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Let ρ and λ be Banach function norms with the Fatou property. Then the

generalized Minkowski integral inequality ρ(λ(fx)) ≤ Mλ(ρ(fy)) holds for all measurable

functions f(x, y) and some fixed constant M if and only if there exists 1 ≤ p ≤ ∞ such

that λ is p–concave and ρ is p–convex.

INTRODUCTION

Let (X,µ) and (Y, ν) be σ-finite measure spaces. Let 0 < r ≤ s < ∞ and let

f(x, y) be a µ×ν–measurable function. Then the classical integral inequality of Minkowski

states that

(

∫
(

∫
|f(x, y)|rdν(y))

s
r dµ(x))

1
s ≤ (

∫
(

∫
|f(x, y)|sdµ(x))

r
s dν(y))

1
r .

If we define for fixed x ∈ X the function fx by fx(y) = f(x, y) and for fixed y ∈ Y the

function fy by fy(x) = f(x, y), then the above inequality is the same as

‖‖fx‖r‖s ≤ ‖‖fy‖s‖r.

The goal of this paper is to extend this inequality to function norms. For general infor-

mation and terminology concerning function norms and Banach function spaces we refer

1This a corrected version of the published version, dated November 13, 2014. The proof of

Theorem 2.3 contained an error as pointed out to the author by Rovshan Bandaliyev.
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to [10]. It is known that if ρ is a function norm that ρ(fx) need not be a measurable

function on X (see [5]). To avoid this pathology we shall assume that all our function

norms have the Fatou property, i.e., if 0 ≤ fk ↑ f , fk ∈ Lρ and supk ρ(fk) < ∞, then

f ∈ Lρ and ρ(f) = supk ρ(fk). A function norm ρ is said to have the weak Fatou property,

if 0 ≤ fk ↑ f , fk ∈ Lρ and supk ρ(fk) < ∞ implies that f ∈ Lρ. As was shown in [4]

the Fatou property is sufficient to ensure the measurability of ρ(fx), but the weak Fatou

property is not (see [5]). We note that the associate norm ρ′ of a function norm always

has the Fatou property. Let λ be a function norm on L0(Y, ν) and ρ a function norm on

L0(X,µ), where L0(Y, ν), respectively L0(X,µ), denotes the space of (equivalence classes

of) all measurable functions on Y , respectively X. The main result of this paper is that

(*) ρ(λ(fx)) ≤Mλ(ρ(fy))

holds for all measurable functions f(x, y) and some fixed constant M if and only if there

exists 1 ≤ p ≤ ∞ such that λ is p–concave and ρ is p–convex. We note that equation (*)

generalizes Minkowski’s integral inequality to arbitrary function norms. In section 2 of

this paper the above mentioned result will be proved. The proof of this theorem depends

crucially on the fundamental result of Krivine about the local structure of a Banach lattice

([3], see [8] for an expository account of this theorem). In section 3 we shall relate the

main result to the theory of integral operators of finite double norm (the so called Hille-

Tamarkin integral operators) and integral operators of finite inverse double norm.

1. PRELIMINARIES

Let us recall the notion of p–convexity and p–concavity. Let ρ be a Banach

function norm and let Lρ = Lρ(X,µ) denote the corresponding Banach function space.

Then Lρ is called p–convex for 1 ≤ p ≤ ∞ if there exists a constant M such that for all

f1, . . . , fn ∈ Lρ,

ρ((
n∑
k=1

|fk|p)
1
p ) ≤M(

n∑
k=1

ρ(fk)p)
1
p if 1 ≤ p <∞

or ρ(sup |fk|) ≤M max1≤k≤n ρ(fk) if p =∞. Similarly Lρ is called p–concave for 1 ≤ p ≤
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∞ if there exists a constant M such that for all f1, . . . , fn ∈ Lρ,

