THE MEASURE OF NON-COMPACTNESS OF A DISJOINTNESS PRESERVING OPERATOR

ANTON R. SCHEP

University of South Carolina

ABSTRACT. Let E and F be Banach lattices and assume E^* has no atoms. Let $T: E \to F$ be a norm bounded disjointness preserving operator from E into F. Then $\beta(T) = \alpha(T) = ||T||_e = ||T||$.

1. INTRODUCTION

Let E be a Banach space and D a norm bounded subset of E. Then the Kuratowski measure of non-compactness of D is defined as

$$\alpha(D) = \inf\{\lambda : D \subset \bigcup_{j=1}^{m} D_j, \operatorname{diam}(D_j) \le \lambda\}$$

and the Hausdorff measure of non-compactness of D is defined as

$$\beta(D) = \inf\{r : D \subset \bigcup_{j=1}^{m} B(x_j, r), x_j \in E\},\$$

where $B(x_j, r)$ denotes the ball in E with center x_j and radius r. If E and F are Banach spaces and $T: E \to F$ is a bounded linear operator, then one defines for T the corresponding measures of non-compactness

$$\alpha(T) = \inf\{k : \alpha(T(D)) \le k\alpha(D) \text{ for all bound ed } D \subset E\}$$

and

$$\beta(T) = \inf\{k : \beta(T(D) \le k\beta(D) \text{ for all bounded } D \subset E\} = \beta(T(B_E)),$$

where B_E denotes the unit ball in E. We recall some of the basic properties of $\alpha(T)$, respectively $\beta(T)$:

- (1) $\frac{1}{2}\alpha(T) \le \beta(T) \le 2\alpha(T),$
- (2) $\tilde{\alpha}(T^*) \leq \beta(T)$ and $\alpha(T) \leq \beta(T^*)$ (see [5]),
- (3) $\alpha(T(B_E)) = \alpha(T^*(B_{F^*}))$ (see [1]),
- (4) $\max\{\alpha(T), \beta(T)\} \leq ||T||_e$, where $||T||_e$ denotes the essential norm of T.

In this paper we are interested in $\alpha(T)$ and $\beta(T)$ for a special class of operators on Banach lattices. For general information on Banach lattices we refer to the monographs [4], [7] and [10]. For specific results on measures of non-compactness of operators on Banach lattices we refer to [6], [8] and [9]. From now on E and Fwill denote Banach lattices. A linear operator T from E into F is called *disjointness preserving* if $x \wedge y = 0$ implies $|Tx| \wedge |Ty| = 0$. It was shown in [6, theorem 3.10], that if E^* is non-atomic and $T: E \to F$ is a norm bounded disjointness preserving operator, then $\beta(T) \geq \frac{1}{2}||T||$. It was indicated in [6] that no example was known for which $\beta(T) < ||T||$. Moreover for special classes of spaces (e.g. $F = L_p, 1 \leq p < \infty$) it was indicated in [6] that one always has $\beta(T) = ||T||$. It will be shown in this paper that in fact under the above hypotheses one always has $\beta(T) = ||T||$. Our approach follows [6], with one major difference: we employ the Kuratowski measure of noncompactness α , whereas [6] only used the Hausdorff measure of non-compactness β . It is this difference which allows us to obtain the improved result.

2. The main result

We denote by E^* the dual space of E and by E_n^* the space of order continuous linear functionals on E. For $0 \le \phi \in E^*$ we denote by p_{ϕ} the seminorm $p_{\phi}(f) = \phi(|f|)$. The following lemma is an easy consequence of the result [3, Theorem 4] that a probability measure μ on a complete Boolean algebra has a continuous spectral resolution. For the benefit of the reader we provide a direct short proof.

lemma 2.1. Let E be a Dedekind complete non-atomic Banach lattice and let $0 \le u \in E$ and $0 \le \phi \in E_n^*$ with $\phi(u) = 1$. Then for all $t \in [0, 1]$ there exists a band projection P_t such that $\phi(P_t u) = t$ and such that $t \le s$ implies $P_t \le P_s$.

