
Annals of Mathematics

Weak-L∞ and BMO
Author(s): Colin Bennett, Ronald A. DeVore and Robert Sharpley
Source: Annals of Mathematics, Second Series, Vol. 113, No. 3 (May, 1981), pp. 601-611
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/2006999 .

Accessed: 09/12/2013 22:49

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of
Mathematics.

http://www.jstor.org 

This content downloaded from 129.252.86.83 on Mon, 9 Dec 2013 22:49:32 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=annals
http://www.jstor.org/stable/2006999?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Annals of Mathematics, 113 (1981), 601-611 

Weak-Ly and BMO 
By COLIN BENNETT1", RONALD A. DEVORE2" and ROBERT SHARPLEY') 

Dedicated to Professor George G. Lorentz on the occasion 
of his seventieth birthday 

1. Introduction 

The Marcinkiewicz space weak-LI properly contains LI when 0 < p < 

but it coincides with L- when p oo. Consequently, the Marcinkiewicz 

interpolation theorem does not directly apply to operators that are 

unbounded on L-. The main purpose of this paper is to construct a rear- 

rangement-invariant space W that will play the role of "weak-L-", in the 

sense that it contains Lo and possesses the appropriate interpolation pro- 

perties. The construction, which is motivated by elementary considerations 

in the Lions-Peetre real interpolation method, is valid for general measure 

spaces. However, if the underlying measure space is a cube in Rn, then W 

has an alternative characterization in terms of the space BMO of functions 

of bounded mean oscillation. 

The space W consists of those measurable functions f for whichf* f* 

is bounded (where f* is the decreasing rearrangement of f and f**(t) 

t-1 f*(s)ds). Although no explicit use will be made of the fact, it is perhaps 

of some interest to note that the space W so-defined arises via the real 

interpolation method from the pair (Lo, L1) in exactly the same way that 

the space weak-L' arises from the reversed pair (L', Lo). This and other 

properties of W are developed in Section 2. In particular, a Marcinkiewicz- 

type interpolation theorem is established for W and it is shown that this 

result gives a direct proof of the LI-boundedness of the Hilbert transform 

and related singular integral operators for all values of p with 1 < p < oo. 

With these properties, and the fact that W can be realized as a limit of the 

familiar spaces weak-LI as p -> ao, the space W may justifiably be referred 

to as weak-L-. 
The relationship between weak-Le and BMO is established in Section 3. 

A covering argument is used to relate the oscillation of a function f to that 
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602 C. BENNETT, R. A. DEVORE AND R. SHARPLEY 

of its decreasing rearrangement f*, and thereby to establish the main 
result that weak-L-(Q), where Q is a cube in Rn, is precisely the rearrange- 
ment-invariant hull of BMO(Q). 

In the final section the Hardy-Littlewood maximal operator is shown to 
be bounded from W into W and from BMO into BMO. 

2. The space weak-Le 

The Peetre K-functional for the pair (LI, L-), with respect to an 
arbitrary a-finite measure space (X, ts), can be explicitly identified as 
follows: 

K(f I t; LI Y Lo) =|f *(s)ds = tf **(t) (t > 0) 

(cf. [2, p. 184]). The norm in the Marcinkiewicz space weak-L' is therefore 
given in terms of the K-functional by 

(2.1) Hlf jweak-LJ - SUpt>otf*(t) = supt>Ot d K(f, t; LI, Lo) . dt 
If the roles of L1 and L- are now reversed, then a simple computation, 
together with the identity K(f, t; Lo, L1) = tK(f, t-1; LI, L-), shows that 
the functional corresponding to that on the right of (2.1) is simply 
supt-o[f **(t) - f *(t)] 

Definition 2.1. Let W = W(X) denote the set of 1a-measurable functions 
f on X for which f*(t) is finite for all t > 0 and for which f**(t) -f*(t) is 
a bounded function of t. Let 

(2.2) Elf 11W = supt~o[f**(t) - f*(t)] (f E W) 

It is clear that W contains L-, and the containment is proper on the 
interval (0, 1) (or any nonatomic measure space) since log (1/t), for example, 
belongs to W(O, 1) but not to L?(O, 1). This logarithmic rate of growth for 
f* at the origin is in fact the maximum attainable for any f in W. This 
follows at once from the elementary identity 

(2.3) S ~~~~~~du ( I (2.3) f**(t) - f**(s) = f**(u) - f*(u)] (0 K t ? s K A 
t U 

by putting s= 1 and using (2.2) to estimate the integrand. But such a 
growth condition does not characterize W, as easy examples show. The 
fact is that membership in W depends not on the growth of f* or ff** but 
rather on the growth of the derivative of f**. In fact, a simple computa- 
tion gives 

f**(t) - f*(t) -t d(f**(t)) d t 
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WEAK-L- AND BMO 603 

at each point of differentiability of f **, that is, at each point of continuity 
of f *. It should also be pointed out that W is not a linear space: there are 
in fact nonnegative functions in W whose sum is not in W. There are also 
functions f in W such that neither f? nor f- belongs to W. 