(
n∑
k=1

ρ(fk)p)
1
p ≤Mρ((

n∑
k=1

|fk|p)
1
p ) if 1 ≤ p <∞

or max1≤k≤n ρ(fk) ≤ Mρ(sup |fk|) if p = ∞. The notions of p–convexity, respectively

p–concavity are closely related to the notions of upper p–estimate (strong `p–composition

property), respectively lower p–estimate (strong `p–decomposition property) as can be

found in e.g. [6, Theorem 1.f.7]. In particular the lower index s(Lρ) of Lρ is also equal to

the supremum of {p ≥ 1 : Lρ is p − convex} and the upper index σ(Lρ) of Lρ equals the

infimum of {p ≥ 1 : Lρ is p − concave}. We now recall the result of J.L. Krivine (see [8]

for a discussion of this result as well as several relevant references).

THEOREM 1.1 (Krivine). Let E be an infinite dimensional Banach lattice.

Then for all integers n, all ε > 0, p = s(E) and p = σ(E) there exist disjoint x1, . . . , xn

in E such that for all n–tuples {ai} of real numbers we have

‖{ai}‖p ≤ ‖
n∑
i=1

aixi‖ ≤ (1 + ε)‖{ai}‖p.

The following proposition describes p–convex function norms with the weak

Fatou property. Its origin is in Pisier’s work and the theory of p–concavication (see [6]).

PROPOSITION 1.2. Let Lρ be a p–convex Banach function space with the

weak Fatou property. Then there exists a collection G of non-negative measurable functions

on X such that ρ is equivalent to the function norm

ρ1(f) = sup
g∈G

(∫
|f |pgdµ

) 1
p

.

PROOF. Define τ(f) = (ρ(|f |
1
p ))p. Then τ has the weak Fatou property and

all the properties of a norm, except that τ(f + g) ≤ M(τ(f) + τ(g)), where M is the

convexity constant of ρ. Let

τ1(f) = inf
{ n∑
i=1

τ(fi) : |f | =
n∑
i=1

|fi|
}
.
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Then it is easy to see that τ1 is a function norm with the weak Fatou property, which is

equivalent to τ . Let G be the the positive part of the unit ball of L′τ1 , i.e., G = {g ≥ 0 :

τ ′1(g) ≤ 1}. It follows from [10, Theorem 112.2] that τ1 is equivalent to the second associate

norm τ ′′1 , i.e., τ1 is equivalent to sup{
∫
|f |gdµ : g ∈ G}. The conclusion now follows easily,

since ρ(f) = (τ(|f |p))
1
p .

We note that the function norm ρ1 has the Fatou property, so that the assump-

tion that ρ has the weak Fatou property is necessary in the above proposition. If one

assumes that the convexity constant M equals one and that ρ has the Fatou property,

then ρ = ρ1.

2. MINKOWSKI’S INEQUALITY FOR FUNCTION NORMS

We start with the special case that λ = ‖ · ‖1 or ρ = ‖ · ‖∞.

PROPOSITION 2.1. Let ρ and λ be function norms with the Fatou property

and let f(x, y) be a measurable function. Then we have

ρ
(
‖fx‖1

)
≤ ‖ρ(fy)‖1

and

‖λ(fx)‖∞ ≤ λ
(
‖fy‖∞

)
.

PROOF. Let 0 ≤ g ∈ L′ρ with ρ′(g) ≤ 1. Then we have∫ (∫
|f(x, y)|dν(y)

)
g(x)dµ(x) =

∫ (∫
|f(x, y)|g(x)dµ(x)

)
dν(y)

≤
∫
ρ(fy)dν(y) = ‖ρ(fy)‖1.

By taking the supremum over the collection of all such g we obtain

ρ
(
‖fx‖1

)
≤ ‖ρ(fy)‖1.

