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Lorentz and Shimogaki [2] have characterized those pairs of Lorentz 
A spaces which satisfy the interpolation property with respect to two 
other pairs of A spaces. Their proof is long and technical and does not 
easily admit to generalization. In this paper we present a short proof of 
this result whose spirit may be traced to Lemma 4.3 of [4] or perhaps more 
accurately to the theorem of Marcinkiewicz [5, p. 112]. The proof involves 
only elementary properties of these spaces and does allow for generali
zation to interpolation for n pairs and for M spaces, but these topics 
will be reported on elsewhere. 

The Banach space A^ [1, p. 65] is the space of all Lebesgue measurable 
functions ƒ on the interval (0, /) for which the norm 

is finite, where </> is an integrable, positive, decreasing function on (0, /) 
and/* (the decreasing rearrangement of | / | ) is the almost-everywhere 
unique, positive, decreasing function which is equimeasurable with \f\. 

A pair of spaces (A^, Av) is called an interpolation pair for the two 
pairs (A^, AVl) and (A^2, AV2) if each linear operator which is bounded 
from A^ to Av (both /== 1, 2) has a unique extension to a bounded opera
tor from A^ to Av. 

THEOREM (LORENTZ-SHIMOGAKI). A necessary and sufficient condition 
that (A^, Aw) be an interpolation pair for (A^, AVi) and (A^2, AV2) is 
that there exist a constant A independent of s and t so that 

(*) ^(0/0(5) ^ A max(TO/^(a)) 
t=1.2 

holds, where O 00=ƒ S <j>{r) dr,-" , VaC'Wo Ya(r) dr. 

PROOF. We only sketch the proof of the necessity since it is standard. 
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Suppose there are numbers sn and tn in (0, /) such that lF(^w)/0(5,J> 
nz max^i.sCT^rJ/O^.yJ). Define the positive operator 

TJ(t) = ( C w £ >(s)ds/sn^ (Mn)(0, 

where Cw=min,= 1 .2(0,(0/^(0)-
For each ƒ in A^., Tn ƒ belongs to Av. and rw has operator norm less 

than or equal to 1, but as an operator from A^ to Av, Tn has operator 
norm larger than n3. Hence the operator T= 2J° TJn2 is a bounded opera
tor from A^ to A^ (/=1, 2), but T is not a bounded operator from A^ 
to Av. 

To show that condition (*) is sufficient, we prove that 

(i) \\7f^£2AM\\fu 

where M is the maximum of the operator norms of T acting from A^ 
to AVi (/= 1,2). We can assume that ƒ is an arbitrary simple function 
with finite support since these functions are dense in A^. We can also 
require/to be positive since | |/ | |^=|| \f\ ||̂ . Each function of this type 
can be written as ƒ= 21* O^XE* where the a/s are positive and En <= • • - <= Ev 

Hence/* = 2i ^iXio.a ) where a^mE^ But then 

(2) IITxE\\v ^ 2AMd>(mE)9 all measurable E c (0, /) 

is equivalent to relation (1), since 

\\Tf ||„ = J a, HT^IU = 2 ^ M 2 a^a,) = 2AM ||/1|, . 
1 1 

Hence, if we let g~(T%E)*, the proof is reduced to the following 

LEMMA. Suppose condition (*) holds and g is a positive decreasing 
function that satisfies 

(3) HglU = MO/a) (i = l,2), 

then 

(4) ||g||v = 2AM«D(a). 

PROOF. Firsu assume g is a step function with finite support, i.e., 
g=X?hXio.t,)- Set J={y|maxt.=1,2(T<(^)/Oi(a))=T1(^)/«D1(a)} and then 
let gi=2*e.r PjXw.tj) an<i g2=S—gv Notice that both functions are 
positive, decreasing, step functions and 

(5) Uftll = lis! 
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in any A space. Now using condition (*), relations (5) and (3), we have 

llgilWa) = 2 /W,)/<D(a) 

i s J «=1.2 

= A2 /W,)/*^) = A hAJ^ia) 
jej 

Similarly 

Hence, we obtain relation (4) for positive, decreasing, step functions. 
Now suppose g is an arbitrary positive decreasing function and let 

{gn} be a monotone increasing sequence of positive decreasing step func
tions converging pointwise to g. By (3) and (5) 

WgXt^MQjLa) (* = 1,2) 
so 

| |gj |v ^ 2M(D(fl). 

Applying the monotone convergence theorem to {gnip}, we obtain 
relation (4). 

The author wishes to thank Professor S. D. Riemenschneider for many 
helpful conversations regarding this work. 
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