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Let (X,µ) and (Y, ν) be σ-finite measure spaces. We denote by Lr(Ls) the
Banach lattice {f(x, y) ∈ L0(X × Y, µ × ν) : ‖ ‖fy‖s‖r < ∞}, where fy denotes
the function x 7→ f(x, y). We denote by ‖f‖r,s the norm ‖ ‖fy‖s‖r < ∞ of f . It
is well known, see [B], that for 1 ≤ r, s ≤ ∞ the order continuous dual of Lr(Ls)
equals Lr

′
(Ls

′
). In particular for 1 < p ≤ ∞ the space L∞(Lp) is the dual space

of L1(Lp
′
), so that the unit ball of L∞(Lp) is weak*-compact with respect to this

duality. For k ∈ L∞(Lp) we denote by Tk the integral operator with kernel k, i.e.

Tk(f) =
∫
Y

k(x, y)f(y)dν(y) a.e.

It is an exercise (by using adjoints) to show that Tk is a bounded linear operator
from L1 into Lp with ‖Tk‖ = ‖k‖∞,p.
Theorem (Dunford’s theorem [D]). Let T be a bounded linear operator from
L1(Y, ν) into Lp(X,µ). Then there exists k ∈ L∞(Lp) such that T = Tk.

Proof (Lozanovskǐi [L]). We may assume that T ≥ 0 and ‖T‖ ≤ 1. Define M =
{U : U = (χA1 , . . . , χAn) : Ai∩Aj = ∅ for i 6= j, 0 < µ(Ai) <∞}. Then for U ∈M
we denote

R(U) = {k ∈ L∞(Lp) : k ≥ 0 a.e. , ‖k‖∞,p ≤ 1

and Tk(χAi) = T (χAi) for i = 1, . . . , n}.
We shall first show that R(U) 6= ∅ for all U ∈ M. Let U = (χA1 , . . . , χAn) ∈ M.
Define

k(x, y) =
n∑
j=1

T (χAi)(x)χAi(y)
ν(Ai)

.

Now clearly k ≥ 0, Tk(χAi) = T (χAi) and

‖k‖∞,p = ess sup
y

∥∥∥∥∥
n∑
i=1

T (χAi)(x)χAi(y)
ν(Ai)

∥∥∥∥∥
p

≤ ess sup
y

n∑
i=1

χAi(y) = 1,

so k ∈ R(U). Hence R(U) 6= ∅ for all U ∈ M. Next we show that R(U) is weak*-
closed in L∞(Lp). Let kτ ∈ R(U) such that kτ → k weak*. Then it easy to see
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that k ≥ 0 and ‖k‖ ≤ 1. Let U = (χAi) and let g ∈ Lp′(X,µ). Then χ
Ai(y)g(x) ∈

L1(Lp
′
), so 〈kτ , gχAi〉 → 〈k, gχAi〉. But by Tonelli’s theorem we have

〈kτ , gχAi〉 =
∫
g(x)Tkτ (χAi)(x)dµ(x) =

∫
g(x)T (χAi)(x)dµ(x)

and

〈k, gχAi〉 =
∫
g(x)

(∫
k(x, y)χAi(y)dν(y)

)
dµ(x).

Hence we have that∫
g(x)T (χAi)(x)dµ(x) =

∫
g(x)

(∫
k(x, y)χAi(y)dν(y)

)
dµ(x)

for all g ∈ Lp
′
. It follows that T (χAi) = Tk(χAi) for all i. Hence Tk ∈ R(U).

We conclude from this that R(U) is a weak*-compact subset of L∞(Lp). Next
we show that {R(U) : U ∈ M} has the finite intersection property. Let U1 and
U2 ∈ M. Then let U denote the common refinement of U1 and U2, where sets of
measure zero are omitted. Then U ∈ M and R(U) ⊂ R(U1) ∩ R(U2) by linearity
of T and Tk. Hence {R(U) : U ∈ M} has the finite intersection property. Weak*-
compactness of the unit ball of L∞(Lp) implies that there exists k ∈ L∞(Lp) such
that k ∈ ∩ {R(U) : U ∈M}. This implies that T (χA) = Tk(χA) for all measurable
sets A ⊂ Y with 0 < ν(A) <∞. It follows from this that Tk = T and the proof is
complete.

Generalizations and Applications

One can generalize the above proof and obtain proofs of the author’s results
concerning characterizations of Carleman and Hille-Tamarkin integral operators
(see [S2]) and also Schachermayer’s characterizations of integral operators ([S1]).
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