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FRACTIONAL INTEGRATION IN ORLICZ   SPACES

ROBERT SHARPLEY

Abstract. Fractional integration and convolution results are given for

Orlicz spaces using an inequality earlier developed for Aa(X~) spaces which

generalize Lorentz L(p,q) spaces. The extension problem for convolution

operators encountered previously by other authors is almost entirely avoided.

1. Introduction. O'Neil has shown that fractional integration and hence

convolution theorems hold both for Lorentz L(p,q) spaces [8] and by different

methods for Orlicz spaces [9]. An inequality utilizing the weak interpolation

for operators was given in [7] from which fractional integration theorems

followed for the spaces Aa(X) which generalize the L(p,q) spaces. This same

inequality is used here to prove the corresponding theorem for Orlicz spaces.

The main result of this paper avoids "endpoint estimates", but we hope to

return to this point at a later time.

A function A on [0, co) is called a Young's function [9] if it is nondecreasing,

convex, left continuous, satisfies A(0) = 0, but is not identically zero. The

Orlicz space LA is the Banach space of all locally integrable functions for

which the Luxemburg norm

(1.1) \\f\\A = inf{k\j A(\f(x)\/k)d^(x) < l}

is finite [3]. For simplicity, we shall restrict ourselves to the line R with

Lebesgue  measure. If we set A(x) = xp/p, then we obtain the LP spaces.

If A is a Young's function, then we define its inverse by A~ (y)

= inf{x\A(x) > y), where inf <£ = oo. A~x is a nondecreasing, right contin-

uous function satisfying the conditions that A'x(x)/x is nondecreasing and

(1.2) A(A~l(x)) < x < A~l(A(x)).

If for every 8 > 1 there is a constant c so that A(8x) < cA(x), then A is said

to satisfy the (52,A2) condition.

If / is a locally integrable function on R, then the distribution function for

|/| is defined by ii\f\(t) = m(s\ |/(s)|> 7), where m is Lebesgue measure. Two

functions / and g are called equimeasurable if /xi --. = ju.ii. It is not hard to see

then that LA is rearrangement invariant, i.e. equimeasurable functions / and g

have the same norm in LA. The decreasing rearrangement of a locally

integrable function / is the right continuous inverse of fiy, and is denoted by
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100 ROBERT SHARPLEY

/**. The averaged rearrangement of/is defined by/**(/) = fc\f*{s)ds/t, and

it follows that/*(0 </"(/).
The fundamental function <pA{t) of the space LA is the norm of the

characteristic function of the interval (0, t). A straightforward computation

shows that <pA{t) = l/A~x(\/t) and so <pA is a concave nondecreasing function

on (0, oo) satisfying q>A{0) = 0. We define tpA-(t) = t/q>A(t). The indices [2], [5]

of an Orlicz space are defined by

yA = lim 0(r),        yA = lim 0(f)
—" I—»0 l—>oo

where

0W = log(sup^)/logf.
\s>0 <Pa W / /

It can be shown that 0 < yA < yA < 1. When Aix) = xp/p, then yA = yA

= 1/p. The reciprocals of these are the familiar exponents developed in [6]. By

Lemma (5.9) of [2],y^ > 0 is an equivalent condition on A to the (S2,A2)

condition. It is not difficult to see that yA < 1 is equivalent to A', the

complementary Young's function determined by the fundamental function

rpA'{t), satisfying the (52,A2) condition.

2. Convolution and special operators. A bilinear operator T is called a

convolution operator [9] if the following three conditions hold: (i) ||T(/,g)||,

< 11/11, llgll,, 00 \\T{fg)L < 11/IUIsL. (^0 IW/,g)L < ll/Uslli where
| ||] and || floo denote the norms in Lx and L°°, respectively. It is understood that

T is defined for a pair (f,g) only when the existence is forced by relations (i)

through (iii).

Special operators were defined in [2] in order to study the Hilbert transform.

We shall need several of the properties of these operators for what follows.

Define P and P' by

ft /-OO

P(g)(t) = j0 g{s)ds/t,       P'ig)(t) = I    gis)ds/s.

Likewise, define the operator 5 by

S{g) = <pA- P{g) + P'{g<PAA.

Proposition (2.1) (see [2]). Suppose that B and C are Young's functions. A

necessary and sufficient condition that P is a bounded operator on LB is that

yB < 1. Dually, yc > 0 is necessary and sufficient for P' to be bounded on Lc.

We shall only use the sufficiency of this result which is not too hard to see.

For example, in order to show P is bounded on LB, we represent P{g) by

Jo EAg)is)ds where Etgis) = gist) and then we notice that \\P\\B

<fi \\Ex/s\\Bds. But

WeVsWb = SUP{%(")/%('')} < const i"^,    all 0 < s < 1,
r>0

for some /} < 1, since yB < 1. Hence \\P\\B < oo.
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The Lorentz space M(A) [4] corresponding to LA is the Banach space of

locally integrable functions / such that

H/ILw = suP{/"(r)^(/)}

is finite. In [10] this space was denoted MiLA). If /l(x) = xp/p, then MiA) is

just "weak LP". We only require the following property of this space, namely

(2.2) \\f\\M{A)<Wf\\A.