Proof. Let $P_0 = 0$ and P_1 be the band projection on $\{u\}^{dd}$. By Zorn's lemma we can find a maximal chain $\{P_{\tau}\}$ of band projections such that $0 \leq P_{\tau} \leq P_1$. Then we note that for each 0 < t < 1 there exists $\tau_0 \in \{\tau\}$ such that $\phi(P_{\tau_0}u) = t$, since E is non-atomic and ϕ is order continuous. Define now $P_t = \sup\{P_{\tau} : \phi(P_{\tau}u) = t\}$. The order continuity of ϕ implies now $\phi(P_tu) = t$ and obviously $t \leq s$ implies $P_t \leq P_s$. \Box

In the following lemma we denote by S^n the *n*-sphere in \mathbf{R}^{n+1} , i.e. $S^n = \{(x_1, \ldots, x_{n+1}) : (x_1, \ldots, x_{n+1}) \in \mathbf{R}^{n+1} \text{ with } x_1^2 + \cdots + x_{n+1}^2 = 1\}.$

lemma 2.2. Let E, u and ϕ be as in Lemma 2.1. Then for all $n \in \mathbb{N}$ there exists a p_{ϕ} -continuous map $F_n : S^n \to \{v \in E : |v| = u\}$ such that $F_n(-x_1, \ldots, -x_{n+1}) = -F_n(x_1, \ldots, x_{n+1})$ for all (x_1, \ldots, x_{n+1}) in S^n .

Proof. Let P_t be a collection of band projections as in Lemma 2.1. We shall construct F_n inductively. To define F_1 we will parametrize S^1 as $\{e^{2\pi it} : 0 \le t < 1\}$. Define then

$$F_1(e^{2\pi it}) = \begin{cases} 2P_{2t}u - u & \text{for } 0 \le t \le \frac{1}{2} \\ -2P_{2t-1}u + u & \text{for } \frac{1}{2} < t < 1 \end{cases}$$

Note that $|2P_{2t}u - u| = |P_{2t}u + P_{2t}u - P_1u| = |P_{2t}u + (P_1 - P_{2t})u| = u$, since $P_{2t} \perp P_1 - P_{2t}$ so that $|F_1(e^{2\pi it})| = u$ for all t. Also observe that if $0 \leq t < \frac{1}{2}$, then $F_1(-e^{2\pi it}) = F_1(e^{2\pi i(t+\frac{1}{2})}) = -2P_{2t}u + u = -F_1(e^{2\pi it})$. To show that F_1 is p_{ϕ} -continuous, we only have to show that $P_t u$ is a p_{ϕ} -continuous function of t, which

is obvious from the fact that $p_{\phi}(P_t u - P_s u) = |t - s|$ for all $t, s \in [0, 1]$. Hence F_1 satisfies all the requirements. Assume now that $F_{n-1} : S^{n-1} \to \{v \in E : |v| = u\}$ has been constructed. Then define F_n as follows: $F_n(x_1, \ldots, x_{n+1}) =$

$$\begin{cases} u & \text{if } x_{n+1} = 1\\ (P_1 - P_{x_{n+1}})F_{n-1}\left(\frac{x_1}{(1 - x_{n+1}^2)^{\frac{1}{2}}}, \dots, \frac{x_n}{(1 - x_{n+1}^2)^{\frac{1}{2}}}\right) + P_{x_{n+1}}u\\ & \text{if } 0 \le x_{n+1} < 1\\ -F_n(-x_1, \dots, -x_{n+1}) & \text{if } x_{n+1} < 0 \end{cases}$$

It is easy to see that for all $(x_1, ..., x_{n+1}) \in S^n$ we have $|F_n(x_1, ..., x_{n+1})| = u$ and $F_n(-x_1, ..., -x_{n+1}) = -F_n(x_1, ..., x_{n+1})$, since $F_n(x_1, ..., x_n, 0) = F_{n-1}(x_1, ..., x_n)$. To show that F_n is p_{ϕ} -continuous at all $(x_1, ..., x_{n+1}) \in S^n$ one has to consider 3 cases: $x_{n+1} = 0, 0 < x_{n+1} < 1$ and $x_{n+1} = 1$. First we consider the case $x_{n+1} = 0$. Then $F_n(x_1, ..., x_{n+1}) = F_{n-1}(x_1, ..., x_n)$. The continuity of F_n at $(x_1, ..., x_{n+1})$ follows now from the continuity of F_{n-1} and the fact that $P_{x_{n+1,k}} u \downarrow 0$ as $k \to \infty$ for any sequence $x_{n+1,k} \downarrow^k 0$. In case $0 < x_{n+1} < 1$, then we denote by

