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Preface

Three classical interpolation theorems form the foundation of the modern theory of interpolation

of operators. They are the M. Riesz convexity theorem (1926), G. O. Thorin's complex version of

Riesz' theorem (1939), and the J. Marcinkiewicz interpolation theorem (1939). The ideas of Thorin

and Marcinkiewicz were reworked some twenty years later into an abstract theory of interpolation

of operators on Banach spaces and more general topological spaces. Thorin's technique has given

rise to what is now known as the complex method of interpolation, and Marcinkiewicz' to the real

method. Both have found widespread application, have extensive literatures attached to them, and

remain very much alive as subjects of current research.

This is a book about the real method of interpolation. Our goal has been to motivate and develop

the entire theory from its classical origins, that is, through the theory of spaces of measurable

functions. Although the inuence of Riesz, Thorin, and Marcinkiewicz is everywhere evident, the

work of G. H. Hardy, J. E. Littlewood, and G. P�olya on rearrangements of functions also plays a

seminal role. It is through the Hardy-Littlewood-P�olya relation that spaces of measurable functions

and interpolation of operators come together, in a simple blend which has the capacity for great

generalization. Interpolation between L1 and L1 is thus the prototype for interpolation between

more general pairs of Banach spaces. This theme airs constantly throughout the book.

The theory and applications of interpolation are as diverse as language itself. Our goal is not

a dictionary, or an encyclopedia, but instead a brief biography of interpolation, with a beginning

and an end, and (like interpolation itself) some substance in between.

The book should be accessible to anyone familiar with the fundamentals of real analysis, measure

theory, and functional analysis. The standard advanced undergraduate or beginning graduate

courses in these disciplines should su�ce. The exposition is essentially self-contained.

We wish to thank Dr. Carl Riehm and McMaster University, without whose support this project

would not have begun, and the University of South Carolina, which provides such a stimulating and

exciting environment in which to work. We are particularly indebted to Dr. Sherman Riemenschnei-

der and Mr. Natarajan Sivakumar of the University of Alberta, who suggested many improvements

and caught several errors. We thank them for their generosity and their humor, which will some-

day surely be repaid. Our thanks are due also to Department of Mathematics sta� members Jane

Squires, Jessie Smith, Sue Darlington, and Dana Ward for their invaluable assistance in preparing

the manuscript. It is a pleasure to acknowledge the e�ciency and professionalism of our editors,

Bill Sribney and Pascha Gerlinger of Harcourt Brace Jovanovich. Above all, we thank our families

for their patience and support during the preparation of this work.
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