)\), then
\[
B \leq \Sigma^\prime |E \cap Q_j| \{f_{Q_j} - f^*(t)\} \leq \Sigma^\prime |\emptyset \cap Q_j| \{f_{Q_j} - f^*(t)\}.
\]
Hence, by (i),
\[
B \leq \Sigma^\prime \int_{\emptyset \cap Q_j} \{f_{Q_j} - f^*(t)\}dx \leq \Sigma^\prime \int_{Q_j} |f_{Q_j} - f(x)|dx \leq A,
\]
where the middle inequality holds because \(f(u) \leq f^*(t)\) on \(\emptyset^\prime\). This, together with the preceding estimate, gives
\[
(3.4) \quad t\{f^{**}(t) - f^*(t)\} \leq 2A.
\]
Now observe from (i) that each \(Q_j\) meets \(F^\prime\) in at least one point, say \(x_j\). Then \(f_{Q_j}^\prime(x_j) \leq (f_{Q_j}^\prime)^\prime(t)\) because of the way \(F\) is defined, and so
\[
A = \sum_j |Q_j| \left\{ \frac{1}{|Q_j|} \int_{Q_j} |f(x) - f_{Q_j}^\prime| dx \right\} \leq \sum_j |Q_j| f_{Q_j}^\prime(x_j) \leq \sum_j |Q_j| (f_{Q_j}^\prime)^\prime(t).
\]
Hence, by (iii),
\[
A \leq 2^{n+1} |\emptyset| (f_{Q_j}^\prime)^\prime(t) \leq 2^{n+1} (3t)(f_{Q_j}^\prime)^\prime(t),
\]
and this together with (3.4) establishes (3.3).

For part (b), note first that if \(t \geq (1/6)|Q|\), then
\[
f^{**}(t) - f^*(t) \leq f^{**} \left(\frac{1}{6} |Q| \right) \leq 6 f^{**}(|Q|) = \frac{6}{|Q|} \int_Q |f(x)|dx.
\]
The inequality (3.3) may be used to estimate \(f^{**} - f^*\) in the case \(t < (1/6)|Q|\), so together these estimates give
\[
(3.5) \quad \|f\|_{W(Q)} \leq c \left(\|f\|_{BMO(Q)} + \frac{1}{|Q|} \int_Q |f(x)|dx \right).
\]
This shows that \(BMO(Q)\) is contained in \(W(Q)\) and hence, since \(W(Q)\) is rearrangement-invariant, that every function \(f\) equimeasurable to a
BMO(Q)-function g must lie in $W(Q)$.

It will suffice to prove the converse for the unit cube $Q = I^n$ (where $I = [0, 1]$) since a linear change of variables reduces the general case to this one. But then if $f \in W(I^n)$, the function

$$g(x) = f^*(x_i) \quad (x = (x_1, x_2, \ldots, x_n) \in I^n)$$

is equimeasurable with f, and for any subcube $R = \prod_{i=1}^n [r_i, r_i + \alpha]$ of I^n,

$$\frac{1}{|R|} \int_R |g(x) - f^*(r_i + \alpha)|\,dx_1 \cdots dx_n$$

$$= \frac{1}{\alpha} \int_{r_i}^{r_i + \alpha} [f^*(t) - f^*(r_i + \alpha)]\,dt$$

$$\leq \frac{1}{r_i + \alpha} \int_0^{r_i + \alpha} [f^*(t) - f^*(r_i + \alpha)]\,dt$$

$$= f^*(r_i + \alpha) - f^*(r_i + \alpha) \leq \|f\|_{W(Q)}.$$

Hence g belongs to BMO(Q) and the proof is complete.

The preceding theorem fails when Q is replaced by all of \mathbb{R}^n since BMO(\mathbb{R}^n) contains functions (such as $\log |x|$) which are unbounded at infinity and hence have decreasing rearrangements which are identically infinite. However, the theorem does contain “local” information pertinent to BMO(\mathbb{R}^n). For example, when f is in BMO(\mathbb{R}^n), the inequality (3.3) may be applied to the function $(f - f_Q)\chi_Q$. An integration of both sides produces the basic inequality (4.23) of [1] from which the John-Nirenberg lemma follows easily.

4. Maximal operators

As in the previous section let Q be a fixed cube in \mathbb{R}^n. The Hardy-Littlewood maximal function $M_Q f$ of an integrable function f on Q is given by

$$(M_Q f)(x) = \sup_{|Q'| < |Q|} \frac{1}{|Q'|} \int_{Q'} |f(y)|\,dy \quad (x \in Q),$$

where the supremum is taken over all cubes Q' contained in Q and containing x. When Q is replaced by all of \mathbb{R}^n, the corresponding operator, defined for all locally integrable f on \mathbb{R}^n, will be denoted simply by M. The next result shows that such maximal operators are bounded on W.

