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Abstract. Let E and F be Banach lattices and assume E∗ has no atoms. Let
T : E → F be a norm bounded disjointness preserving operator from E into F .
Then β(T ) = α(T ) = ‖T‖e = ‖T‖.

1. Introduction

Let E be a Banach space and D a norm bounded subset of E. Then the Kura-
towski measure of non-compactness of D is defined as

α(D) = inf{λ : D ⊂
m⋃
j=1

Dj,diam(Dj) ≤ λ}

and the Hausdorff measure of non-compactness of D is defined as

β(D) = inf{r : D ⊂
m⋃
j=1

B(xj , r), xj ∈ E},

where B(xj , r) denotes the ball in E with center xj and radius r. If E and F are
Banach spaces and T : E −→ F is a bounded linear operator , then one defines for
T the corresponding measures of non-compactness

α(T ) = inf{k : α(T (D)) ≤ kα(D) for all bound ed D ⊂ E}

and

β(T ) = inf{k : β(T (D) ≤ kβ(D) for all bounded D ⊂ E} = β(T (BE)),

where BE denotes the unit ball in E. We recall some of the basic properties of
α(T ), respectivelyβ(T ):

(1) 1
2α(T ) ≤ β(T ) ≤ 2α(T ),

(2) α(T ∗) ≤ β(T ) and α(T ) ≤ β(T ∗) (see [5]),
(3) α(T (BE)) = α(T ∗(BF∗)) (see [1]),
(4) max{α(T ), β(T )} ≤ ‖T‖e, where ‖T‖e denotes the essential norm of T .
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In this paper we are interested in α(T ) and β(T ) for a special class of operators
on Banach lattices. For general information on Banach lattices we refer to the
monographs [4], [7] and [10]. For specific results on measures of non-compactness
of operators on Banach lattices we refer to [6], [8] and [9]. From now on E and F
will denote Banach lattices. A linear operator T from E into F is called disjointness
preserving if x ∧ y = 0 implies |Tx| ∧ |Ty| = 0. It was shown in [6, theorem 3.10],
that if E∗ is non-atomic and T : E −→ F is a norm bounded disjointness preserving
operator, then β(T ) ≥ 1

2‖T‖. It was indicated in [6] that no example was known for
which β(T ) < ‖T‖. Moreover for special classes of spaces (e.g. F = Lp, 1 ≤ p <∞)
it was indicated in [6] that one always has β(T ) = ‖T‖. It will be shown in this paper
that in fact under the above hypotheses one always has β(T ) = ‖T‖. Our approach
follows [6], with one major difference: we employ the Kuratowski measure of non-
compactness α, whereas [6] only used the Hausdorff measure of non-compactness
β. It is this difference which allows us to obtain the improved result.

2. The main result

We denote by E∗ the dual space of E and by E∗n the space of order continuous
linear functionals on E. For 0 ≤ φ ∈ E∗ we denote by pφ the seminorm pφ(f) =
φ(|f |). The following lemma is an easy consequence of the result [3, Theorem 4] that
a probability measure µ on a complete Boolean algebra has a continuous spectral
resolution. For the benefit of the reader we provide a direct short proof.

lemma 2.1. Let E be a Dedekind complete non-atomic Banach lattice and let
0 ≤ u ∈ E and 0 ≤ φ ∈ E∗n with φ(u) = 1. Then for all t ∈ [0, 1] there exists a band
projection Pt such that φ(Ptu) = t and such that t ≤ s implies Pt ≤ Ps.
Proof. Let P0 = 0 and P1 be the band projection on {u}dd. By Zorn’s lemma we
can find a maximal chain {Pτ} of band projections such that 0 ≤ Pτ ≤ P1. Then
we note that for each 0 < t < 1 there exists τ0 ∈ {τ} such that φ(Pτ0u) = t, since
E is non-atomic and φ is order continuous. Define now Pt = sup{Pτ : φ(Pτu) = t}.
The order continuity of φ implies now φ(Ptu) = t and obviously t ≤ s implies
Pt ≤ Ps. �

In the following lemma we denote by Sn the n-sphere in Rn+1, i.e . Sn =
{(x1, . . . , xn+1) : (x1, . . . , xn+1) ∈ Rn+1 with x2

1 + · · ·+ x2
n+1 = 1}.

lemma 2.2. Let E, u and φ be as in Lemma 2.1. Then for all n ∈N there exists a
pφ-continuous map Fn : Sn −→ {v ∈ E : |v| = u} such that Fn(−x1, . . . ,−xn+1) =
−Fn(x1, . . . , xn+1) for all (x1, . . . , xn+1) inSn.

