MATH 555/7041 NOTES
LEBESGUE’S THEOREM ON
RIEMANN INTEGRABLE FUNCTIONS

In this note we will present a self contained proof of Lebesgue’s characterization
of Riemann integrable functions on [a,b] as those bounded functions which are
continuous a.e. on [a,b]. The text contains a proof which uses the theory of
the Lebesgue integral. Other proofs exist which use either the notions of semi-
continuous functions or the modulus of continuity of a function. Our proof is
modelled after one which uses the theory of the Lebesgue integral, but only uses the
concepts of measure (and content) zero. Recall that E C R has (Lebesgue) measure
zero if for all € > 0 there exists a countable collection {I,,} of open intervals with
E C Uye I, such that ) I(I,) < €, where [(I,,) denotes the length of the interval
I,,. If we replace in this definition the countable collection of intervals by a finite
collection of of open intervals, then we say that E has content zero. Obviously a
set of content zero has measure zero.

Lemma 1. A countable union of sets of measure zero has measure zero.

Proof. Let E, C R have measure zero and put £ = U,FE,. Let ¢ > 0. Then
for each n there exist a countable collection {1, ;}72, of open intervals such that
E, cU I,y and >, I(I, k) < 57. Now {I, 1 }r,n is again a countable union of
open intervals and E C Uy I, i such that an [(Ink) < e. Hence E has measure
zero. [

Lemma 2. Let 0 < f: [a,b] — R be a Riemann integrable function with fab f=0.
Then for all ¢ > 0 the set {x € [a,b] : f(x) > c} has content zero.

Proof. Let ¢ > 0 and denote by E the set {x € [a,b] : f(z) > ¢}. Let € > 0. Then
there exists a partition P = {xq,...,z,} of [a,b] such that U(P, f) < € - ¢, where
U(P, f) denotes the Riemann upper sum corresponding to P, i.e.,

UP, )= MAx,
1=1

where
M; =sup{f(z):x € [zi—1, 2]}
Denote I = {i: EN[x;_1,2;] # 0}. If i € I, then M; > c. Hence we have
e-c>UP, f) > ZMiA:z:i > CZA.CI?Z'.
icl iel
From this it follows that ). _; I([z;—1,2:]) = >,c; Az; < €. Since E is covered by
{lxi—1, 2] 1 i € I}, it follows that F has content zero. [J

We say that a property P holds almost everywhere (abbreviated by a.e.) on
[a, b], if the set {z € [a,b] : P fails for x} has measure zero.
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Corollary 3. Let 0 < f:[a,b] — R be a Riemann integrable function with f; f=
0. Then f is zero a.e. on [a,b].

Proof. The set {z € [a,b] : f(z) # 0} = U2 {x € [a,b] : f(z) > 2}, which is by
the above lemma a countable union of sets of content zero and has thus measure
zero. [

Let P = {xg,...,z,} be a partition of [a, b]. Let
M; = sup{f(x):z € [x;_1, 2]}

and
m; = inf{f(x): x € [x;-1, 2]}

Denote by ¢ the upper function for f corresponding to P and by 1 the corresponding
lower function, i.e.,

=1

and

Y(x) = Z mix[miflymi)(x)'
=1

It is easy to see that ¢ and 1) are Riemann integrable and that ff ¢ =U(P, f) and
f:w = L(P, f). Moreover ¥(z) < f(z) < ¢(x) on [a,b). Recall that the upper
Riemann integral is given by Lb f = inf{U(P, f) : P partition of [a,b]} and that

the lower Riemann integral is given by [ 5 f =sup{L(P, f) : P partition of [a, b]}.
By definition f is Riemann integrable if the lower integral of f equals the upper
integral of f.

Theorem 4 (Lebesgue). A bounded function f : [a,b] — R is Riemann integrable
if and only if it is continuous a.e. on [a,b].

Proof. Assume first that f is Riemann integrable on [a, b]. Let {P}} be a sequence
of partitions of [a, b] with Py C Pr4+1 and such that the mesh |Px| — 0 as k — oo.
Let ¢ the upper function for f corresponding to Pi and by ¢ the corresponding
lower function. Then ¢y (x) 1< f(z) < ¢r(x) | for all z € [a,b) and f; Ui T fff
and f: b | ff f. Let g(x) = limy o0 ¥i(x) and h(z) = limg_.o ¢ () for x € [a, b].
It follows now that i (x) < g(x) < f(x) < h(z) < ¢(z) for x € [a,b). Hence we

have
b b —b b b —b b
JRCEY EY RS VY e e

Letting £k — oo we conclude that g and h are Riemann integrable and that f: g=
ffh = ff f. As h > g it follows from Corollary 3 that g = h a.e. Hence the set
E = {x € [a,b] : g(x) # h(x)} U, Pr has measure zero. We claim that f is
continuous on [a,b] \ E. Let zy € [a,b] \ E and let € > 0. Then g(xg) = h(zo)
implies that there exists k € N such that ¢x(xg) — Yg(x9) < €. Now ¢ — 1y is
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constant in a neighborhood of xg, since zo ¢ Px. Hence there exists § > 0 such
that ¢ (z) — Vg (z) = dr(x0) — Y (x0) for all |x — 9| < 0. For |x — x| < § we now
have

—e < Yr(z0) — dr(w0) < f(2) — f(20) < D1(T0) — Yi(0) < €f

which shows that f is continuous at xy. This completes the proof that f is continu-
ous except for a set of measure zero. Assume now that f is continuous on [a, b] \ E,
where E has measure zero. Let € > 0 and M such that |f(x)| < M on [a,b]. Then
|f(x)— f(y)| < 2M for all z,y € [a, b]. Since E has measure zero, there exists open
intervals Iy, I5,... such that £ C U, I, and ) I(I,) < 557- Forall x € [a,b] \ &
there exists an open interval J, with x € J(z) such that |[f(z) — f(y)| < 35—a) for
all y, z € J, NJa, b], since f is continuous at such z. Now {I;} U{J, : = € [a,b] \ E'}
is an open cover of [a,b], so by compactness of [a,b] there exists a finite cover
{I}y_y WU {Js; - @i € [a,b]\ E} of [a,b]. Let P ={a=tg,...,tx = b} be the
partition of [a, b] determined by those endpoints of {I;}}_, and {J, : z; € [a,b]\E},
which are inside [a,b]. For each 1 < j < N the interval (¢;_;,t;) is contained in
some [, or some J,,. Let J = {j: (t;_1,t;) C I for some k}. Then we have that

N
UP, )= L(P, f) = D Alty) - sup{f(z) = f(y) : 2,y € [tj1, 5]}
JjeJ Jj¢J
< ﬁ.zMJr(b—a).Q(be_a) =«

Hence f is Riemann integrable. [

Ezercise 1. Prove that a set F has content zero if and only if there exists a closed
bounded interval [a, b], containing F, such that Xg is Riemann integrable on [a, b]
and has Riemann integral zero.

Ezercise 2. Prove that a set has zero content if and only if its closure is a bounded
set with measure zero.

Ezercise 3. Give an example of a bounded set with measure zero which does not
have content zero.