When 1 < p < Ao, it follows from (2.3) (with s Ao) that the functional 

( V (tIP [f* *(t) -* (t)]) d)t 1(<q? 

is finite if and only if f belongs to the Lorentz space LP . With q = 1, this 
expression converges to 11f L. as p -> ao. Thus Lo may be regarded in this 
way as the limit of the Lorentz spaces LP'. By the same token the space W 
is the limit as p -> ao of the Lorentz spaces Lo = weak-LP. This suggests 
the following definition. 

Recall [10, p. 184] that a sublinear operator T is of weak type (1, 1) if it 
is a bounded map from L' into weak-L': 

(2.4) suptot(Tf)* (t) < cS f *(t)dt (f e LI). 

By analogy, T will be said to be of weak type (ao, ao) if it is a bounded map 
from Lo into W: 

(2.5) supt>o[(Tf)**(t) - (Tf)*(t)] < C SUpt>of *(t) (f e Lo) 

Our interpolation theorem will merely require that (2.4) and (2.5) hold for 
characteristic functions. Hence, in accordance with the Stein-Weiss 
terminology [10, p. 197], a sublinear operator T will be of restricted weak 
type (1, 1) (respectively, restricted weak type (ao, ac)) if its domain contains 
all simple functions and if (2.4) (respectively, (2.5)) holds for all characteristic 
functions f = Z, of sets E of finite measure. The following interpolation 
theorem is best formulated in terms of the Calderon maximal operator S 
[3, p. 288]: 

du (Sf )(t) = t f (u) du+ "Of (u)d (t > ). t 0 t U 

THEOREM 2.2. Let T be a sublinear operator of restricted weak types 
(1, 1) and (oa, cc). Then, for all simple functions f, 

(2.6) (Tf)**(t) ? cS(f**)(t) (t > 0) 
and 

(2.7) || Tf | LP?Cp <f 1LP (1 < p < c) 

where c depends only on T, and cp only on p and T. In particular, if T is 
linear, then T has a unique extension to a bounded linear operator on 
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604 C. BENNETT, R. A. DEVORE AND R. SHARPLEY 

Proof. Let E be any 1a-measurable subset of X with 0 < s [ e(E) < . 
Let X denote the characteristic function of E and let g = TX. Then the 
hypotheses on T (cf. (2.4) and (2.5)) give 

(2.8) tg*(t) < Cs (t > 0) 
and 

(2.9) g**(t) - g*(t) < C (t > 0) 

where c is a constant depending only on T. These estimates may be combined 
to give 

(2.10) g*(t) 2c{( A I) + log+( ) (t > 0). 

This follows at once from (2.8) if t > s. In the remaining case where 
0 < t < s, the estimate (2.9) may be used to estimate the integrand in (2.3) 
(applied to g) to give g**(t) < g**(s) + c log (s/t), and this yields (2.10) since 
successive applications of (2.9) and (2.8) show that g**(s) < g*(s) + c < 2c. 

The right-hand side of (2.10) is precisely 2cS(X*)(t), where S is the 
Calderon operator. Hence (2.10) may be written in the form 

(TX)*(t) < 2cS(X*)(t) (t > 0) 

An integration of both sides and some further computation now yield the 
more desirable form 

(2.11) (TX)**(t) < 2cS(Z**)(t) (t > 0), 

the point being that the operation f > f ** is subadditive whereas f -> f * is 
not. This, together with the sublinearity of T, enables us, with standard 
arguments (cf. [3, pp. 286-287]), to pass from the estimate (2.11) for 
characteristic functions to the desired estimate (2.6) for all simple functions. 
The remaining assertions are routine consequences of this one. 

The Hilbert transform H may be interpolated directly by the previous 
theorem. All that is needed is the Stein-Weiss estimate [10, p. 240] 

(HXE)*(t) = I sinh-1 (2 E ) (t > 0), 

valid for any subset E of (- oc, o) with finite measure I El. It follows at 
once from this identity that H is of restricted weak types (1, 1) and (oo, o), 

and hence that H may be interpolated by Theorem 2.2. The interpolation 
theorem applies also to the maximal Hilbert transform and, more generally, 
to the maximal operators associated with arbitrary Calderon-Zygmund 
singular integrals (cf. [9, p. 35]). 