Proof. Let Pt be a collection of band projections as in Lemma 2.1. We shall con-
struct Fn inductively. To define F1 we will parametrize S1 as {e2πit : 0 ≤ t < 1}.
Define then

F1(e2πit) =
{

2P2tu− u for 0 ≤ t ≤ 1
2

−2P2t−1u+ u for 1
2 < t < 1

Note that |2P2tu − u| = |P2tu + P2tu − P1u| = |P2tu + (P1 − P2t)u| = u, since
P2t⊥P1 − P2t so that |F1(e2πit)| = u for all t. Also observe that if 0 ≤ t < 1

2 , then
F1(−e2πit) = F1(e2πi(t+ 1

2 )) = −2P2tu + u = −F1(e2πit). To show that F1 is pφ-
continuous, we only have to show that Ptu is a pφ-continuous function of t, which
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is obvious from the fact that pφ(Ptu− Psu) = |t− s| for all t, s ∈ [0, 1]. Hence F1

satisfies all the requirements. Assume now that Fn−1 : Sn−1 −→ {v ∈ E : |v| = u}
has been constructed. Then define Fn as follows: Fn(x1, . . . , xn+1) =

u if xn+1 = 1

(P1 − Pxn+1)Fn−1

(
x1

(1−x2
n+1)

1
2
, . . . , xn

(1−x2
n+1)

1
2

)
+ Pxn+1u

if 0 ≤ xn+1 < 1
−Fn(−x1, . . . ,−xn+1) if xn+1 < 0

It is easy to see that for all (x1, ..., xn+1) ∈ Sn we have |Fn(x1, ..., xn+1)| = u and
Fn(−x1, ...,−xn+1) = −Fn(x1, ..., xn+1), since Fn(x1, ..., xn, 0) = Fn−1(x1, ..., xn).
To show that Fn is pφ-continuous at all (x1, ..., xn+1) ∈ Sn one has to consider 3
cases: xn+1 = 0, 0 < xn+1 < 1 and xn+1 = 1. First we consider the case xn+1 = 0.
Then Fn(x1, . . . , xn+1) = Fn−1(x1, . . . , xn). The continuity of Fn at (x1, . . . , xn+1)
follows now from the continuity of Fn−1 and the fact that Pxn+1,ku ↓ 0 as k → ∞
for any sequence xn+1,k ↓k 0. In case 0 < xn+1 < 1, then we denote by

X =

(
x1

(1− x2
n+1)

1
2
, . . . ,

xn

(1− x2
n+1)

1
2

)

the corresponding point in Sn−1. Let now (x1, . . . , xn+1) and (y1, . . . , yn+1) be
points in Sn with 0 < xn+1, yn+1 < 1. Then we have

pφ(Fn(x1, . . . , xn+1)− Fn(y1, . . . , yn+1)) ≤
φ(|(P1 − Pxn+1)Fn−1(X)− (P1 − Pyn+1)Fn−1(Y )|) + φ(Pxn+1u− Pyn+1u)

≤ φ(|Fn−1(X)− Fn−1(Y )|) + 2φ(|Pxn+1u− Pyn+1u|),

which implies that Fn is pφ-continuous at (x1, . . . , xn+1). We leave it to the reader
to verify that Fn is continuous at (0, . . . , 1). �

We now define a measure of non-compactness associated to pφ. If D ⊂ E is norm
bounded, then define:

αφ(D) = inf {λ : D ⊂
m⋃
j=1

Dj , pφ-diam(Dj) ≤ λ}.

It is easy to see that αφ(D) ≤ ‖φ‖α(D).

Lemma 2.3.. Let E, u and φ be as above. Then αφ([−u, u]) = 2.

