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ABSTRACT. Let E and F be Banach lattices and assume E* has no atoms. Let

T : E — F be a norm bounded disjointness preserving operator from FE into F.
Then B(T) = a(T) = ||T[e = ||T]]-

1. INTRODUCTION

Let E be a Banach space and D a norm bounded subset of E. Then the Kura-
towski measure of non-compactness of D is defined as

a(D) = inf{x: D C | Dj,diam(D;) < A}
j=1
and the Hausdorff measure of non-compactness of D is defined as
m
ﬁ(D) = inf{r :DC U B(xj,r)’xj c E}7
j=1

where B(x;,r) denotes the ball in F with center z; and radius r. If E and F are
Banach spaces and T : E — F is a bounded linear operator , then one defines for
T the corresponding measures of non-compactness

a(T) = inf{k : «(T(D)) < ka(D) for all bound ed D C E}
and
B(T) = inf{k : B(T(D) < kB(D) for all bounded D C E} = 3(T(BEg)),

where Bg denotes the unit ball in E. We recall some of the basic properties of
a(T), respectively3(T):
(1) 5a(T) < B(T) < 2a(T),
(2) a(T*) < B(T) and o(T) < B(T™) (see [5]),
(3) a(T(Bg)) = a(T*(Bp-)) (see [1]),
(4) max{a(T),B(T)} < ||IT||le, where ||T||. denotes the essential norm of T'.
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In this paper we are interested in a(T") and (T') for a special class of operators
on Banach lattices. For general information on Banach lattices we refer to the
monographs [4], [7] and [10]. For specific results on measures of non-compactness
of operators on Banach lattices we refer to [6], [8] and [9]. From now on E and F'
will denote Banach lattices. A linear operator T from E into F'is called disjointness
preserving if x Ay = 0 implies |Tz| A |Ty| = 0. It was shown in [6, theorem 3.10],
that if £* is non-atomic and T : F — F is a norm bounded disjointness preserving
operator, then 3(T) > £||T|. It was indicated in [6] that no example was known for
which S(T") < ||T'||. Moreover for special classes of spaces (e.g. F'= Ly, 1 <p < c0)
it was indicated in [6] that one always has 5(T) = ||T'||. It will be shown in this paper
that in fact under the above hypotheses one always has 3(T") = || T||. Our approach
follows [6], with one major difference: we employ the Kuratowski measure of non-
compactness «, whereas [6] only used the Hausdorff measure of non-compactness
(B. Tt is this difference which allows us to obtain the improved result.

2. THE MAIN RESULT

We denote by E* the dual space of E and by E the space of order continuous
linear functionals on E. For 0 < ¢ € E* we denote by pg the seminorm pg(f) =
&(|f])- The following lemma is an easy consequence of the result [3, Theorem 4] that
a probability measure 1 on a complete Boolean algebra has a continuous spectral
resolution. For the benefit of the reader we provide a direct short proof.

lemma 2.1. Let E be a Dedekind complete non-atomic Banach lattice and let
0<u€E and0< ¢ € E with ¢(u) = 1. Then for all t € [0,1] there exists a band
projection Py such that ¢p(Pwu) =t and such that t < s implies P, < Ps.

Proof. Let Py = 0 and Py be the band projection on {u}%¢. By Zorn’s lemma we
can find a maximal chain {P;} of band projections such that 0 < P, < P;. Then
we note that for each 0 < ¢ < 1 there exists 79 € {7} such that ¢(Pr,u) = ¢, since
E is non-atomic and ¢ is order continuous. Define now P, = sup{P; : ¢(P,u) = t}.
The order continuity of ¢ implies now ¢(Piu) = ¢ and obviously ¢ < s implies
Pt < Ps- U

In the following lemma we denote by S™ the n-sphere in R"*! ie . S" =

{1, apg) s (@1, apg1) € R with of + -+ ap ) = 1)

lemma 2.2. Let E,u and ¢ be as in Lemma 2.1. Then for alln € N there exists a
pg-continuous map Fy, : S™ — {v € E : |v| = u} such that Fp,(—z1,...,—ZTny1) =
—Fy(z1,...,Znq1) for all (x1,...,2n41) inS™.

Proof. Let P; be a collection of band projections as in Lemma 2.1. We shall con-
struct F), inductively. To define Fy we will parametrize S* as {e2™ : 0 < t < 1}.
Define then

2Pu —u forogtgé

Fl (627rit) _ {
—2P5;_qu+u for % <t<1

Note that |2Pyu — u| = |Paru + Poru — Piu| = |Poru 4+ (Py — Poy)u| = u, since

Poy L Py — Py so that |Fy(e?™)| = u for all t. Also observe that if 0 <t < %, then

Fy(—e2mit) = Fy(e27i(t+3)) = —2Pyu + u = —Fy(e2™). To show that F} is py-

continuous, we only have to show that P;u is a pg-continuous function of ¢, which
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is obvious from the fact that py(P;u — Psu) = |t — s| for all t,s € [0,1]. Hence Fy
satisfies all the requirements. Assume now that F,_; : S" ! — {v € E: |[v] = u}
) ==

has been constructed. Then define F,, as follows: F,(z1,...,Zn41
U if xp1 =1
_ 1 Tn
B = Fora )P <<1wi+1>% RTINS ) e

if 0 < Tnt1 <1
—Fn(—xl,...,—an) if Tnt1 < 0

It is easy to see that for all (x1,...,x,11) € S™ we have |F,,(z1, ..., Zpn+1)| = u and
Fn(_xh ey _anrl) = _Fn(xlv ey anrl)v since Fn(xlv oy Ty 0) = anl(xh ooy xn)
To show that F), is pg-continuous at all (x1,...,Zn41) € S™ one has to consider 3
cases: Tnt1 = 0,0 < xpy1 <1 and z,41 = 1. First we consider the case x,4+1 = 0.
Then F,(x1,...,Zn41) = Frn_1(z1, ..., x,). The continuity of F,, at (z1,...,Tnt1)
follows now from the continuity of F;, ; and the fact that P, ,, ,u | 0 as k — oo
for any sequence 2,41,k 1*0. In case 0 < z,41 < 1, then we denote by