$$X = \left(\frac{x_1}{\left(1 - x_{n+1}^2\right)^{\frac{1}{2}}}, \dots, \frac{x_n}{\left(1 - x_{n+1}^2\right)^{\frac{1}{2}}}\right)$$

the corresponding point in S^{n-1} . Let now (x_1, \ldots, x_{n+1}) and (y_1, \ldots, y_{n+1}) be points in S^n with $0 < x_{n+1}, y_{n+1} < 1$. Then we have

$$\begin{split} p_{\phi}(F_{n}(x_{1},\ldots,x_{n+1})-F_{n}(y_{1},\ldots,y_{n+1})) &\leq \\ \phi(|(P_{1}-P_{x_{n+1}})F_{n-1}(X)-(P_{1}-P_{y_{n+1}})F_{n-1}(Y)|) + \phi(P_{x_{n+1}}u-P_{y_{n+1}}u) \\ &\leq \phi(|F_{n-1}(X)-F_{n-1}(Y)|) + 2\phi(|P_{x_{n+1}}u-P_{y_{n+1}}u|), \end{split}$$

which implies that F_n is p_{ϕ} -continuous at (x_1, \ldots, x_{n+1}) . We leave it to the reader to verify that F_n is continuous at $(0, \ldots, 1)$. \Box

We now define a measure of non-compactness associated to p_{ϕ} . If $D \subset E$ is norm bounded, then define:

$$\alpha_{\phi}(D) = \inf \{\lambda : D \subset \bigcup_{j=1}^{m} D_j, p_{\phi}\text{-diam}(D_j) \le \lambda\}.$$

It is easy to see that $\alpha_{\phi}(D) \leq ||\phi|| \alpha(D)$.

Lemma 2.3. Let E, u and ϕ be as above. Then $\alpha_{\phi}([-u, u]) = 2$.

Proof. Since the p_{ϕ} -diameter of [-u, u] is 2, we have $\alpha_{\phi}([-u, u]) \leq 2$. Assume now that $[-u, u] \subset \bigcup_{j=1}^{n} D_{j}$. Decompose E as $N_{\phi} \oplus N_{\phi}^{d}$, where N_{ϕ} denotes $\{x \in E : \phi(|x|) = 0\}$. We can then assume that the principal ideal E_{u} generated by u is contained in N_{ϕ}^{d} and then replace D_{j} by $D_{j} \cap E_{u}$. Then we denote by \tilde{D}_{j} the p_{ϕ} -closure of D_{j} in the completion of (E_{u}, p_{ϕ}) . Let F_{n-1} be the map constructed in the previous lemma. Then $\bigcup_{j=1}^{n} F_{n-1}^{-1}(\tilde{D}_{j})$ is a covering of S^{n-1} with n closed sets. By the Lusternik–Schnirelman–Borsuk theorem ([2]) there exists an index j_0 and $(x_1, \ldots, x_n) \in S^{n-1}$ so that $\pm(x_1, \ldots, x_n) \in F_{n-1}^{-1}(\tilde{D}_{j_0})$, i.e. $\pm F_{n-1}(x_1, \ldots, x_n) \in \tilde{D}_{j_0}$. Hence

$$p_{\phi}$$
-diam $(D_{j_0}) = p_{\phi}$ -diam $(D_{j_0}) \ge 2p_{\phi}(F_{n-1}(x_1, \dots, x_n)) = 2,$

and the proof of the lemma is complete. \Box

Remark. The above lemma says essentially that $\alpha([-\chi_X, \chi_X]) = 2$ in the space $L_1(X, \mu)$, where μ is a non-atomic probability measure. The next proposition shows how to compute $\alpha([-u, u])$ in a large class of Banach lattices, in particular the following proposition holds for $E = L_p(X, \mu)$, where $1 \le p \le \infty$.

Proposition 2.4. Let *E* be a Dedekind complete non-atomic Banach lattice and assume $||u|| = \sup \{ \langle \phi, u \rangle : 0 \leq \phi \in E_n^*, ||\phi|| = 1 \}$ for all $0 \leq u \in E$. Then $\alpha([-u, u]) = 2||u||$.

