LOZANOVSKII'S PROOF OF DUNFORD'S THEOREM

ANTON R. SCHEP

University of South Carolina

Let (X, μ) and (Y, ν) be σ -finite measure spaces. We denote by $L^r(L^s)$ the Banach lattice $\{f(x, y) \in L^0(X \times Y, \mu \times \nu) : \| \|f_y\|_s\|_r < \infty\}$, where f_y denotes the function $x \mapsto f(x, y)$. We denote by $\|f\|_{r,s}$ the norm $\| \|f_y\|_s\|_r < \infty$ of f. It is well known, see [B], that for $1 \leq r, s \leq \infty$ the order continuous dual of $L^r(L^s)$ equals $L^{r'}(L^{s'})$. In particular for $1 the space <math>L^\infty(L^p)$ is the dual space of $L^1(L^{p'})$, so that the unit ball of $L^\infty(L^p)$ is weak*-compact with respect to this duality. For $k \in L^\infty(L^p)$ we denote by T_k the integral operator with kernel k, i.e.

$$T_k(f) = \int_Y k(x, y) f(y) d\nu(y) \text{ a.e.}$$

It is an exercise (by using adjoints) to show that T_k is a bounded linear operator from L^1 into L^p with $||T_k|| = ||k||_{\infty,p}$.

Theorem (Dunford's theorem [D]). Let T be a bounded linear operator from $L^1(Y, \nu)$ into $L^p(X, \mu)$. Then there exists $k \in L^{\infty}(L^p)$ such that $T = T_k$.

Proof (Lozanovskií [L]). We may assume that $T \ge 0$ and $||T|| \le 1$. Define $\mathcal{M} = \{U : U = (\chi_{A_1}, \ldots, \chi_{A_n}) : A_i \cap A_j = \emptyset$ for $i \ne j, 0 < \mu(A_i) < \infty\}$. Then for $U \in \mathcal{M}$ we denote

$$R(U) = \{k \in L^{\infty}(L^p) : k \ge 0 \text{ a.e. }, ||k||_{\infty,p} \le 1$$

and $T_k(\chi_{A_i}) = T(\chi_{A_i}) \text{ for } i = 1, \dots, n\}.$

We shall first show that $R(U) \neq \emptyset$ for all $U \in \mathcal{M}$. Let $U = (\chi_{A_1}, \ldots, \chi_{A_n}) \in \mathcal{M}$. Define

$$k(x,y) = \sum_{j=1}^{n} \frac{T(\chi_{A_i})(x)\chi_{A_i}(y)}{\nu(A_i)}$$

Now clearly $k \ge 0$, $T_k(\chi_{A_i}) = T(\chi_{A_i})$ and

$$\|k\|_{\infty,p} = \operatorname{ess\,sup}_{y} \left\| \sum_{i=1}^{n} \frac{T(\chi_{A_{i}})(x)\chi_{A_{i}}(y)}{\nu(A_{i})} \right\|_{p}$$
$$\leq \operatorname{ess\,sup}_{y} \sum_{i=1}^{n} \chi_{A_{i}}(y) = 1,$$

so $k \in R(U)$. Hence $R(U) \neq \emptyset$ for all $U \in \mathcal{M}$. Next we show that R(U) is weak^{*}closed in $L^{\infty}(L^p)$. Let $k_{\tau} \in R(U)$ such that $k_{\tau} \to k$ weak^{*}. Then it easy to see that $k \ge 0$ and $||k|| \le 1$. Let $U = (\chi_{A_i})$ and let $g \in L^{p'}(X, \mu)$. Then $\chi_{A_i}(y)g(x) \in L^1(L^{p'})$, so $\langle k_\tau, g\chi_{A_i} \rangle \to \langle k, g\chi_{A_i} \rangle$. But by Tonelli's theorem we have

$$\langle k_{\tau}, g\chi_{A_i} \rangle = \int g(x) T_{k_{\tau}}(\chi_{A_i})(x) d\mu(x) = \int g(x) T(\chi_{A_i})(x) d\mu(x)$$

and

$$\langle k, g \chi_{A_i} \rangle = \int g(x) \left(\int k(x, y) \chi_{A_i}(y) d\nu(y) \right) d\mu(x)$$

Hence we have that

$$\int g(x)T(\chi_{A_i})(x)d\mu(x) = \int g(x)\left(\int k(x,y)\chi_{A_i}(y)d\nu(y)\right)d\mu(x)$$

for all $g \in L^{p'}$. It follows that $T(\chi_{A_i}) = T_k(\chi_{A_i})$ for all *i*. Hence $T_k \in R(U)$. We conclude from this that R(U) is a weak*-compact subset of $L^{\infty}(L^p)$. Next we show that $\{R(U) : U \in \mathcal{M}\}$ has the finite intersection property. Let U_1 and $U_2 \in \mathcal{M}$. Then let U denote the common refinement of U_1 and U_2 , where sets of measure zero are omitted. Then $U \in \mathcal{M}$ and $R(U) \subset R(U_1) \cap R(U_2)$ by linearity of T and T_k . Hence $\{R(U) : U \in \mathcal{M}\}$ has the finite intersection property. Weak*compactness of the unit ball of $L^{\infty}(L^p)$ implies that there exists $k \in L^{\infty}(L^p)$ such that $k \in \cap \{R(U) : U \in \mathcal{M}\}$. This implies that $T(\chi_A) = T_k(\chi_A)$ for all measurable sets $A \subset Y$ with $0 < \nu(A) < \infty$. It follows from this that $T_k = T$ and the proof is complete.

GENERALIZATIONS AND APPLICATIONS

One can generalize the above proof and obtain proofs of the author's results concerning characterizations of Carleman and Hille-Tamarkin integral operators (see [S2]) and also Schachermayer's characterizations of integral operators ([S1]).

References

- [B] A. Benedek and R. Panzone, The spaces L^p with mixed norm, Duke Math. J. 28 (1961), 301–304.
- [D] N. Dunford, Integration and linear operations, Trans. Amer. Math. Soc. 40 (1936), 474–494.
- [L] G. Ya. Lozanovskii, N. Dunford's theorem, Izv. Vysš Učebn. Zaved. Matem. 8 (1974), 58–59.
- [S1] W. Schachermayer, Integral operators on L^p-spaces, Indiana Univ. Math. J. 30 (1981), 123-140.
- [S2] A.R. Schep, Generalized Carleman operators, Proc. Kon. Ned. Akad. v. Wet. Series A 83(1) (1980), 49–59.

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208