X — ( T Tn )
(1- x%ﬂ) (1- x?z+1)

the corresponding point in S™~ 1. Let now (x1,...,2n51) and (y1,...,Yns1) be
points in S™ with 0 < z,41,Yn+1 < 1. Then we have

N
W=

pd)(Fn(l‘h cee 7$n+1) - Fn(yh cee 7yn+1)) <
(b('(Pl - Pxn+1)Fn—1(X) - (Pl - Pyn+1)Fn—1(Y)|) + (b(Pxn-Hu - Pyn+1u)
§ ¢(|Fn71(X) - anl(Y)D + 2¢(|Pfﬂn+1u - Pyn+1u|)7

which implies that F,, is pg-continuous at (1, ..., Zn+1). We leave it to the reader
to verify that F, is continuous at (0,...,1). O

We now define a measure of non-compactness associated to pg. If D C E is norm
bounded, then define:

ag(D) = inf {\: D C | J Dj, pg-diam(D;) < A}.
j=1

It is easy to see that ay(D) < ||¢|la(D).
Lemma 2.3.. Let E,u and ¢ be as above. Then aq([—u,u]) = 2.

Proof. Since the py-diameter of [—u,u] is 2, we have ag([—u,u]) < 2. Assume
now that [—u,u] C Uj_; D;. Decompose E as Ny @ Ng, where N, denotes {z €
E : ¢(Jz|) = 0}. We can then assume that the principal ideal E, generated by u
is contained in Ng and then replace D; by D; N E,. Then we denote by Dj the
pg-closure of D; in the completion of (E,, ps). Let F,,_1 be the map constructed in
the previous lemma. Then Ug?le*l (D;) is a covering of S"~! with n closed sets.

n—1
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By the Lusternik—Schnirelman-Borsuk theorem ([2]~) there exists an index jo and
(21,...,2n) € S 50 that +(x1,...,2,) € F,*(Dj,), i.e. £F_1(x1,...,2,) €

Dj,. Hence

pe-diam (Dj,) = py-diam (Dj,) > 2py(Frn—1(z1,...,2Zn)) = 2,

and the proof of the lemma is complete. O

Remark. The above lemma says essentially that a([—xx,xx]) = 2 in the space
L, (X, u), where p is a non-atomic probability measure. The next proposition shows
how to compute a([—u,u]) in a large class of Banach lattices, in particular the
following proposition holds for E = L, (X, ), where 1 < p < co.

Proposition 2.4. Let E be a Dedekind complete non-atomic Banach lattice and
assume ||u]] = sup {< ¢p,u >: 0 < ¢ € EX |6 = 1} for all 0 < u € E. Then
a[—u,ul) = 2ull.

Proof. Let € > 0 and 0 < w € E with uw # 0. Then by assumption there exists
0<¢e€E: || =1 with ¢(u) > (1 —e)||ul|. It follows now from the above lemma,
using a scaling of ¢, that ay([—u,u]) = 2¢(u). Hence a[—u,u]) > ag([—u,u]) >
2(1 — €)||u|| for all € > 0. Hence a([—u,u]) = 2|jul]. O

Recall now that a positive linear operator T' from a Banach lattice E into a
Banach lattice F' is called a Maharam operator (or interval preserving) if T[0,u] =
[0,Tu] for all 0 < u € E.

Proposition 2.5. Let E and F' be Banach lattices with F' Dedekind complete, non-
atomic and such that || f|| = sup{< |f|,¢ >: 0 < ¢ € Fr,||o]| < 1} for all f € F. If
0<T:FE — F is a Maharam operator, then o(T(Bg)) = 2||T|.

Proof. Let € > 0. Then there exists 0 < u € E such that ||u| = 1 and ||Tu|| > ||T||—
e. Then [-Tu,Tu] = T[—u,u] C T(Bg) implies that a(T(Bg)) > a([-Tu,Tu]) =
2||Tul|l = 2(||T|| — €), and hence (T (Bg)) =2|T||. O

We now derive, along the same lines as in [6] ,the main result of this pape .

Theorem 2.6. Let E and F' be Banach lattices such that E* is non -atomic. If
T : E — F is anorm bounded disjointness preserving operator, then o(T) = B(T) =
1T]le = [IT']|-

Proof. As noted in [6], |T*| is an order continuous Maharam operator and there
exists m € Z(F™), the center of F*, such that T* = |T*| o7 and |7| = I. Now
E* satisfies the hypotheses of the previous proposition, so a(|T*|(Br+)) = 2|||T*||.
Since 7 is an isometry, we conclude that a(T*(Bp~)) = 2||T*||. From [1] we know
that a(T*(Bp+)) = a(T(Bg)), so that we conclude that «(T(Bg)) = 2||T||. Now
the inequalities a(T'(Bg)) < 2«(T) and o(T(Bg)) < 28(T(Bg)) = 26(T) imply
that B8(T) = «(T) = ||T||. The theorem follows now, since we always have 3(T) <
IT). < 7). D
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