Theorem 4.1. (a) If f belongs to $W(Q)$, then so does $M_Q f$ and

$$(4.1) \quad \|M_Q f\|_{W(Q)} \leq c \|f\|_{W(Q)},$$

where c depends only on the dimension n.

This content downloaded from 129.252.86.83 on Mon, 9 Dec 2013 22:49:32 PM
All use subject to JSTOR Terms and Conditions
(b) The same result holds if \(Q \) is replaced by \(\mathbb{R}^n \) and \(M_q \) by \(M \).

Proof. (a) We may assume that \(f \) is nonnegative. Fix \(t < |Q| \) and let
\[
b = \max(f - f^*(t), 0), \quad g = \min(f, f^*(t)),
\]
so \(f = b + g \). The weak \((1,1)\) and strong \((\infty, \infty)\) properties of \(M_q \) give
\[
(M_q f)^*(t) \leq (M_q b)^*(t-) + (M_q g)^*(0+) \leq ct^{-1}||b||_{L^1} + ||g||_{L^\infty}.
\]
Hence \((M_q f)^*(t) \) is finite and
\[
0 \leq (M_q f)^*(t) - f^*(t) \leq c \{f^**(t) - f^*(t)\} \quad (t > 0).
\]
Now write
\[
(M_q f)^* - (M_q f)^* = [(M_q f)^* - f**] + [f** - f^*] + [f^* - (M_q f)^*]
\]
and
\[
(M_q f)^*(t) - f^*(t) = \frac{1}{t} \int_0^t [(M_q f)^*(s) - f^*(s)] ds.
\]
Then an application of (4.2) yields
\[
(M_q f)^*(t) - (M_q f)^*(t) \leq c \sup_{0 < s \leq t} \{f^**(s) - f^*(s)\},
\]
from which (4.1) follows. Exactly the same proof establishes part (b).

Next we show that \(M_q \) is a bounded operator on \(\text{BMO}(Q) \). Essentially the same result holds for \(\mathbb{R}^n \) except that functions \(f \) for which \(Mf \) is identically infinite must be ruled out (\(f(x) = \log |x| \) is an example).

Theorem 4.2. (a) If \(f \) belongs to \(\text{BMO}(Q) \), then so does \(M_q f \) and
\[
||M_q f||_{\text{BMO}(Q)} \leq c ||f||_{\text{BMO}(Q)},
\]
where \(c \) depends only on the dimension \(n \).

(b) If \(f \) belongs to \(\text{BMO}(\mathbb{R}^n) \), and if \(Mf \) is not identically infinite, then \(Mf \) belongs to \(\text{BMO}(\mathbb{R}^n) \) and
\[
||Mf||_{\text{BMO}(\mathbb{R}^n)} \leq c ||f||_{\text{BMO}(\mathbb{R}^n)}
\]
where \(c \) depends only on \(n \).

Proof. (a) We may assume that \(f \) is nonnegative. Writing \(F \) for the maximal function \(M_q f \) of \(f \), we thus need to show
\[
\frac{1}{|R|} \int_R |F(x) - F_{R'}| dx \leq c ||f||_{\text{BMO}(Q)}
\]
for arbitrary subcubes \(R \) of \(Q \).

Fix \(R \) and let \(3R \) denote the cube that is concentric with \(R \) and has three times the diameter. Let \(\tilde{R} \) be the smallest subcube of \(Q \) containing
\((3R) \cap Q\), and for each \(x\) in \(R\) let
\[
F_1(x) = \sup \{ f_R : \bar{R} \subset \bar{R} \text{ and } x \in \bar{R} \},
\]
\[
F_2(x) = \sup \{ f_R : \bar{R} \subset Q, x \in \bar{R}, \text{ and } \bar{R} \cap (Q \setminus \bar{R}) \neq \emptyset \}.
\]
Clearly \(F = \max \{ F_1, F_3 \} \) on \(R\) so if \(Q = \{ x \in R : F(x) > F_R \} \), \(Q_1 = \{ x \in Q : F_1(x) > F(x) \}\) and \(Q_2 = Q \setminus Q_1\), then
\[
\int_{Q_1} (F(x) - F_R) dx = \int_{Q_2} (F(x) - F_R) dx.
\]
Hence (4.5) will be established if we show that
\[
\int_{Q_1} (F(x) - F_R) dx = c \frac{1}{|R|} \| f \|_{BMO(Q)}
\]
\((i = 1, 2)\).