It is worth pointing out that Herz [5] has an interpolation theorem 
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WEAK-L- AND BMO 605 

which is somewhat loosely related to ours. The functional f** -f * is 
implicit in the proof and it plays a prominent role in some of Herz' applica- 
tions to martingales. Our interpolation theorem may also be compared with 
a result of N. M. Riviere [6], to the effect that if T is of weak type (1, 1) and 
maps L- into BMO, then T is bounded on every Lv with 1 < p < Ao. In view 
of Theorem 3.1 of the next section, this result is contained in ours, at least 
when the underlying measure space is a cube in Rn. 

3. Weak-L- and BMO 

In this section the underlying measure space will be a fixed cube Q (with 
sides parallel to the coordinate axes) in Rn with Lebesgue measure. For each 
integrable function f on Q, the sharp function of f relative to Q is defined 
by 

(3.1) fQ(x) = IUPQDQ'3X Q \ |If(y) - fQIdy (x E Q) 

where fQ,= 1/1 Q' Q f(y)dy and the supremum is taken over all cubes Q' 
that contain x and are contained in Q. If fQ is a bounded function of x, 
then f is said to belong to BMO(Q). The norm is given by 

(3.2) lif IIBMO(Q) = SUPxeQfQ(X) . 

It is well-known that BMO can serve as a useful substitute for Lo (cf. 
[4], [6], [7], [8], [11]). The next theorem shows that BMO for a cube Q is 
intimately connected with W(Q). 

THEOREM 3.1. (a) Iff belongs to L'(Q), then 

(3.3) f **(t) - f*(t) < c(fQ)*(t) (o < t < 1 1QI 

where c is a constant depending only on n. 
(b) The space W(Q) is the rearrangement-invariant hull of BMO (Q) in 

the sense that an integrable function f belongs to W(Q) if and only if f is 
equimeasurable with some function g in BMO (Q). 

The following covering lemma, which is a variant of Lemma 1.1 in [1], 
will be needed. The proof is similar so we omit it. 

LEMMA 3.2. Let C be a relatively open subset of Q such that ( <(1/2) Q . 
Then there is a family of cubes Qj (j = 1, 2, *) with pairwise disjoint 
interiors such that 

(i) o nQi_< 2I1 QjI < iC. n Qi (j = 1, 2, ... 
(ii) Oc j=UQj cQ 
(i)Is 0 1 <- Qj I < 2 +' | 0| 

This content downloaded from 129.252.86.83 on Mon, 9 Dec 2013 22:49:32 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


606 C. BENNETT, R. A. DEVORE AND R. SHARPLEY 

Proof of Theorem 3.1. Since If II < 2fQ, it is enough to establish (3.3) 
for nonnegative f. In that case, fix t with 0 < t < (1/6) 1 Q I and let 

E = {x e Q: f (x) > f * (t)} , F = {x e Q: fQ'(x) > (fQ') * (t)}I 
Then I E U Fl ? 2t so there is a relatively open subset C of Q with IC01 < 3t 
and E U F c: 0 c: Q. In particular 1'91 ? (1/2)1 Q I so by Lemma 3.2 there is 
a covering {Qj}>= of 0 satisfying conditions (i), (ii), and (iii) above. Now 

t{f **(t) - f(t)} I{f(x) - f *(t)}dx =- {f(x) - f* (t)}dx 

<-Ej l If(x) - fQjIdx + EjIEn QjI{fQj - f*(t)} 

=A+ B say. 

If ?' denotes the sum over those indices j for which fQj > f*(t), then 

B < ?' I E nQj lfQ { j-f*(t)< ?' io n Qjil fQj -f*(t)l ~~~~~~~~~~~~ 
Hence, by (i), 

B < - IfQj-f *(t)}dx < ?' IfQj -f (x) I dx ? A 

where the middle inequality holds because f(u) < f *(t) on 0C. This, together 
with the preceding estimate, gives 

(3.4) t{f**(t) - f*(t)} < 2A . 

Now observe from (i) that each Qj meets F0 in at least one point, say 

xj. Then fQ(xj) < (fQ)*(t) because of the way F is defined, and so 

A = EjlQj{l { f(x) - fQj I dx} ?Ej Qj IfQ(xj) < j I Qj I (fQ)*(t) 

Hence, by (iii), 
A < 2n+ltIt 1 (fQ')*(t) ? 2n+l(3t)(f#)*(t) 

and this together with (3.4) establishes (3.3). 
For part (b), note first that if t ? (1/6) 1 Q I, then 

f**(t) - f*(t) <f**(1 QI)?<6f**(IQ) QjlQf(x)Idx. 

