
MATH 555/704I NOTES

LEBESGUE’S THEOREM ON

RIEMANN INTEGRABLE FUNCTIONS

In this note we will present a self contained proof of Lebesgue’s characterization
of Riemann integrable functions on [a, b] as those bounded functions which are
continuous a.e. on [a, b]. The text contains a proof which uses the theory of
the Lebesgue integral. Other proofs exist which use either the notions of semi-
continuous functions or the modulus of continuity of a function. Our proof is
modelled after one which uses the theory of the Lebesgue integral, but only uses the
concepts of measure (and content) zero. Recall that E ⊂ R has (Lebesgue) measure
zero if for all ε > 0 there exists a countable collection {In} of open intervals with
E ⊂ ∪∞n=1In such that

∑
n l(In) < ε, where l(In) denotes the length of the interval

In. If we replace in this definition the countable collection of intervals by a finite
collection of of open intervals, then we say that E has content zero. Obviously a
set of content zero has measure zero.

Lemma 1. A countable union of sets of measure zero has measure zero.

Proof. Let En ⊂ R have measure zero and put E = ∪nEn. Let ε > 0. Then
for each n there exist a countable collection {In,k}∞k=1 of open intervals such that
En ⊂ ∪∞k=1In,k and

∑
k l(In,k) <

ε
2n . Now {In,k}k,n is again a countable union of

open intervals and E ⊂ ∪k,nIn,k such that
∑
k,n l(In,k) < ε. Hence E has measure

zero. �
Lemma 2. Let 0 ≤ f : [a, b]→ R be a Riemann integrable function with

∫ b
a
f = 0.

Then for all c > 0 the set {x ∈ [a, b] : f(x) ≥ c} has content zero.

Proof. Let c > 0 and denote by E the set {x ∈ [a, b] : f(x) ≥ c}. Let ε > 0. Then
there exists a partition P = {x0, . . . , xn} of [a, b] such that U(P, f) < ε · c, where
U(P, f) denotes the Riemann upper sum corresponding to P, i.e.,

U(P, f) =
n∑
i=1

Mi∆xi,

where
Mi = sup{f(x) : x ∈ [xi−1, xi]}.

Denote I = {i : E ∩ [xi−1, xi] 6= ∅}. If i ∈ I, then Mi ≥ c. Hence we have

ε · c > U(P, f) ≥
∑
i∈I

Mi∆xi ≥ c
∑
i∈I

∆xi.

From this it follows that
∑
i∈I l([xi−1, xi]) =

∑
i∈I ∆xi < ε. Since E is covered by

{[xi−1, xi] : i ∈ I}, it follows that E has content zero. �
We say that a property P holds almost everywhere (abbreviated by a.e.) on

[a, b], if the set {x ∈ [a, b] : P fails for x} has measure zero.
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Corollary 3. Let 0 ≤ f : [a, b]→ R be a Riemann integrable function with
∫ b
a
f =

0. Then f is zero a.e. on [a, b].

Proof. The set {x ∈ [a, b] : f(x) 6= 0} = ∪∞n=1{x ∈ [a, b] : f(x) ≥ 1
n
}, which is by

the above lemma a countable union of sets of content zero and has thus measure
zero. �

Let P = {x0, . . . , xn} be a partition of [a, b]. Let

Mi = sup{f(x) : x ∈ [xi−1, xi]}

and
mi = inf{f(x) : x ∈ [xi−1, xi]}.

Denote by φ the upper function for f corresponding to P and by ψ the corresponding
lower function, i.e.,

φ(x) =
n∑
i=1

Miχ[xi−1,xi)(x)

and

ψ(x) =
n∑
i=1

miχ[xi−1,xi)(x).

It is easy to see that φ and ψ are Riemann integrable and that
∫ b
a φ = U(P, f) and∫ b

a
ψ = L(P, f). Moreover ψ(x) ≤ f(x) ≤ φ(x) on [a, b). Recall that the upper

Riemann integral is given by
∫̄ b
a f = inf{U(P, f) : P partition of [a, b]} and that

the lower Riemann integral is given by
∫ b
a f = sup{L(P, f) : P partition of [a, b]}.

By definition f is Riemann integrable if the lower integral of f equals the upper
integral of f .

