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Let (X,u) and (Y,v) be o-finite measure spaces. We denote by L"(L?®) the
Banach lattice {f(z,y) € L%(X x Y,u x v) : || [|fylls]l» < oo}, where f, denotes
the function = — f(z,y). the norm || || fy|lsllr < oo of f. It
is well known, see [B], that for 1 < r, s < oo the order continuous dual of L"(L?)
equals LT/(LSI). In particular for 1 < p < oo the space L°°(LP) is the dual space
of L*(L?"), so that the unit ball of L°°(LP) is weak*-compact with respect to this
duality. For k € L>°(LP) we denote by T} the integral operator with kernel k, i.e.

Ti(f) = /Y k() ()dv(y) e

It is an exercise (by using adjoints) to show that T} is a bounded linear operator
from L' into L? with || Tk || = ||k|lcc.p-

Theorem (Dunford’s theorem [D]). Let T be a bounded linear operator from
LY(Y,v) into LP(X, ). Then there exists k € L>(LP) such that T = T,.

Proof (Lozanovskii [L]). We may assume that 7 > 0 and ||T|| < 1. Define M =
{U:U=(Xua,,...,Xa,): AinA; =0 for i # 5,0 < u(A;) < oo}. Then for U € M
we denote

R(U)={ke L>(LP): k>0ae. ,|klop <1

and T, (Xa,) =T(Xa,) fori =1,...,n}.

We shall first show that R(U) # () for all U € M. Let U = (Xa,,...,X4a, ) € M.
Define

j=1
Now clearly k£ > 0, T:(X4,) = T'(X4,) and

Z (y)

< ess supZXAi (y) =1,
Y i=1

|kl|oo,p = €ss sup

p

so k € R(U). Hence R(U) # 0 for all U € M. Next we show that R(U) is weak*-
closed in L*°(LP). Let k, € R(U) such that k, — k weak®. Then it easy to see
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that k> 0 and ||k|| < 1. Let U = (X4,) and let g € L? (X, 11). Then X4, (y)g(z) €
LY(LY"), s0 (kr,gXa,) — (k,gX4,). But by Tonelli’s theorem we have

(ke gXa,) = / 9(x) Ty, (Xa,)(z)dp(z) = / 9(x)T (Xa,;)(x)dp(z)

" gl = [ oo ( [k <y)du<y>) ().

Hence we have that
[ st@rreca@nte) = [ o) ( [ Ko war) due)

for all g € L¥. It follows that T(X4,) = Tr(X4,) for all i. Hence T}, € R(U).
We conclude from this that R(U) is a weak™-compact subset of L>°(LP). Next
we show that {R(U) : U € M} has the finite intersection property. Let U; and
Us; € M. Then let U denote the common refinement of U; and Us, where sets of
measure zero are omitted. Then U € M and R(U) C R(Uy) N R(Us) by linearity
of T and Ty. Hence {R(U) : U € M} has the finite intersection property. Weak*-
compactness of the unit ball of L>°(LP) implies that there exists k € L°°(LP) such
that k € N {R(U) : U € M}. This implies that T'(X4) = T (X 4) for all measurable
sets A C Y with 0 < v(A4) < co. It follows from this that T}, = T and the proof is
complete.

GENERALIZATIONS AND APPLICATIONS

One can generalize the above proof and obtain proofs of the author’s results
concerning characterizations of Carleman and Hille-Tamarkin integral operators
(see [S2]) and also Schachermayer’s characterizations of integral operators ([S1]).
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