The inequality (3.3) may be used to estimate f* f * in the case t < (1/6) 1 Q I 
so together these estimates give 

(3.5) lif IW(Q) C( lfIIBMO(Q) + QlIf(x)ldx) 

This shows that BMO(Q) is contained in W(Q) and hence, since W(Q) is 
rearrangement-invariant, that every function f equimeasurable to a 
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WEAK-LO AND BMO 607 

BMO(Q)-function g must lie in W(Q). 
It will suffice to prove the converse for the unit cube Q In (where 

I = [0, 1]) since a linear change of variables reduces the general case to this 
one. But then if f ? W(IT), the function 

g(x) f*(xi) (x = (x1, x2, *., x") In) 

is equimeasurable with f, and for any subcube R =l$= [ri, ri + a] of In, 

R1 Ss)g(x) - f*(r + a)Idxl .. dxi 

1 Srj+a[f *(t) f *(rl + a)]dt 
at r, 

< 1 ra \ [f*(t) - f *(rl + a)]dt 
ri + aor 

f**(r, + a) -f*(r1 + a) I Hf I vQ) 

Hence g belongs to BMO (Q) and the proof is complete. 

The preceding theorem fails when Q is replaced by all of Rn since 
BMO (Rn) contains functions (such as log I x 1) which are unbounded at infinity 
and hence have decreasing rearrangements which are identically infinite. 
However, the theorem does contain "local" information pertinent to 
BMO(Rn). For example, when f is in BMO(Rn), the inequality (3.3) may be 
applied to the function (f - fQ)XQ. An integration of both sides produces 
the basic inequality (4.23) of [1] from which the John-Nirenberg lemma 
follows easily. 

4. Maximal operators 

As in the previous section let Q be a fixed cube in Rn. The Hardy- 
Littlewood maximal function MQf of an integrable function f on Q is given 
by 

(MQf)(x) - sup f(y) dy (x G Q) 

where the supremum is taken over all cubes Q' contained in Q and containing 
x. When Q is replaced by all of Rn, the corresponding operator, defined for 
all locally integrable f on Rn, will be denoted simply by M. The next result 
shows that such maximal operators are bounded on W. 

THEOREM 4.1. (a) If f belongs to W(Q), then so does MQf and 

(4.1) 11 MQf IIW(Q) ? C 11 f I IW(Q) 
where c depends only on the dimension n. 

This content downloaded from 129.252.86.83 on Mon, 9 Dec 2013 22:49:32 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


608 C. BENNETT, R. A. DEVORE AND R. SHARPLEY 

(b) The same result holds if Q is replaced by R" and MQ by M. 

Proof. (a) We may assume that f is nonnegative. Fix t < I Q I and let 

b = max(f -f *(t), 0), g = min(f , f *(t)) 

so f = b + g. The weak (1, 1) and strong (oo, oo) properties of MQ give 

(MQf)*(t) < (MQb)*(t-) + (MQg)*(0+) 
? ct | |b | L1 + |H HL?? 

< ct-1 [f*(s) - f*(t)]ds + f*(t) 
0 

Hence (MQf)*(t) is finite and 

(4.2) 0 - (MQf)*(t) -f *(t) M c{f* *(t)-f *(t)} (t > 0) 
Now write 

(MQf)** - (MQf)* = [(MQf)** - f**] + [f** - f*] + [f* -(MQf)*] 

and 

(MQf)**(t)-f **(t) = - [(MQf)*(s) -f *(s)] ds . 

Then an application of (4.2) yields 

(MQf)* *(t) - (MQf)*(t) c supo<8 t{f * *(s) -f *(s)}, 

from which (4.1) follows. Exactly the same proof establishes part (b). 
Next we show that MQ is a bounded operator on BMO(Q). Essentially 

the same result holds for R" except that functions f for which Mf is 
identically infinite must be ruled out (f(x) = logI x is an example). 

THEOREM 4.2. (a) If f belongs to BMO (Q), then so does MQf and 

(4.3) ||MQf IIBMO(Q) < C II f BMO(Q) 

where c depends only on the dimension n. 
(b) If f belongs to BMO (RW), and if Mf is not identically infinite, then 

Mf belongs to BMO(Rn) and 

(4.4) ||Mf ||BMO(R) <- C 1f IBMO(R-) 

where c depends only on n. 