Theorem 4 (Lebesgue). A bounded function f : [a, b]→ R is Riemann integrable
if and only if it is continuous a.e. on [a, b].

Proof. Assume first that f is Riemann integrable on [a, b]. Let {Pk} be a sequence
of partitions of [a, b] with Pk ⊂ Pk+1 and such that the mesh |Pk| → 0 as k →∞.
Let φk the upper function for f corresponding to Pk and by ψk the corresponding
lower function. Then ψk(x) ↑≤ f(x) ≤ φk(x) ↓ for all x ∈ [a, b) and

∫ b
a ψk ↑

∫ b
a f

and
∫ b
a
φk ↓

∫ b
a
f . Let g(x) = limk→∞ ψk(x) and h(x) = limk→∞ φk(x) for x ∈ [a, b].

It follows now that ψk(x) ≤ g(x) ≤ f(x) ≤ h(x) ≤ φk(x) for x ∈ [a, b). Hence we
have ∫ b

a

ψk ≤
∫ b

a

g ≤
∫̄ b

a

g ≤
∫ b

a

f ≤
∫ b

a

h ≤
∫̄ b

a

h ≤
∫ b

a

φk.

Letting k →∞ we conclude that g and h are Riemann integrable and that
∫ b
a
g =∫ b

a h =
∫ b
a f . As h ≥ g it follows from Corollary 3 that g = h a.e. Hence the set

E = {x ∈ [a, b] : g(x) 6= h(x)} ∪
⋃
k Pk has measure zero. We claim that f is

continuous on [a, b] \ E. Let x0 ∈ [a, b] \ E and let ε > 0. Then g(x0) = h(x0)
implies that there exists k ∈ N such that φk(x0) − ψk(x0) < ε. Now φk − ψk is
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constant in a neighborhood of x0, since x0 /∈ Pk. Hence there exists δ > 0 such
that φk(x)−ψk(x) = φk(x0)−ψk(x0) for all |x− x0| < δ. For |x− x0| < δ we now
have

−ε < ψk(x0)− φk(x0) ≤ f(x)− f(x0) ≤ φk(x0)− ψk(x0) < ε,

which shows that f is continuous at x0. This completes the proof that f is continu-
ous except for a set of measure zero. Assume now that f is continuous on [a, b] \E,
where E has measure zero. Let ε > 0 and M such that |f(x)| ≤M on [a, b]. Then
|f(x)− f(y)| ≤ 2M for all x, y ∈ [a, b]. Since E has measure zero, there exists open
intervals I1, I2, . . . such that E ⊂ ∪nIn and

∑
n l(In) <

ε
4M . For all x ∈ [a, b] \ E

there exists an open interval Jx with x ∈ J(x) such that |f(z)− f(y)| ≤ ε
2(b−a) for

all y, z ∈ Jx ∩ [a, b], since f is continuous at such x. Now {Ik}∪{Jx : x ∈ [a, b] \E}
is an open cover of [a, b], so by compactness of [a, b] there exists a finite cover
{Ik}nk=1 ∪

⋃m
i=1{Jxi : xi ∈ [a, b] \ E} of [a, b]. Let P = {a = t0, . . . , tN = b} be the

partition of [a, b] determined by those endpoints of {Ik}nk=1 and {Jxi : xi ∈ [a, b]\E},
which are inside [a, b]. For each 1 ≤ j ≤ N the interval (tj−1, tj) is contained in
some Ik or some Jxi . Let J = {j : (tj−1, tj) ⊂ Ik for some k}. Then we have that

U(P, f)− L(P, f) =
N∑
j=1

∆(tj) · sup{f(x)− f(y) : x, y ∈ [tj−1, tj]}

≤
∑
j∈J

∆(tj) · 2M +
∑
j /∈J

∆(tj) ·
ε

2(b− a)

<
ε

4M
· 2M + (b− a) · ε

2(b− a) = ε.

Hence f is Riemann integrable. �
Exercise 1. Prove that a set E has content zero if and only if there exists a closed
bounded interval [a, b], containing E, such that χE is Riemann integrable on [a, b]
and has Riemann integral zero.
Exercise 2. Prove that a set has zero content if and only if its closure is a bounded
set with measure zero.
Exercise 3. Give an example of a bounded set with measure zero which does not
have content zero.
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