This proves the first inequality. The second inequality can be proved along similar lines or

by a duality argument.
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COROLLARY 2.2 (Minkowski’s integral inequality). Let 0 < r ≤ s <

∞ and let f(x, y) be a µ× ν–measurable function. Then we have

(

∫
(

∫
|f(x, y)|rdν(y))

s
r dµ(x))

1
s ≤ (

∫
(

∫
|f(x, y)|sdµ(x))

r
s dν(y))

1
r .

PROOF. Let p = s
r and take ρ = ‖ · ‖p. Then apply the above proposition to

|f(x, y)|r to get

(

∫
(

∫
|f(x, y)|rdν(y))

s
r dµ(x))

r
s = ρ(‖|fx|r‖1)

≤ ‖ρ(|fy|r)‖1 = (

∫
|f(x, y)|sdµ(x))

r
s dν(y)).

THEOREM 2.3. Let ρ and λ be function norms with the Fatou property and

assume that there exists 1 ≤ p ≤ ∞ such that ρ is p–convex and λ is p–concave. Then

there exists a constant C such that for all measurable f(x, y) we have

ρ(λ(fx)) ≤ Cλ(ρ(fy)).

PROOF. If p =∞, then ρ is equivalent to ‖ · ‖∞ and the theorem follows then

from Proposition 2.1. Assume therefore that 1 ≤ p < ∞. Then λ is an order continuous

norm. We shall first prove the theorem under the additional hypothesis that also ρ is

weighted p-seminorm. In that case the product seminorms ρλ and λρ are order continuous

and it therefore suffices to prove the inequality for functions in the collection P = {f(x, y) :

f(x, y) =
∑n
i=1 fi(x)gi(y), fi, gi ≥ 0, fi, gi measurable, {fi} mutually disjoint}. Let f =∑n

i=1 figi ∈ P. Let M denote a convexity constant of ρ and a concavity constant of λ.

Assume first that the convexity constant of ρ = 1. Then by proposition 1.2 we have

ρ(f) = supg∈G ‖f‖p,g, where ‖ · ‖p,g denotes the weighted p-seminorm of Proposition 1.2.
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Let ‖ · ‖p,g be one of these seminorms. Then we have the following inequalities

‖(λ(fx))‖p,g ≤ ‖(
n∑
i=1

fiλ(gi))‖p,g

=
( n∑
i=1

‖fi‖pp,gλ(gi)
p
) 1

p

=
( n∑
i=1

λ(‖fi‖p,ggi)p
) 1

p

≤Mλ
(( n∑
i=1

‖(fi)‖pp,ggi(y)p
) 1

p
)

= Mλ(‖fy‖p,g),

for all f ∈ P. Hence for all measurable functions f ≥ 0 we have that

‖(λ(fx))‖p,g ≤Mλ(‖fy‖p,g) ≤Mλ(ρ(fy)).

Taking now on the left the supremum over all ‖ · ‖p,g we conclude that ρ(λ(fx)) ≤

Mλ(ρ(fy)) for all measurable f ≥ 0 in case ρ has convexity constant equal to 1. For the

case of constant of convexity equal to M , we pass to an equivalent norm with convexity

constant equal to one and apply the above proof. We conclude that ρ(λ(fx)) ≤ Cλ(ρ(fy))

for all f ≥ 0.

REMARK. Note that if σ(Lλ) < s(Lρ), then for any σ(Lλ) < p < s(Lρ) we

have that ρ is p–convex and λ is p–concave.

As a first step in showing that the conditions of the above theorem are also

necessary, we prove the following proposition.

PROPOSITION 2.4. Let ρ and λ be function norms with the Fatou property

and assume that there exists a constant C such that for all measurable f(x, y) we have

ρ(λ(fx)) ≤Mλ(ρ(fy)).

Then σ(Lλ) ≤ s(Lρ).