We now state the main inequality for convolution operators mentioned in

the introduction.

Proposition (2.3) (see [7]). Iff e MiA) and g satisfies the condition that

S(g*)('o) is finite for some 70, then T can be uniquely extended to be defined for

the pair if,g) and

(2.4) Tifgf < 2\\f\\M{A)S(g*).

Remark (2.5). The reader should notice that the quantity \\f\\M^A)S(g*) is

very similiar to the expression

tr(t)g"(t)+ftMf*(s)g*(s)ds

used in [8], [1], [2]. In fact, if fit) and/* (7) are replaced in the second

expression by ll/ll^/V/ivO* then we obtain the first expression. In a sense,

1/034(7) can be thought of as the largest function of norm one in MiA), so long

as yA < 1. It should also be noted here that Proposition (2.3) seems to avoid

the extension problem that has plagued writers in the past [1], [12].

3. Main result. In order to arrive at the correct estimates involving Young's

functions, we need the following lemma which is a modification of the

"Generalized Young's Inequality" (Lemma (2.4) of [9]). Below we use c to

denote an absolute constant, not necessarily the same in all the formulas in

which it occurs.

Lemma (3.1). Suppose A, B, and C are Young's functions such that C satisfies

the (fS2,A2) condition, then the following are equivalent

(3.2) <PC(s)s < cyAis)<pBis),

(3.3) A-]it)B-\t) < ctC~xit),

(3.4) C(B-\Biy))tA-xil/t)) <cBiy)    when Biy) < l/t.

Proof. By the definitions it is obvious that (3.2) and (3.3) are equivalent.

We show that condition (3.3) implies (3.4). Since B(y) < l/t and A~lix)/x is

nondecreasing, we have

C(B-\B(y))tA-\l/t)) < C(B-\Biy))A-\Biy))/Biy))

< CicC~\Biy))) < const Biy).
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102 ROBERT SHARPLEY

The last two inequalities are valid since (3.3) holds and C satisfies the (52,A2)

condition. That (3.4) implies (3.3) is seen by setting / = l/B-iy).

By the definition of <pA{t) and relation (1.2) we have

Corollary (3.5).    If the assumptions of Lemma (3.1) hold along with relation

(3.2), then we have

(3.6) C(yq>A.(t)) < cB{y)    when B(y) < l/t.

Lemma (3.7).   If\\g\\B < c, then B(g*(t)/c) < l/t.

Proof. By property (2.2) and the fact ||g||B < c, we get

g*{t)/c<g"{t)/c< l/<pBit) = B-xi\/t).

Applying B to both sides of this inequality, we obtain

Big*it)/c) < BiB~xil/t)) < l/t.

Theorem (3.8).    Suppose A, B, and C are Young's functions for which yB < 1

and yc > 0 and

(3.9) scpcis) < ccpAis)<pBis),

then each convolution operator has a unique extension to MiA) X LB such that

T{f,g) belongs to Lc whenever f £ MiA) andg £ LB; moreover,

\\T{fg)\\c < c\\f\\M(A)\\g\\B.

Proof. We assume without loss of generality that \\g\\B = 1. By Proposition

(2.1)

(3.10) \\P{g*)\\B < cx\\g*\\B = cx\\g\\B = cx

and

(3-11) \\P'{g*<PA')\\c<C2\\8*<PA'Wc-

Applying Lemma (3.7) to P{g*) and (3.10), we get that 5(P(g*)(f)/c3) < l/t

where c3 = cx + e. Using Corollary (3.5) with y = P(g*)(r)/c3 and integrat-

ing we get

f CiPig*)it)<pAt)/c2)dt < f B{P{g*)(t)/c3)dt < 1

by the definition of the norm (1.1). Hence we have

(3.12) \\P{g*Mc < ci\\g\\B-

Similarly, by Lemma (3.7) we have that B(g*(/)/(l + e)) < l/t so Corollary

(3.5) withy = g*(f)/(l + e) after integration yields

/C(g*(/W(0/(1 + e))dt <JBig*it)/H + e))dt < 1
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FRACTIONAL INTEGRATION IN ORLICZ SPACES 103

and so there holds

(3.13) \\g\A-\\c< \\8\\b-

Combining inequalities (3.11) and (3.13), we obtain

\\P'(g*<PA')\\c<C2\\g\\B.

But this together with (3.12) gives

\\S(g*)\\c < c\\g\\B.

Hence S(g*) is finite almost everywhere and we can use Proposition (2.3) to

get that Tifg) is defined for each/ e MiA). By (2.4) we obtain

\\Tif,g)\\c < 2||/||A/W||S(g*)||c < c\\f\\M{A)\\g\\B.