Consider first the case \(i = 1\). Since \(f_R \leq F(x) \) for all \(x\) in \(R\), then certainly \(f_R \leq f_R \) so we may construct the Calderón-Zygmund decomposition [9, p. 17] for \(f\) and \(\bar{R}\) with respect to the constant \(F_R\). If the resulting sequence of pairwise disjoint cubes is denoted by \(\{ R_k \}_{k=1}^\infty\), and if \(\bar{R}_k\) denotes the “parent” cube of \(R_k\), then the following properties hold:

(i) \(\bigcup_k R_k \subset \bar{R} \);

(ii) \(f_{\bar{R}_k} \leq F_R < f_{R_k} \) \((k = 1, 2, \ldots) \);

(iii) \(|\bar{R}_k| = 2^n |R_k| \) \((k = 1, 2, \ldots) \);

(iv) \(f \leq F_R \) almost everywhere on \(E = \bar{R} \setminus (\bigcup_k R_k) \).

Define functions \(b\) and \(g\) on \(Q\) by
\[
b = \sum_k (f - f_{\bar{R}_k}) 1_{\bar{R}_k}, \quad g = \sum_k f_{\bar{R}_k} 1_{\bar{R}_k} + f 1_{E}
\]
so \(f 1_{\bar{R}} = b + g\). It follows from (ii) and (iv) that
\[
\| g \|_{L^\infty(Q)} \leq F_R,
\]
while on the other hand the John-Nirenberg lemma and (i) and (iii) give
\[
\| b \|_{L^2(Q)} = \left\{ \sum_k \int_{\bar{R}_k} \left| f - f_{\bar{R}_k} \right|^2 dx \right\}^{1/2} \leq \left\{ \sum_k |\bar{R}_k| \int_{\bar{R}_k} \left| f - f_{\bar{R}_k} \right|^2 dx \right\}^{1/2}
\]
\[
\leq c \left(\sum_k 2^n |R_k| \right)^{1/2} \| f \|_{BMO(Q)} \leq c \left| R \right|^{1/2} \| f \|_{BMO(Q)}.
\]
Now it follows from the definition of \(F_1\) that
\[
F_1 \leq M_Q(f 1_{\bar{R}}) = M_Q(b + g) \leq M_Qb + M_Qg,
\]
so applying the Cauchy-Schwarz inequality we obtain
\[
\int_{Q_1} F_1(x) dx \leq \| \Omega_1 \|^{1/2} \| M_Qb \|_{L^2(Q)} + \| \Omega_1 \| \| M_Qg \|_{L^\infty(Q)}
\]
\[
\leq c \left| R \right|^{1/2} \| b \|_{L^2(Q)} + \| \Omega_1 \| \| g \|_{L^\infty(Q)}.
\]
Combining this with (4.7) and (4.8), and subtracting \(\| \Omega_1 \| F_R\) from each side,
we obtain (4.6) for $i = 1$.

The remaining case $i = 2$ will follow directly from the inequality

$$F_2(x) - F_R \leq c ||f||_{BMO(Q)} \quad (x \in \Omega_2)$$

which we now prove. Fix x in Ω_2 and let P be any subcube of Q that contains x and has nonempty intersection with $Q \setminus \bar{R}$.

Clearly $|P| \geq |R|$. Let P' be the smallest subcube of Q containing both P and R. Then $|P'| \leq 2^n|P|$. Arguing as before, we note that $f_{P'} \leq F_R$. Hence

$$f_R - F_R \leq f_P - f_{P'} \leq \frac{1}{|P|} \int_P |f(y) - f_{P'}| dy \leq 2^n ||f||_{BMO(Q)},$$

so taking the supremum over all such cubes P we obtain (4.9). This establishes part (a).

The maximal function F in the preceding proof is necessarily integrable over every cube R (contained in Q) but this need not be the case when we extend to \mathbb{R}^n. However, if f belongs to $BMO(\mathbb{R}^n)$ and R is any cube in \mathbb{R}^n, we can split the maximal function $F = Mf$ into the two parts analogous to F_1 and F_2 in the proof above and estimate these separately. The function F_1 is essentially a maximal function relative to a fixed cube and so may be estimated in terms of the BMO-norm of f exactly as in the proof above. The function F_2 on the other hand is a supremum of averages of f over "large" cubes which, by means of a fixed dilation, may be taken to contain R. But then each of these averages is bounded above by the maximal function Mf evaluated at any point of R, so F_2 is bounded by $\inf_R Mf$. Hence we arrive at the following estimate

$$\frac{1}{|R|} \int_R (Mf)(x) dx \leq c(||f||_{BMO(\mathbb{R}^n)} + \inf_{x \in R} (Mf)(x)).$$

Since R is arbitrary, it follows that the maximal function $F = Mf$ of a function f in $BMO(\mathbb{R}^n)$ is either identically infinite or else it is locally integrable (hence finite a.e. on \mathbb{R}^n). In the latter case, having established that the mean F_R is finite, we may proceed exactly as in the proof of part (a) to show that F is in $BMO(\mathbb{R}^n)$. We omit the details.

University of South Carolina, Columbia

References

(Received June 12, 1980)