Proof. Since the pφ-diameter of [−u, u] is 2, we have αφ([−u, u]) ≤ 2. Assume
now that [−u, u] ⊂ ∪nj=1Dj . Decompose E as Nφ ⊕ Nd

φ, where Nφ denotes {x ∈
E : φ(|x|) = 0}. We can then assume that the principal ideal Eu generated by u
is contained in Nd

φ and then replace Dj by Dj ∩ Eu. Then we denote by D̃j the
pφ-closure of Dj in the completion of (Eu, pφ). Let Fn−1 be the map constructed in
the previous lemma. Then ∪nj=1F

−1
n−1(D̃j) is a covering of Sn−1 with n closed sets.
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By the Lusternik–Schnirelman–Borsuk theorem ([2]) there exists an index j0 and
(x1, . . . , xn) ∈ Sn−1 so that ±(x1, . . . , xn) ∈ F−1

n−1(D̃j0), i.e. ±Fn−1(x1, . . . , xn) ∈
D̃j0 . Hence

pφ-diam (Dj0) = pφ-diam (D̃j0) ≥ 2pφ(Fn−1(x1, . . . , xn)) = 2,

and the proof of the lemma is complete. �
Remark. The above lemma says essentially that α([−χX , χX ]) = 2 in the space
L1(X,µ), where µ is a non-atomic probability measure. The next proposition shows
how to compute α([−u, u]) in a large class of Banach lattices, in particular the
following proposition holds for E = Lp(X,µ), where 1 ≤ p ≤ ∞.

Proposition 2.4. Let E be a Dedekind complete non-atomic Banach lattice and
assume ‖u‖ = sup {< φ, u >: 0 ≤ φ ∈ E∗n, ‖φ‖ = 1} for all 0 ≤ u ∈ E. Then
α([−u, u]) = 2‖u‖.
Proof. Let ε > 0 and 0 ≤ u ∈ E with u 6= 0. Then by assumption there exists
0 ≤ φ ∈ E∗n, ‖φ‖ = 1 with φ(u) > (1− ε)‖u‖. It follows now from the above lemma,
using a scaling of φ, that αφ([−u, u]) = 2φ(u). Hence α([−u, u]) ≥ αφ([−u, u]) >
2(1− ε)‖u‖ for all ε > 0. Hence α([−u, u]) = 2‖u‖. �

Recall now that a positive linear operator T from a Banach lattice E into a
Banach lattice F is called a Maharam operator (or interval preserving) if T [0, u] =
[0, Tu] for all 0 ≤ u ∈ E.

Proposition 2.5. Let E and F be Banach lattices with F Dedekind complete, non-
atomic and such that ‖f‖ = sup{< |f |, φ >: 0 ≤ φ ∈ F ∗n , ‖φ‖ ≤ 1} for all f ∈ F . If
0 ≤ T : E → F is a Maharam operator, then α(T (BE)) = 2‖T‖.
Proof. Let ε > 0. Then there exists 0 ≤ u ∈ E such that ‖u‖ = 1 and ‖Tu‖ ≥ ‖T‖−
ε. Then [−Tu, Tu] = T [−u, u] ⊆ T (BE) implies that α(T (BE)) ≥ α([−Tu, Tu]) =
2‖Tu‖ ≥ 2(‖T‖ − ε), and hence α(T (BE)) = 2‖T‖. �

We now derive, along the same lines as in [6] ,the main result of this pape r.

Theorem 2.6. Let E and F be Banach lattices such that E∗ is non -atomic. If
T : E → F is a norm bounded disjointness preserving operator, then α(T ) = β(T ) =
‖T‖e = ‖T‖.
Proof. As noted in [6], |T ∗| is an order continuous Maharam operator and there
exists π ∈ Z(F ∗), the center of F ∗, such that T ∗ = |T ∗| ◦ π and |π| = I. Now
E∗ satisfies the hypotheses of the previous proposition, so α(|T ∗|(BF∗)) = 2‖|T ∗|‖.
Since π is an isometry, we conclude that α(T ∗(BF∗)) = 2‖T ∗‖. From [1] we know
that α(T ∗(BF∗)) = α(T (BE)), so that we conclude that α(T (BE)) = 2‖T‖. Now
the inequalities α(T (BE)) ≤ 2α(T ) and α(T (BE)) ≤ 2β(T (BE)) = 2β(T ) imply
that β(T ) = α(T ) = ‖T‖. The theorem follows now, since we always have β(T ) ≤
‖T‖e ≤ ‖T‖. �
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