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It is hard not to have Ray Redheffer’s title of [19] as a reaction to another article
on the Fundamental Theorem of Algebra. In fact at least 26 notes have appeared
in this Monthly (see the References) about this theorem. In this note we present
nevertheles two proofs of the Fundamental Theorem of Algebra, which do not seem
to have been observed before and which we think are worth recording. The first
one uses Cauchy’s Integral Theorem and is, in the author’s opinion, as simple as
the most popular complex analysis proof based on Liouville’s theorem (see [20] for
this and three other proofs using complex analysis). The second one considers the
integral obtained by parameterizing the contour integral from the first proof and
uses only results from advanced calculus. This proof is similar to the proof of [23],
where the same ideas were used to prove the non-emptiness of the spectrum of an
element in a complex Banach algebra. There the companion matrix of a polynomial
was used then to derive the Fundamental Theorem of Algebra.

Theorem (Fundamental Theorem of Algebra). Every polynomial of degree n ≥ 1
with complex coefficients has a zero in C.

Proof. Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 be a polynomial of degree n ≥ 1

and assume that p(z) 6= 0 for all z ∈ C.
First Proof: By Cauchy’s integral theorem we have∮
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where the circle is traversed counter clockwise. On the other hand |p(z)| = |z|n|(1+
a1
z + · · ·+ a0

zn )| → ∞ as |z| → ∞ implies that∣∣∣∣∣
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|p(z)|
→ 0,

as r →∞, which is a contradiction.
Second Proof: Define g : [0,∞)× [0, 2π]→ C by g(r, θ) = 1

p(reiθ)
. Then the function

g is continuous on [0,∞)× [0, 2π] and has continuous partials on (0,∞)× (0, 2π),
given by

∂g

∂r
(r, θ) =
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.
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Define now F : [0,∞) → C by F (r) =
∫ 2π

0
g(r, θ) dθ. Then F is continuous on

[0,∞) by the uniform continuity of g on [0,M ] × [0, 2π] for all M > 0 and by
Leibniz’s rule for differentiation under the integral sign we have for all r > 0

F ′(r) =

∫ 2π

0

∂g

∂r
(r, θ) dθ =

∫ 2π

0

−eiθ

p2(reiθ)
dθ,

so that

riF ′(r) =

∫ 2π

0

−rieiθ

p2(reiθ)
dθ =

∫ 2π

0

∂g

∂θ
(r, θ) dθ = g(r, 2π)− g(r, 0) = 0,

by the fundamental theorem of calculus. Hence F ′(r) = 0 for all r > 0. This
implies that F is constant on [0,∞) with F (r) = F (0) = 2π

p(0) 6= 0. On the other

hand |p(z)| → ∞ as |z| → ∞ implies that g(r, θ) → 0 as r → ∞ uniformly in θ.
Therefore F (r)→ 0 as r →∞, which is a contradiction. �
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