Proof. Let $\epsilon > 0$ and $0 \le u \in E$ with $u \ne 0$. Then by assumption there exists $0 \le \phi \in E_n^*, \|\phi\| = 1$ with $\phi(u) > (1-\epsilon)\|u\|$. It follows now from the above lemma, using a scaling of ϕ , that $\alpha_{\phi}([-u, u]) = 2\phi(u)$. Hence $\alpha([-u, u]) \ge \alpha_{\phi}([-u, u]) > 2(1-\epsilon)\|u\|$ for all $\epsilon > 0$. Hence $\alpha([-u, u]) = 2\|u\|$. \Box

Recall now that a positive linear operator T from a Banach lattice E into a Banach lattice F is called a *Maharam operator* (or *interval preserving*) if T[0, u] = [0, Tu] for all $0 \le u \in E$.

Proposition 2.5. Let *E* and *F* be Banach lattices with *F* Dedekind complete, nonatomic and such that $||f|| = \sup\{\langle |f|, \phi \rangle : 0 \leq \phi \in F_n^*, ||\phi|| \leq 1\}$ for all $f \in F$. If $0 \leq T : E \to F$ is a Maharam operator, then $\alpha(T(B_E)) = 2||T||$.

Proof. Let $\epsilon > 0$. Then there exists $0 \le u \in E$ such that ||u|| = 1 and $||Tu|| \ge ||T|| - \epsilon$. Then $[-Tu, Tu] = T[-u, u] \subseteq T(B_E)$ implies that $\alpha(T(B_E)) \ge \alpha([-Tu, Tu]) = 2||Tu|| \ge 2(||T|| - \epsilon)$, and hence $\alpha(T(B_E)) = 2||T||$. \Box

We now derive, along the same lines as in [6], the main result of this pape r.

Theorem 2.6. Let E and F be Banach lattices such that E^* is non-atomic. If $T: E \to F$ is a norm bounded disjointness preserving operator, then $\alpha(T) = \beta(T) = ||T||_e = ||T||_e$.

Proof. As noted in [6], $|T^*|$ is an order continuous Maharam operator and there exists $\pi \in Z(F^*)$, the center of F^* , such that $T^* = |T^*| \circ \pi$ and $|\pi| = I$. Now E^* satisfies the hypotheses of the previous proposition, so $\alpha(|T^*|(B_{F^*})) = 2|||T^*|||$. Since π is an isometry, we conclude that $\alpha(T^*(B_{F^*})) = 2||T^*||$. From [1] we know that $\alpha(T^*(B_{F^*})) = \alpha(T(B_E))$, so that we conclude that $\alpha(T(B_E)) = 2||T||$. Now the inequalities $\alpha(T(B_E)) \leq 2\alpha(T)$ and $\alpha(T(B_E)) \leq 2\beta(T(B_E)) = 2\beta(T)$ imply that $\beta(T) = \alpha(T) = ||T||$. The theorem follows now, since we always have $\beta(T) \leq ||T||_e \leq ||T||$. \Box

Acknowledgements. This paper was written while the author held a fellowship from the Alexander von Humboldt Foundation at the University of Tübingen. The author acknowledges also some support from a South Carolina Research and Productive Scholarship grant.

References

- K. Astala, On measures of non-compactness and ideal variations in Banach spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. Diss. 29 (1980), 1–42.
- 2. K. Kuratowski, Topology II, Acad. Press, New York London, 1968.
- W.A.J. Luxemburg, On the existence of σ-complete prime ideals in Boolean algebras, Colloq. Math. XIX (1968), 51–58.
- 4. W.A.J. Luxemburg A.C. Zaanen, Riesz spaces I, North-Holland, Amsterdam, 1971.
- 5. R.D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 38 (1970), 473–478.
- B. de Pagter A.R. Schep, Measures of non-compactness of operators in Banach lattices, J. Funct. Anal. 78 (1988), 31–55.
- 7. H.H. Schaefer, Banach lattices and positive operators, Springer Verlag, New York Heidelberg Berlin, 1974.
- L.W. Weis, On the computation of some quantities in the theory of Fredholm operators, Proc. 12th Winter School on Abstract Analysis (Srni), Supplemento di Rendiconti de Circolo Matematico di Palermo II 5 (1984).
- 9. L. Weis M. Wolff, On the essential spectrum of operators on L^1 , Semesterber. Funkt. Tübingen Sommersemester 1984.
- 10. A.C. Zaanen, Riesz spaces II, North-Holland, Amsterdam, 1983.

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208