Theorem (3.14). Suppose A, B, and C are Young's functions but condition

(3.9) does not hold, then there exist functions / G MiA) and g G LB such that

/*gS M(C).

Proof. We denote by A(^4) the Banach space of all locally integrable

functions such that

coo

II/IIaW=/0 /*w^w

is finite. It is not hard to see [9], [10] that for each/ E A(^)

ll/IL < ll/IW

so AiA) is continuously embedded in LA. We show in fact that

A(A) * A(fi) ct M(C).

Since relation (3.9) does not hold, there is a sequence {sn} such that

Sn<Pc(sn) >  cn9A(sn)%(■*„)

where c„ = 24". Define / and g by

00

/W = 2c„-%(,„)XhjAsB/2](0

and

00

g(t) = 2 c;1/4/«pB(^)x[-J„/2,w2](')-

In this case we have H/Ha^) = Ugl^s) = 1> since/and g decrease symmetri-
cally. But

1   oo 9
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so

,/,**>2,?(iS&)*w)

> sup \cxJ^ = 00.
777

Remark (3.15). By private correspondence M. Milman has sent the author

a proof of Theorem (3.14) involving the Orlicz spaces themselves rather than

the spaces A and M. The proof follows closely O'Neil's result in this direction

for product operators [9].

Combining Theorems (3.8) and (3.14), we obtain

Main Result. Suppose A, B, and C are Young's functions such that B', the

complementary Young's function for B, and C satisfy the (52,A2) condition.

A necessary and sufficient condition that each convolution operator have a

unique extension mapping MiA) X LB into Lc is that

yc{s)s < c<pAis)rpBis)

for some constant c.

4. Examples and further results. In this section we mention a related

theorem and compare the results of this paper to those of O'Neil's. A

discussion of the case yc = 0 is also included.

By the same methods employed in [9], duality and associate spaces, the

following theorem is easily obtained.

Theorem (4.1). If A, B, and C are Young's functions such that yA < 1,

yB < 1, and condition (3.9) holds, then LA * LB C A(C). In fact, it is not hard

to generalize this argument to rearrangement invariant Banach function spaces.

It is well known (p. 119 of [11]) that the conditions yB < 1 and yc > 0 in

the Main Result are necessary if all the Young's functions are powers.

We can show that if Lc = L°° and B is any Young's function such that

yB > 0, then selecting A equal B', condition (3.9) holds, but MiA) * LB

~(t Lc. However, the condition yc > 0 in Theorem (3.8) is not necessary in

general. In [14] it is shown that fractional integration on [0,2ir) holds for

A(x) = xP', B(x) = x", and C(x) = eXx"'/A where 1/p + 1/p' = 1. The ex-

trapolation argument given there holds for any convolution operator.

In [9, Theorem 4.7] it was shown that a fractional integration theorem holds

for C(x) defined by

(4.1) C-xix)=fX^lf^dt
Jo tl

when C exists and B' satisfies the (52, A2) condition. By the definition one can

show that if yc > 0 and C satisfies (3.9), then C exists and rpcis) < crp^is).

This shows that Theorem (3.8) is weaker than O'Neil's.

A natural question which arises is: given A and B, how can one construct a

C satisfying (3.9)? Define C* by the relation
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FRACTIONAL INTEGRATION IN ORLICZ SPACES 105

«pc,(x)-mf-.

If (pc» is not identically zero on any interval, then C* exists and is equivalent

(up to constants) to a Young's function. M. Milman has pointed out to the

author that a necessary and sufficient condition that C* exist is that

A'(x) < B(cx) for small values of x (or symmetrically B' < A(cx)). This is

easily seen by taking inverses on both sides of the indicated inequality. If C is

any Young's function which satisfies (3.9), then

(4.2) <pc(s) < c<pc*(s)-

In particular, C satisfies (3.9) so it must satisfy (4.2). Using the operators P and

P' one can show that if Yc* < 1, then yc* > 0 is necessary and sufficient for

C and C* to be equivalent Young's functions. Zygmund's example shows that

fractional integration theorems may hold even if C does not exist. Professor

O'Neil has pointed out to the author that Zygmund's example may be

modified to give an example on the interval [0, 27t) of a fractional integration

theorem for C but not for C*. Let yA(t) = <pB(t) = max (7,7*), then <pc*(7)

= 1 and cpg(t) = 1/(1 + In (1/?)) for 0 < t < 1. By the earlier arguments in

this section we have M(A) * LB <£ Lc* since yB = j > 0 and Lc* = L00, but

by Zygmund's theorem with p = 2 and C(x) = eXx /A there must hold

T: M(A) XLB-> Lc Q Lc

since C dominates C for large values. On the other hand, letting <pA (t) = t and

<pB(t) = 1, it is easy to see that C does not exist and Lc* = L00; but by the

definition of convolution operator T: Ll X L00 -» L°°. Since M(A) = LA in

this case, we see that a theorem may hold for C* when C does not exist.
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