Proof. (a) We may assume that f is nonnegative. Writing F for the 
maximal function MQf of f, we thus need to show 

(4.5) _ | F(x) - FR Idx < c||f IBMO(Q) 

for arbitrary subcubes R of Q. 
Fix R and let 3R denote the cube that is concentric with R and has 

three times the diameter. Let R be the smallest subcube of Q containing 
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WEAK-LR AND BMO 609 

(3R) n Q, and for each x in R let 

F1(x) = sup {Afi: R c R and x R}, 
F2(x) = sup{Af: R c Q, x e R, and Rn (Q\R) 0}. 

Clearly F = max {F1, FJ on R so if 

Q = {x e R: F(x) > FR}, Q1 = {x e Q: F1(x) > F2(x)} and Q2 =Q\Q, 
then 

I I SR IF(x) -FIdx IRI |[F(X)-FR]dx= IRI V [Fi(x)-FRIdx. 

Hence (4.5) will be established if we show that 

(4.6) r[F,(x) - FR]dx < C I R |f |IBMOQ (i = 1,2). 

Consider first the case i = 1. Since fR ? F(x) for all x in R, then 
certainly fR ? FR so we may construct the Calderon-Zygmund decomposition 
[9, p. 17] for f and R with respect to the constant FR. If the resulting 
sequence of pairwise disjoint cubes is denoted by {Rk}?=l, and if Rk denotes 
the "parent" cube of Rk, then the following properties hold: 

(i) UkRk C R; 

(i)Ak -<FR < fRk (k=1 , - * **); 

(iii) I Rk I= 2 I Rk I (k =1, 2, ** ); 
(iv) f ? FR almost everywhere on E = R\(UkRk). 
Define functions b and g on Q by 

b = Lk (f - 
Ak)XRk f g = kfjkXRk + fXE 

so fXsi = b + g. It follows from (ii) and (iv) that 

(4.7) | | 9 II IL(Q) FRf 

while on the other hand the John-Nirenberg lemma and (i) and (iii) give 

(4.8) 1l b 11L2(Q) = { k - Ak 2dx} ? Rk l - f< 1 dx} 

( 2 IRk 1 )1/2 | | I BMO (Q) CI R 1/2 fII 1 
Now it follows from the definition of F1 that 

F1 , MQ(fX3) = MQ(b + g) ? MQb + MQg, 
so applying the Cauchy-Schwarz inequality we obtain 

F1(x)dx I Q1/21 MQb IIL2(Q) + IQ11I IMQ IIL(Q) 
01 

?< c| R 11|2 |b I IL2(Q) + I Q1 I I g | IL-(Q) 

Combining this with (4.7) and (4.8), and subtracting IQ1 I FR from each side, 
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610 C. BENNETT, R. A. DEVORE AND R. SHARPLEY 

we obtain (4.6) for i = 1. 
The remaining case i = 2 will follow directly from the inequality 

(4.9) F12(X) - FR ?C c f I BMO(Q) (X C Q2) 

which we now prove. Fix x in Q2 and let P be any subcube of Q that contains 
x and has nonempty intersection with Q\R. Clearly IPI > I R . Let P' be 
the smallest subcube of Q containing both P and R. Then IP'I < 2 PI. 
Arguing as before, we note that fp ? FR. Hence 

fR-FR < ?f,-f ' If(y) - fp' Idy ? 21 1f IIBMO(Q) fp - R = 
- IPI JP 

so taking the supremum over all such cubes P we obtain (4.9). This 
establishes part (a). 

The maximal function F in the preceding proof is necessarily integrable 
over every cube R (contained in Q) but this need not be the case when we 
extend to Rn. However, if f belongs to BMO(Rn) and R is any cube in R", 
we can split the maximal function F = Mf into the two parts analogous to 
F1 and F2 in the proof above and estimate these separately. The function 
F1 is essentially a maximal function relative to a fixed cube and so may be 
estimated in terms of the BMO-norm of f exactly as in the proof above. 
The function F2 on the other hand is a supremum of averages of f over 
"large" cubes which, by means of a fixed dilation, may be taken to contain 
R. But then each of these averages is bounded above by the maximal 
function Mf evaluated at any point of R, so F2 is bounded by infR Mf. Hence 
we arrive at the following estimate 

I (Mf )(x)dx c(jI f I BMO(Rn) + infxeR(Mf)(x)) 

Since R is arbitrary, it follows that the maximal function F = Mf of a 
function f in BMO (R") is either identically infinite or else it is locally 
integrable (hence finite a.e. on R"). In the latter case, having established 
that the mean FR is finite, we may proceed exactly as in the proof of part 
(a) to show that F is in BMO(R"). We omit the details. 

UNIVERSITY OF SOUTH CAROLINA, COLUMBIA 
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