PROOF. Let p = s(Lρ), q = σ(Lλ) and let n be a positive integer. Then by

Krivine’s theorem (Theorem 1.1) there exist disjoint g1, . . . , gn in Lρ and disjoint h1, . . . , hn
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in Lλ such that for all n–tuples {ai} of real numbers we have

‖{ai}‖p ≤ ρ
( n∑
i=1

aigi
)
≤ 2‖{ai}‖p

and

‖{ai}‖q ≤ λ
( n∑
i=1

aihi
)
≤ 2‖{ai}‖q.

Let f(x, y) =
∑n
i=1 aigi(x)hi(y). Then we have

λ(ρ(fy)) = λ
( n∑
i=1

|ai|ρ(gi)hi(y)
)

≤ 2λ
( n∑
i=1

|ai|hi
)
≤ 4‖{ai}‖q

and

ρ(λ(fx)) = ρ
( n∑
i=1

|ai|gi(x)λ(hi)
)

≥ ρ
( n∑
i=1

|ai|gi
)
≥ ‖{ai}‖p.

From this it follows that ‖{ai}‖p ≤ 4C‖{ai}‖q for all n–tuples {ai}, where C is independent

of n. This implies that q ≤ p, which concludes the proof of the proposition.

We now prove the converse of Theorem 2.3.

THEOREM 2.5. Let ρ and λ be function norms with the Fatou property and

assume that there exists a constant C such that for all measurable f(x, y) we have

ρ(λ(fx)) ≤Mλ(ρ(fy)).

Then there exists 1 ≤ p ≤ ∞ such that ρ is p–convex and λ is p–concave.

PROOF. From the above proposition it follows that σ(Lλ) ≤ s(Lρ). In case we

have that σ(Lλ) < s(Lρ), then the theorem will hold for any p such that σ(Lλ) < p < s(Lρ).

Hence assume that σ(Lλ) = s(Lρ) = p. By Krivine’s theorem (Theorem 1.1) there exist

disjoint h1, . . . , hn in Lλ such that for all n–tuples {ai} of real numbers we have

‖{ai}‖p ≤ λ
( n∑
i=1

aihi
)
≤ 2‖{ai}‖p.
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Let g1, . . . , gn be in Lρ and put f(x, y) =
∑n
i=1 gi(x)hi(y). Then we have

λ(ρ(fy)) = λ
( n∑
i=1

ρ(gi)hi
)
≤ 2‖{ρ(gi)}‖p

and

ρ(λ(fx)) ≥ ρ
(
‖{gi}‖p

)
.

From ρ(λ(fx)) ≤Mλ(ρ(fy)) it follows now that

ρ
(( n∑
i=1

|gi|p
) 1

p
)
≤ 2M

( n∑
i=1

ρ(gi)
p
) 1

p ,

i.e., ρ is p–convex. By a similar argument (or by duality) one can show that λ is p–concave.

The following corollary is due to A.V. Buhvalov ([1]), the special case ρ = λ is

due to N.J. Nielsen ([7]).

COROLLARY 2.6(Generalized Kolmogorov-Nagumo’s Theorem).Let

ρ and λ be function norms with the Fatou property and assume that the double norm

ρ(λ(fx)) is equivalent with the double norm λ(ρ(fy)). Then there exists 1 ≤ p ≤ ∞ such

that ρ and λ are equivalent to an Lp–norm.

PROOF. Applying the above theorem twice we get that there exist 1 ≤ p, q ≤

∞ such that ρ is p–convex and q–concave, and λ is q–convex and p–convex. Hence it

follows that p = q. If p <∞ the result now follows from [6, Lemma 1.b.13]. In case p =∞

an inspection of the proof of [6, Lemma 1.b.13] shows that ρ and λ are equivalent to an

AM-norm.

