Solutions homework 11.

(1) Let \(F, G : [a, b] \to \mathbb{R} \) be absolutely continuous functions. Prove that the product \(FG \) is absolutely continuous.

Solution: Since \(F, G \) are continuous, they are bounded on \([a, b]\), say \(|F(x)| \leq M \) and \(|G(x)| \leq N \) for all \(x \in [a, b] \). Let \(\epsilon > 0 \). Then there exists \(\delta_1 > 0 \) such that if \(\{(a_i, b_i)\} \) is finite disjoint collection of open intervals in \([a, b]\) with \(\sum (b_i - a_i) < \delta_1 \), then

\[
\sum |F(b_i) - F(a_i)| < \frac{\epsilon}{2M}.
\]

Similarly here exists \(\delta_2 > 0 \) such that if \(\{(a_i, b_i)\} \) is finite disjoint collection of open intervals in \([a, b]\) with \(\sum (b_i - a_i) < \delta_2 \), then

\[
\sum |G(b_i) - G(a_i)| < \frac{\epsilon}{2N}.
\]

Let \(\delta = \min\{\delta_1, \delta_2\} \). If now \(\{(a_i, b_i)\} \) is finite disjoint collection of open intervals in \([a, b]\) with \(\sum (b_i - a_i) < \delta \), then

\[
\sum |F(b_i)G(b_i) - F(a_i)G(a_i)| \leq \sum |F(b_i)G(b_i) - F(b_i)G(a_i)| + |F(b_i)G(a_i) - F(a_i)G(a_i)|
\]

\[
< M \sum |G(b_i) - G(a_i)| + N \sum |F(b_i) - F(a_i)| < \epsilon.
\]

Hence \(FG \) is absolutely continuous.

(2) Let \(F : [0, 1] \to \mathbb{R} \) such that \(F'(x) \) exists a.e. and satisfies \(F' \in L^1([0, 1]) \). Assume \(F \) is continuous at 0 and absolutely continuous on \([\epsilon, 1]\) for all \(\epsilon > 0 \). Prove that \(F \) is absolutely continuous on \([0, 1]\) and thus of bounded variation on \([0, 1]\).

Solution: Let \(0 < x \leq 1 \) and \(0 < \epsilon < x \). Then

\[
F(x) = F(\epsilon) + \int_{\epsilon}^{x} F'(y) \, dy.
\]

Now \(F(\epsilon) \to F(0) \) as \(\epsilon \to 0 \) by the continuity of \(F \) at 0. For any sequence \(\epsilon_n \to 0 \) the sequence of functions \(F'(y) \chi_{[\epsilon_n, x)}(y) \) converges \(F'(y) \chi_{[0, x]}(y) \) a.e. and the sequence is bounded above by \(|F'| \in L^1[0, 1] \). Hence by the Dominated Convergence Theorem

\[
\int_{\epsilon_n}^{x} F'(y) \, dy \to \int_{0}^{x} F'(y) \, dy.
\]

This implies that

\[
F(x) = F(0) + \int_{0}^{x} F'(y) \, dy
\]

and thus \(F \) is absolutely continuous.

(3) Let \(a > b > 0 \) and define \(F(0) = 0, \ F(x) = x^a \sin \frac{1}{x^b} \) for \(0 < x \leq 1 \). Prove that \(F \) is of bounded variation on \([0, 1]\). **Solution:** As \(a > 0 \) we have that \(|F'(x)| \leq x^{a-1} \to 0 \) as \(x \to 0 \), so \(F \) is continuous at 0. Also for \(x \neq 0 \) we have \(F'(x) = ax^{a-1} \sin \frac{1}{x^b} - bx^{a-b-1} \cos \frac{1}{x^b} \). Hence \(|F'(x)| \leq ax^{a-1} + bx^{a-b-1} \in L^1[0, 1] \), so \(F' \in L^1[0, 1] \). For \(\epsilon > 0 \) the function \(F' \) is continuous on \([\epsilon, 1]\), and thus bounded. This implies that \(F \) is Lipschitz on \([\epsilon, 1]\) and thus absolutely continuous on \([\epsilon, 1]\). From problem 2 it follows that \(F \) is absolutely continuous and thus of bounded variation on \([0, 1]\).