3. INTEGRAL OPERATORS OF FINITE DOUBLE NORM

Recall that a linear operator T from Lλ into Lρ is called an integral operator if

there exists a µ× ν–measurable function T (x, y) on X × Y such that∫
|T (x, y)f(y)|dν(y) <∞

a.e. for all f ∈ Lλ and such that

Tf(x) =

∫
T (x, y)f(y)dν(y)
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a.e. for all f ∈ Lλ. Such an integral operator is called an integral operator of finite double

norm, or Hille-Tamarkin operator, if ρ(λ′(Tx)) < ∞. Characterizations and compactness

properties of such operators are discussed in [9] (see also the references in [9]). An integral

operator is called an integral operator of finite inverse double norm if λ′(ρ(T y)) < ∞.

Integral operators which are of finite double and finite inverse double norm are sometimes

called integral operators of complete finite double norm. It is well known that the spaces

of integral operators of finite double norm and of finite inverse double norm are Banach

function spaces with respect to the product norm ρ(λ′(·)), respectively λ′(ρ(·)). Our main

results of the previous section imply the following theorem.

THEOREM 3.1. Let λ and ρ be Banach function norms with the Fatou prop-

erty. Then the following holds.

(1) Every integral operator of finite inverse double norm is an integral operator of finite

double norm if and only if there exists 1 ≤ p ≤ ∞ such that ρ is p–convex and λ is

p′–convex, where 1
p + 1

p′ = 1.

(2) Every integral operator of finite double norm is an integral operator of finite inverse

double norm if and only if there exists 1 ≤ p ≤ ∞ such that ρ is p′–concave and λ

is p–concave, where 1
p + 1

p′ = 1.

PROOF. Every integral operator of finite inverse double norm is an integral

operator of finite double norm if and only if there exists a constant M such that ρ(λ′(Tx)) ≤

Mλ′(ρ(T y)). From Theorem 2.3 and Theorem 2.5. it follows that this inequality holds if

and only if there exists 1 ≤ p ≤ ∞ such that ρ is p–convex and λ′ is p–concave. Now λ′ is

p–concave implies that λ′′ = λ is p′–convex. This proves (1). The proof of (2) is similar

and therefore omitted.

Integral operators of complete finite double norm occur naturally in the study

of power summability of eigenvalues of integral operators. In [2] it was e.g. proved that

on an order continuous Banach function space the eigenvalues of an integral operator of

complete finite double norm are always 4th-power summable. More precise exponents of

summability were then given in terms of the lower and upper indices of the Banach function
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space. The following corollary of Theorem 3.1 shows that in some cases integral operators

of finite (inverse) double norm are of complete finite double norm.

COROLLARY 3.2. Let X = Y and let ρ = λ be a Banach function norm with

the Fatou property. Then the following holds.

(1) Every integral operator of finite inverse double norm from Lρ into Lρ is an integral

operator of finite double norm if and only if there exists 2 ≤ p ≤ ∞ such that ρ is

p–convex.

(2) Every integral operator of finite double norm from Lρ into Lρ is an integral operator

of finite inverse double norm if and only if there exists 1 ≤ p ≤ 2 such that ρ is

p–concave.

(3) The collection of integral operators of finite double norm from Lρ into Lρ coincides

with the collection of integral operators of inverse finite double norm from Lρ into

Lρ if and only if Lρ is lattice isomorphic to an L2–space.

PROOF. By the above theorem every integral operator of finite inverse double

norm from Lρ into Lρ is an integral operator of finite double norm if and only if there

exists 1 ≤ p ≤ ∞ such that ρ is p–convex and ρ is p′–convex. Since at least one of p and p′

is greater than or equal to 2, part (1) follows. Part (2) follows similarly. To prove part (3)

note first that when Lρ is lattice isomorphic to an L2–space then the collections of integral

operators of finite double norm, respectively finite inverse double norm both coincide with

the collection of Hilbert-Schmidt operators. Now by parts (1) and (2) The collection of

integral operators of finite double norm from Lρ into Lρ coincides with the collection of

integral operators of inverse finite double norm from Lρ into Lρ if and only if Lρ is both

2–convex and 2–concave and the result follows from this as in Corollary 2.6.
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